
Chapter 14
Remote Sensing of Coastal Mangrove Forest

Le Wang and Wayne P. Sousa

Mangroves, once occupied 75% of the world’s tropical and subtropical coastlines,
are seriously threatened by coastal development projects and accelerated climate
change, e.g. sea-level rise. In this study, we aim to attain three objectives: (1) to
develop effective methods for discriminating mangrove species from IKONOS im-
agery; (2) to determine an optimal season for capturing the spectral and textural dif-
ference among mangrove species; (3) to investigate the capability of hyperspectral
data for distinguishing mangrove species. Our study site is in Panama. Two scenes of
IKONOS imagery respectively acquired during dry and wet seasons were employed.
A Clustering-Based Neural Network (CBNN) classifier was developed and its per-
formance was compared with two other conventional classifiers: Back-Propagation
Neural Networks classifier (BPNN) and Maximum Likelihood Classifier (MLC).
Results indicate that CBNN is superior to BPNN and MLC in employing textural
information. Rainy season is better than dry season for mangrove species classifi-
cation. To investigate the third objective, a one-way ANNOVA followed by linear
discriminate analysis (LDA) method was devised for analyzing the leaf-level hyper-
spectral reflectance. A kappa value of 0.9 was achieved in classifying leaves from
three species. Four narrow-band indices were tested for detecting stress conditions
associated with the three mangrove species.

14.1 Introduction

Mangrove forests are highly productive ecosystems that typically dominate the in-
tertidal zone of low energy tropical and subtropical coastlines (Lugo and Snedaker
1974, Kathiresan and Bingham 2001). The constituent species in these forests are
often differentially distributed with distance from the water’s edge, forming zones
of differing species composition perpendicular to the intertidal gradient. Mangrove
habitats and the organisms they support are of significant ecological and economic
value (Lugo and Snedaker 1974, Tomlinson 1986, Hutchings and Saenger 1987,
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Hogarth 1999, Kathiresan and Bingham 2001). Among other values, mangroves
(1) provide vital habitat for a wide variety of animal and plants species, many of
them uniquely adapted to mangrove environments, and some of them rare and/or
endangered, (2) function as nursery and feeding grounds for many species of com-
mercially valuable fishes, crustaceans, and molluscs, (3) are an important source
of carbon to detritus-based food webs in adjacent coastal waters, (4) stabilize de-
posited sediments, reducing shoreline erosion, (5) buffer the impact of storm waves
and floods on inland areas, and (6) trap nutrients and sediments in runoff from up-
land areas, helping to maintain the quality of estuarine and nearshore waters.

However, mangrove forests’ health and persistence are seriously threatened
by coastal development projects and various forms of non-renewable exploita-
tion (Saenger et al. 1983, Ellison and Farnsworth 1996, Farnsworth and Ellison
1997). In recent decades, mangrove habitats have suffered dramatic declines in
area (Saenger et al. 1983, Farnsworth and Ellison 1997, Ellison and Farnsworth
2001, Alongi 2002) due to coastal development, non-renewable resource exploita-
tion (e.g. clear cutting, mining, aquaculture), pollution, high rates of sedimentation,
and alterations of hydrology. Alongi (2002) estimated that as much as a third of
the world’s mangrove forest have been lost in the past 50 years. In the Caribbean,
the rate of mainland mangrove deforestation is estimated to be 1.4–1.7% annually
(Ellison and Farnsworth 1996, FAO 2003), comparable to the rates documented for
threatened tropical rainforests. Thus, there is an increasing need to monitor and as-
sess mangrove forest structure and dynamics, both to gain a better understanding
of their basic biology and to help guide conservation and restoration efforts. The
ability to accurately map mangrove species with the tools of remote sensing would
greatly assist in this effort.

Although remote sensing has been used to map many of the land cover types on
earth, it has not been widely used for mapping mangrove forests due to the limited
spectral and spatial resolution with conventional imagery. Using the conventional
multispectral remote sensing imagery, study has been concentrated on distinguish-
ing mangrove from non-mangrove habitats, without regard to species of mangrove.
Among these studies, Venkataratnam and Thammappa (1993) used Landsat Mul-
tispectral Scanner (MSS) data to map mangroves along the coastline of Andhra
Pradesh, India. Rasolofoharinoro et al. (1998) produced a detailed cartographic in-
ventory of a mangrove ecosystem in Madagascar based on a classification from
Satellite pour l’Observation de la Terre (SPOT) images (SPOT 1 and 2). Gao (1998)
developed a two-tiered classification scheme based on a SPOT image and applied
it to the mangrove mapping in the Waitemata Harbour of Auckland, New Zealand.
This method was 81.4% accurate in classifying mangrove versus non-mangrove land
cover. Green et al. (1998) compared the suitability of three types of data (SPOT XS,
Landsat TM, CASI) in mapping mangrove species with five different classification
approaches. Gao (1999) conducted a comparative study on mangrove mapping with
SPOT XS and Landsat Thematic Mapper (TM) images at 10, 20, 30 m resolution.

