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SYNOPSIS. Most of the organisms that live in marine, soft-sediment environments are hosts 
for parasites. Rates of infection by micro- or macroparasites can be quite high