Given the small patch size of some mangrove species, spatial resolution plays a
more important role than spectral resolution in discriminating different mangrove
species. The recent launching of so-called “Very High Resolution” (VHR) satel-
lite sensors provides a new opportunity to map land cover types at a much higher
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spatial resolution than with previously available sensors. In the VHR category, there
are two major commercial sources of imagery: IKONOS images and QuickBird
images. The IKONOS 2 satellite, launched in 1999, provided the first publically
available VHR satellite images, while even higher resolution images became avail-
able from the QuickBird satellite in 2001. With this enhanced spatial resolution,
a better classification of individual mangrove species has become possible. How-
ever, another challenge emerged, which is to develop analytical approaches that can
realize the full potential of the acquired data when attempting to define and discrim-
inate spatial entities. The development of methods for mapping mangrove forests
using information collected by high resolution sensors, particularly at the species-
level, is still at an early exploratory stage. Mumby and Edwards (2002) were able
to improve thematic accuracy for a marine environment comprised of 13 habitat
classes (including mangroves) by incorporating texture information in their analysis
of an IKONOS image. Held et al. (2003) employed an integrated analysis of data
from the high spatial/spectral resolution scanner CASI and the airborne AIRSAR
(NASA’s polarimetric radar) to map mangrove estuaries along the Daintree River in
North Queensland, Australia. Higher classification accuracies of different habitats
and mangrove forest types were achieved when hyperspectral and radar data were
used in combination, and a slight improvement (around 3%) was achieved using
a hierarchical neural network in place of MLC. Wang et al. (2004a) developed an
integrated pixel-based and object-based method, and achieved a moderately accu-
rate result when classifying the canopies of three mangrove species in an IKONOS
image. Furthermore, Wang et al. (2004b) compared the ability to discriminate the
canopies of different mangrove species using various combinations of spectral and
textural information inherent to IKONOS and QuickBird imagery.

This chapter investigated effective methods that can be employed for monitor-
ing and assessing the spatial and temporal pattern of mangrove forests with images
acquired from VHR satellite sensors as well as hyperspectral sensors. Specifically,
the following objectives are to be attained: (1) to investigate and develop suitable
methods for discriminating mangrove species; (2) to determine an optimal season
for capturing the spectral difference among mangrove species; (3) to investigate the
capability of hyperspectral data for distinguishing mangrove species.

14.2 Study Sites

The study was conducted in mainland mangrove forests near the Smithsonian Trop-
ical Research Institute’s Galeta Marine Laboratory (9◦24′18′′ N, 79◦51′48.5′′ W) at
Punta Galeta on the Caribbean coast of Panama, approximately 8 km northeast of
the city of Colon.

Three tree species comprise the canopy of the study forests. They are: black man-
grove (Avicennia germinans), white mangrove (Laguncularia racemosa), and red
mangrove (Rhizophora mangle). Red mangrove forms a pure or nearly pure stand
at the seaward fringe. About 10–20 m from the water’s edge, white mangrove joins
the canopy, forming a nearly even mixture with red mangrove in the low intertidal.



326 L. Wang and W.P. Sousa

In these mixed-species stands, white mangroves reach average heights of 22 m,
while red mangroves average 16 to 18 m in height (W. Sousa, unpublished data).
So, the crowns of white mangroves tend to be emergent, and therefore more visible
in the satellite image than those of red mangroves, which form a lower sub-canopy.
Black mangrove joins the canopy in the mid-intertidal, creating a mixed canopy
of the three species, and then gradually monopolizes most upper intertidal stands.
White mangrove may disappear completely from the canopy in the upper intertidal,
or occur only as scattered individuals or small stands (W. Sousa, unpublished data).

Over the past 31 years, Punta Galeta has received, on average, 2781 mm of rain-
fall per year (based on measurements made at the Galeta Marine Laboratory by the
Smithsonian Tropical Research Institute’s Environmental Science Program). There
is marked seasonality in precipitation, with more than 90% of rainfall occurring be-
tween early May and late December (Cubit et al. 1988, 1989, Duke et al. 1997).
Aspects of mangrove phenology exhibit a strong association with seasonal rainfall
patterns. We regularly observe that new leaves are flushed primarily during the wet
season, and this pattern was quantified for Rhizophora mangle on Punta Galeta by
Duke and Pinzón (1993). They found that leaf production was lowest from Decem-
ber to February (dry season) and peaked in May to July (early wet season). Since
the spectral properties of leaves change as they age (Carter et al. 1989), we would
expect canopy reflectance to change seasonally with the shift in average leaf age.

14.3 Mangrove Species Classification with High Spatial
Resolution Imagery

14.3.1 Data Collection and Preprocessing

Two scenes of IKONOS Geo bundle images were employed in this study. They
were acquired on 2 February 2004 at 16:04 pm local time and 8 May 2004 at 16:01
local time. Metadata for the two sets of images indicate that both were collected
at a similar sensor elevation: 85.8◦ for the February images and 79.1◦ for the May
images. The high elevation angle largely offsets the geometric distortion induced by
variation in terrain elevation, which is very modest in mangrove habitats. An image
to image registration was conducted using May imagery as the reference image and
a registration error: root mean square (RMS) of 0.5 pixels was reported. A nearest
neighbor resampling approach was adopted to rectify the February image.

14.3.2 Methodology

14.3.2.1 Back-Propagation Neural Networks Classifier (BPNN)

A BPNN is a multi-layered feed-forward network trained by the so-called back-
propagation algorithm as first introduced by Rumelhart et al. (1986). This learning
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algorithm, also called the generalized delta rule, is an iterative gradient descent train-
ing procedure. It is carried out in two stages. In the first stage, once the network
weights have been randomly initialized, the input data are presented to the network
and propagated forward to estimate the output value for each training pattern set.
In the second stage, the difference (error) between known and estimated outputs is
minimized. The whole process is repeated, with weights being recalculated at each
iteration, until the error is minimal, or lower than a given threshold. For the clas-
sification problem a BPNN classifier recognizes spectral patterns by learning from
training sets. After training, the neural network system fixes all the weights and
maintains the original learning parameters. The classification process calculates the
output of each pixel using the parameters learned from the training phase, and then
decides the class assignment of the pixel.

In this study, a BPNN with two hidden layers of 24 and 12 neurons respectively,
hereafter referred to as BP:24:12, was trained using the MATLAB Neural Network
Toolbox (V4.0.2-R13). One input node per band and one output neuron per class
were employed with the output encoding convention of a high level (0.9) from the
output neuron corresponding to a given class and simultaneously low output (0.1)
from other output neurons. Each neuron computes a log-sigmoid function of the
weighted sum of its input. The updates of the weights and activation level parame-
ters were carried out using the Levenberg-Marquardt optimization method for 100
epochs.

14.3.2.2 Clustering-Based Neural Network Classifier (CBNN)

Wang et al. (2008) developed a computationally efficient method based on neural
network. This method is divided in two stages. In the first stage, the ISODATA
algorithm is run on each training set to identify a number of clusters for each class.
Each cluster center is labeled according to the class it belongs to and the entire
set is used to build a Delaunay graph. In the second stage, a three-layered, feed-
forward network is built as follows. For each pair of nodes belonging to different
classes that are connected in the Delaunay graph, a neuron is created in the first
hidden layer and its weight parameters are set to the coefficients of the hyperplane
that separates the two clusters in question. A second layer of neurons is then added
to perform the intersection of the half-spaces defined by the first layer to form the
largest convex regions, each of which falls into a single class. Finally, the output
layer joins the convex region into arbitrarily complex non-convex regions which
define the decision region for each class.

It must be noted that the activation functions for all units are implicitly considered
as hard limiters (or step functions) during the design stage. However, log-sigmoid
functions may be used in the classification process. In the latter case a smoothing
parameter is considered and the hard limiter results as a limiting process. More
specifically, the sigmoid function is defined by

f (s) =
1

1− e−s/α
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Fig. 14.1 Plot of kappa values against the smoothing factor. Optimum smoothing parameter
is 0.015

where α is the smoothing parameter. As α approach to zero the plot of f (s) tends to
a hard limiter function.

Since different smoothing factors lead to different classification accuracies, a
natural question to ask is how we can choose the best value for the smoothing pa-
rameter. In previous work, Silvan-Cárdenas (2003), α was empirically set to 0.02.
In this study, we developed a scheme to choose the optimal parameter α with which
the kappa value is at a maximum. The plot of the kappa value against α obtained
for the data set of May is shown in Fig. 14.1. In this case, the optimum smooth-
ing factor falls around 0.01. After several trials it was observed that the optimum
α most likely lies at 0.015, which confirms that 0.02 is a good empirical choice.
Another interesting observation is the fact that the optimum α based on the testing
set (and still using the same trained network) reports a similar value as the optimum
α based on the training set. This might indicate that (1) the training sample is repre-
sentative of the classes under consideration and (2) the network can generalize very
well the data that are not previously included in the training samples. Evidently, the
second conclusion can be a consequence of the first one only if the training method
succeeds.

This method was implemented in MATLAB software. The classifier is hereafter
referred to as CBNN.

14.3.2.3 Maximum Likelihood Classifier (MLC)

For the purpose of evaluating the previous two types of neural network methods, we
also adopted MLC as the third method. Equal a priori probability was assumed for
all the classes in the implementation of MLC.
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14.3.3 Results

To compare classification performance of the two images, spatially consistent train-
ing and test samples were prepared with the aid of two field surveys carried out in
January and July 2004, close to the times of image acquisition. During both field
surveys, an extensive number of GPS points were measured by a high precision
Trimble GPS (Pathfinder Pro XRS receiver). The species type, percentage of sur-
rounding vegetation as well as other tree inventory information such as DBH, crown
area were recorded as well. Given the patchy distribution of mangrove species, we
used polygon tools to define training and test samples on the images. In reference
to the field collected GPS points, small polygons, each encompassing no more than
10 pixels, were delineated across the study area to serve as training and test sam-
ples. Special caution was made to only choose polygons that fall in pure stands of
a specific species in order to avoid including mixed pixels. Two experiments were
designed to assess the accuracy of each classification method given two different
combinations of input bands: spectral bands only, or spectral and textural bands.
The results were reported in detail below.

14.3.3.1 Classification Based on Spectral Information

In the first experiment, the four multispectral bands were employed as input bands
while the panchromatic band was not taken into account. For each classifier the
overall kappa value was computed using both the training and test sample sets to
analyze its generalization characteristic. Intuitively, one should expect lower kappa
values for the test set than for the training set. A kappa value based on the training set
represents the ability of the model to fit the training data, however a kappa based on
the test set reveals the capability of the model to generalize (i.e. achieve the correct
classification of data not previously encountered). Therefore, the ratio of the later
with respect to the former is an index of the level of generalization achieved by a
supervised classifier, provided that the number of samples in both sets is sufficiently
large for rigorous statistical comparison. The corresponding kappa values and gen-
eralization ratio for the tested classifiers are shown in Table 14.1b. Three results are
clearly discernable. First, in general the CBNN and MLC classifiers performed bet-
ter with the May image than with the February image, while the BP:24:12 classifier
displayed lower accuracy with the May than February image. Second, The CBNN
and MLC classifier considerately outperformed the BP:24:12 for the May image
in terms of both the kappa value and the generalization ratio. The three classifiers
achieved comparable accuracy when applied to the February image. Third, MLC
yielded the highest generalization ratios (0.99 and 1.05) for both images.

User accuracy was derived for each classifier and land cover type (Table 14.1a).
For the individual mangrove species, user accuracy ranged from 35.6% (for black
mangrove in the May image with the BP:24:12 classifier) to 96% (for white man-
grove in the May image with the CBNN classifier). The CBNN and MLC classifiers
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Table 14.1 Accuracy of the three classification methods for the February and May IKONOS im-
ages using multispectral bands alone. (a) User accuracy for individual classes; (b) Kappa values
from training and test samples, respectively, and ratios between two corresponding Kappa values

Land cover category Feb-04 May-04

BP:24:12 CBNN MLC BP:24:12 CBNN MLC

(a) User’s Accuracy (%)

Red mangrove 88.8 81.6 86.6 44.3 94.3 92.6
White mangrove 56.8 65.6 73.3 82.1 96.0 92.4
Black mangrove 68.2 64.4 72.5 35.6 78.8 91.5
Gap 93.7 85.9 82.2 0.0 96.2 89.3
Lagoon 100.0 100.0 100.0 83.7 90.6 90.0
Rainforest 72.7 73.8 78.4 91.7 89.1 84.3
Road 94.6 100.0 89.9 90.4 98.0 71.8

(b) Kappa Values

Kappa (test samples) 0.74 0.73 0.78 0.49 0.87 0.86
Kappa (training samples) 0.79 0.78 0.79 0.6 0.87 0.83
Ratio 0.94 0.94 0.99 0.83 1.00 1.05

were noticeably more accurate than BP:24:12 when applied to either image, while
in general, MLC gave consistently high user accuracy for the three mangroves in
both images.

14.3.3.2 Classification Based on Textural and Spectral Information

As detailed above, the CBNN and MLC classifiers provided reasonably high overall
classification accuracy when only spectral bands were considered. Given the high
spatial detail associated with the panchromatic band of the IKONOS image, it was of
interest to further investigate how well these two classifiers can utilize added textu-
ral information in assisting the classification process. In this experiment, the second
order texture method, Grey Level Co-occurrence Matrix (GLCM), was adopted to
extract the textural information from the panchromatic band of the IKONOS image.
Displacement vectors at four directions (0, 45, 90, and 135 degrees), with a spa-
tial distance of 1 pixel, were employed to compute three rotation invariant texture
bands: Contrast (CON), Entropy (ENT), and Angular Second Moment (ASM) at
three different window sizes: 9∗9, 17∗17, 25∗25. The quantization level was set to
16 in all cases. Then, each texture band was resampled to the same resolution as the
multispectral bands (4 m), and stacked together with the four multispectral bands
as the input bands for the CBNN and MLC classifier. For the CBNN method, the
smoothing parameter was fixed to 0.015. The respective kappa values based on the
test samples are presented in Fig. 14.2.

The addition of textural bands to the multspectral bands significantly improved
the classification results for both CBNN and MLC (Fig. 14.2). For the February
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Fig. 14.2 Kappa values for the CBNN and MLC analyses of February and May images using both
multispectral and textural bands. Feb CBNN and Feb MLC stand for CBNN and MLC methods
applied to the February imagery. Similarly, May CBNN and May MLC stand for CBNN and MLC
methods applied to the May imagery

image, the kappa values increased to 0.88 for CBNN and 0.8 for MLC, compared to
0.78 and 0.79, respectively when only multispectral bands are included. Likewise,
for the May image, the kappa values when textural information was included were
0.93 for CBNN and 0.89 for MLC, compared to 0.87 and 0.83, respectively when
textural information was not included. Furthermore, when textural information was
included, analyses of the May image yielded consistently superior classification at
all window sizes when compared to analyses of the February image. Finally, textural
information extracted from a larger window size was more instructive than that from
a smaller window size.

14.4 Spectral Discrimination Analysis of Mangrove Leaves
with Lab Hyperspectral Remote Sensing

14.4.1 Data Collection and Preprocessing

Leaves of each species were sampled from trees growing in two different envi-
ronmental settings: (1) areas supporting closed-canopy stands of large trees, some
growing to more than 25 m, and (2) areas with a sparser cover of mostly short-
stature (up to 3 m) trees that exhibited a wizened, shrub-like growth form. The for-
mer stands grow on organically rich soils of moderate salinity and relatively high
nutrient availability, while the latter grow on sandy, coral reef-derived, soil that
has lower nutrient concentrations, dries more rapidly between flood tides and rain
storms, and is often higher in salinity (W. Sousa, unpublished data). A nutrient ma-
nipulation experiment conducted with Rhizophora mangle seedlings in this sandy
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site demonstrated that their growth was nutrient-limited (L. Robinson, unpublished
data). Leaves collected from the two sites differed in appearance and thickness:
those from productive sites that support good growth tended to be larger, thinner,
and more pliant than those collected from trees in the sandy site.

To determine whether the reflectance patterns of leaves from healthy individu-
als of the three mangrove species could be successfully discriminated, we selected
30 trees of each species for sampling from an array of productive stands across the
study area. These ranged from fringe red mangrove stands growing at the water’s
edge to more inland stands dominated by white or black mangroves. Where pos-
sible, several trees of each species were sampled in each stand, so as to minimize
the confounding influence of location on spectral measurements. Since leaves at dif-
ferent positions in the canopy might exhibit distinct spectral characteristics (due to
differences in photosynthetic properties or water content), we stratified the leaf sam-
ples collected from each tree by height. From each tree, we collected one sample of
10 leaves from upper parts of the canopy surface and a second sample of 10 leaves
from lower parts of the canopy surface. We were not able to sample leaves from the
tops of taller trees at these productive sites, but the trees we sampled were growing
in open areas, either at the water’s edge or along a roadside, and therefore probably
experienced similar levels of incident sunlight as the upper canopy of taller trees.
Subsequent statistical analyses found that the reflectance patterns of leaves collected
from upper versus lower heights in the canopy did not differ significantly for any of
the three species (ANOVA, P > 0.05). Therefore, we used the pooled sample of 20
leaves to calculate each tree’s mean reflectance curve.

To examine the effect of physiological stress and/or nutrient limitation on foliar
spectral properties, we collected leaves from stunted individuals of each species
that were growing in an area of sandy soils located approximately 100 m behind
fringe red mangrove stands that border the back reef adjacent to the Galeta Marine
Laboratory. We sampled leaves from 20 trees of each species, haphazardly selected
from across an approximately 1 ha area of this vegetation type; a sample of 10 leaves
was collected from each tree. Since the crowns of these small trees were easily
reached and contained relatively few leaves, we collected from the entire canopy of
each tree; no effort was made to stratify these samples by height.

All leaves were collected on 16 July, 2004. They were immediately sealed in
plastic bags, kept in a dark cooler, and transported back to the nearby laboratory
for analysis. Leaf reflectance was measured with a Field Spec Pro FR (Analytical
Spectral Devices, Boulder, CO, USA). The measurement procedure followed that
employed by Pu et al. (2003). The light source consisted of two 500W halogen
tungsten filament lamps. All spectra were measured in reflectance mode at the nadir
direction of the radiometer with a 25◦ FOV. A white Spectralon panel was employed
as the white reference and measured every five minutes to convert leaf radiance to
percent reflectance. The spectrometer was configured to yield a spectra with 25
spectral averaging. Each sample of ten leaves was stacked in an overlapping pile on
top of a calibrated black cloth and care was taken to make sure the field of view
was fully occupied by leave stacks. The adaxial surfaces of a sample were measured
five times, from which an average spectral reflectance curve was generated. Spectral
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reflectance was originally measured over the ranges of 350–1000 nm at 1.4 nm inter-
vals and 1000–2500 nm at 2.2 nm intervals. The entire spectral range (350–2500 nm)
was automatically resampled to 1 nm when exported to the computer. To reduce
system noise and redundancy between adjacent bands, we computed an average re-
flectance for each 10 nm interval, providing a total of 215 wavebands for analysis.

For band selection and classification of leaves from healthy trees, we had a sam-
ple size of 30 spectra for each tree species. We randomly split these 30 samples into
a training group comprised of 20 samples and a test group of 10 samples; the lat-
ter were used to assess our classification accuracy. This procedure was repeated 10
times on randomly drawn sets of training and test samples.

14.4.2 Band Selection and Tree Species Classification

Due to the high correlation inherent to adjacent wavebands, it was neither efficient
nor reliable to include all 215 measured bands in the classification at one time. In-
stead, one must first choose a subset of bands that will maximize the likelihood of
discrimination before proceeding with a conventional classification. A number of
band or feature selection methods have been developed and documented in the re-
mote sensing literature, including Principal Component Analysis (PCA), Fisher’s
Linear Discriminant Analysis (LDA), Penalized Discriminant Analysis (PDA), and
wavelet-based feature selection (Yu et al. 1999, Pu and Gong 2004). Among them,
LDA is the procedure that has been most widely adopted. However, a critical prob-
lem associated with LDA is that it will not provide a reliable solution when re-
flectance values for many highly correlated wavebands are included in the analysis
and the number of available training samples is small. In this circumstance, esti-
mates of within-class covariance matrices from the training samples are poor and
unstable. In this study, we had 215 bands of reflectance values while only 20 sam-
ples for each species as training samples. The results of an LDA on such data would
be highly questionable; the projection axis is likely to be misoriented, giving rise to
over-fitting: i.e. a perfect performance on the training data, but a poor performance
on the test data. Yu et al. (1999) provide a good graphical illustration of the problem.

To circumvent this problem, a method was developed by Wang and Sousa (2008)
by first applying a series of one-way ANOVAs to filter out wavebands that did not
differ significantly in mean reflectance among leaves of the three tree species. A one-
way ANOVA, with species as the independent factor, was carried out for each of the
215 wavebands. The resultant probability provided an index of the importance of the
tested band to the discrimination of the tree species. We considered P ≤ 0.01 as an
indication that the mean reflectance of at least two of the three species differed in the
tested band; all bands meeting this criterion were included in the LDA. One potential
criticism of this band selection procedure is that the results of tests on adjacent
bands are not statistically independent. However, our objective in applying ANOVA
was not to test hypotheses about differences within specific bands; rather, we were
seeking to eliminate bands from the analysis that provided no useful information
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for discriminating species’ reflectance patterns, and thereby reduce the number of
analyzed bands to a level that would be operational for LDA. This band selection
procedure was performed on all the training samples.

An LDA was then performed using the wavebands that ANOVA identified from
the above procedure. The principle of LDA is to project the original redundant data
to a new orthogonal space oriented along the axis that can maximize the ratio of
between-class to within-class variance matrices of the training samples. The axis of
the new space is aligned in the order of discrimination power among groups such
that the first axis provides the greatest overall discrimination, the second provides
second greatest, and so on. If we denote the total number of groups to be classified
as NG and the total number of original bands as NB, then the number of dimensions
for the new space is equal to either NG-1 or NB, whichever is smaller. Since in
practice, NB is usually larger than NG, LDA will typically yield a new data set with
NG-1 dimensions. In this way, the data dimensions are significantly reduced.

The significance of a specific wavelength to a discrimination function can be
determined by examining the standardized coefficients for that band. The interpre-
tation of the standardized coefficients resembles the logic of multiple regressions.
The larger the absolute value of standardized coefficient, the larger is the respective
variable’s unique contribution to the discrimination as specified by the respective
discriminant function. As such, by ordering the standardized coefficients the opti-
mal wavebands were determined.

Given the fact that we have three species to classify, LDA generated two discrim-
inant functions, with which the test samples were transformed. Then a Mahanolobis
distance classifier was performed. A kappa value was calculated to assess the clas-
sification accuracy (Cohen 1960).

14.4.3 Discrimination Between Leaves from Healthy Versus
Stressed Trees

Previous studies have found that leaf spectral reflectance increases in portions of the
visible and very-near infrared range (but not in the infrared) as a plant experiences
physiological stress (Carter 1993, 1994, Carter and Knapp 2001). This response
has been documented for numerous plant species when subjected to various agents
of stress. We therefore focused on the 400–800 nm waveband in our comparison
of healthy and stressed leaves. The sensitivity of reflectance to stress (i.e. relative
change in reflectance) varies considerably within this spectral range. Sensitivity is
greatest for wavelengths (e.g. 605, 695, and 710 nm) at which absorption by chloro-
phylls a and b is relatively weak. At these wavelengths, even a slight drop in leaf
chlorophyll content caused by stress results in a large increase in leaf reflectance
(Carter 1993).

As demonstrated by Carter (1994), reflectance sensitivity is best expressed as
a ratio of reflectance in a stress-sensitive band to reflectance in a stress insensi-
tive band. For our study, we calculated four narrow band leaf reflectance ratios
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as indices of stress: R695/R420, R605/R760, R695/R760, and R710/R760. Carter
(1994) found these ratios to be particularly sensitive indicators of stresses that affect
chlorophyll content. We used ANOVA to compare the means of these ratios between
leaf samples from trees growing in productive and stressful sites.

14.4.4 Results

14.4.4.1 Band Selection and Classification

Figure 14.3 presents the mean reflectance spectra of leaves from the three mangrove
species; values for healthy and stressed trees are plotted separately (Fig. 14.3). We
will first examine patterns of reflectance for leaves from healthy trees growing in
productive sites. As expected, the general shapes of the species’ curves are very
similar, with considerable overlap.

However, one-way ANOVA tests revealed significant heterogeneity among the
species in particular wavebands. Of the 215 10 nm-wide wavebands tested, 116
bands exhibited significant (P ≤ 0.01) interspecific variation in mean reflectance.
These bands were clustered in five areas of the spectrum, i.e. 350–510 nm, 610–
690 nm, 760–810 nm, 1370–1550 nm, and 1850–2500 nm. Bands within each of
these areas are highly correlated and cannot be treated as independent estimates
of species-level response. To reduce this correlation, we first regrouped the 116
significant bands into three regions as follows – region 1: VNIR (350–510 nm, 610–
690 nm, and 760–810 nm); region 2: SWIR I (1370–1550 nm); and region 3: SWIR
II (1850–2500 nm). An LDA was executed separately within each region and the
standardized coefficients for two discrimination functions were respectively calcu-
lated and ranked. We concluded that a band was influential for its particular region
if the absolute value of its LDA standardized coefficients were ranked among the
top ten for both discrimination functions. Table 14.2 lists such influential bands for
each region of wavelengths considered in the analysis.

The final classification of mangrove species was generated by LDA after pooling
the influential bands from each region. In both the training and test samples, leaves
of the three mangrove species were well separated in discriminant space. The aver-
age kappa value for the ten sets of test samples was 0.9, with a range of 0.85 to 1.00.
This indicates that our method for extracting influential wavebands from the hyper-
spectral data, in combination with an LDA-based classification procedure, was very
successful in discriminating the leaves of different mangrove species. Our results
concur with several other researches that achieved good discrimination through use
of the LDA method (Gong et al. 1997, Van Aardt and Wynne 2001, Clark et al.
2005). In addition, the LDA results show that the first discriminant function alone is
sufficient to distinguish red from either black or white mangrove leaves. Examina-
tion of the standardized coefficients associated with the first discriminant function
reveals that reflectance at the 780, 790, 800, 1480, 1530, and 1550 nm wavebands
contribute most strongly to the first discriminant function. In other words, these
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Fig. 14.3 (a) mean and (mean +/−1 stdev) reflectance spectra for leaves from healthy leaves of
the three mangrove species (WM: White Mangrove; RM: Red Mangrove; BM: Black Mangrove);
(b) mean and (mean +/− 1 stdev) reflectance spectra for leaves from physiologically stressed
leaves of the three mangrove species

bands are critical to the discrimination of red from the other two types of mangrove.
The second discriminant function best distinguishes white from black mangrove
leaves; this function was most strongly influenced by wavebands at 770, 780, 790,
800, 1430, and 1480 nm.
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Table 14.2 Results of one-way ANOVA showing the potentially important wavelengths for dis-
criminating leaf samples from healthy trees of the three mangrove species

Spectral region Region 1: VNIR [350–510,
610–690, 760–810] (nm)

Region 2: SWIR I
[1370–1550] (nm)

Region 3: SWIR II
[1850–2500] (nm)

Influential wavelengths
in each region

490, 500, 630, 770, 780,
790, 800

1400, 1430, 1480,
1530, 1550

1940, 1970, 1990

14.4.4.2 Discrimination Between Leaves from Healthy Versus Stressed Trees

One or more of the four reflectance ratio indices proved useful in detecting stress in
each of the mangrove species (Table 14.3). R605/R760, R695/R760, and R710/R760
were effective in distinguishing stressed from non-stressed red mangrove leaves. In
the case of white mangrove, R695/R420 was the only ratio that successfully detected
the presence of stress. All four ratios were capable of detecting stress in black man-
groves.

Table 14.3 Results of ANOVA. Entries are P values by comparing the mean values of the four
narrow band ratios between stressed and healthy leaves; bolded values are considered statistically
significant (P value < 0.01)

Narrow Band Ratios Mangrove species

Red White Black

R695/R420 0.371 < 0.001 < 0.001
R605/R760 0.009 0.799 < 0.001
R695/R760 0.008 0.888 < 0.001
R710/R760 0.013 0.613 < 0.001

14.5 Conclusion

Multitemporal information can be very helpful in discriminating the canopies of
different forest species (Jensen 2004). Our results confirmed that multiseasonal im-
agery can aid species-level classification of mangrove forests. Our study found that
an IKONOS image acquired during the early rainy season more effectively cap-
tured the difference among mangrove species than one taken during the dry season.
This difference is probably attributable to phenological and physiological changes
that affect the reflectance of tree canopies. At our study sites, mangroves flush new
leaves during the early wet season, while they experience stress from drought and
high soil salinity during the dry season.

When only multispectral bands were included in the classification, MLC proved
the best method for discriminating different mangrove species, consistent with the
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findings of other studies, mentioned above. CBNN demonstrated a similar perfor-
mance but at the cost of a considerable increment in computing time. However, when
textual information was added to the classification, CBNN exhibited a strong advan-
tage over MLC in characterizing the complex decision boundary associated with the
combination of textural and spectral bands. The relative loss in MLC’s power of dis-
crimination when textural information was incorporated could have resulted from a
violation of its central assumption of a multivariate Gaussian distribution model, as
discussed earlier. Neural network-based analyses do not rest on this assumption, and
thus gained discrimination power from the added textural information. Compared to
the traditional back-propagation neural network method, the new CBNN method
provides a computational simpler yet effective way in discriminating different man-
grove species.

The high classification accuracy we obtained with the leave-level hyperspectral
reflectance confirms the great potential of using hyperspectral data to distinguish
mangrove species. We are confident that the use of narrow band hyperspectral
data can effectively overcome the problem of overlap in spectral characteristics
among species observed in our previous analyses of wide band multispectral im-
agery (Wang et al. 2004 a,b).
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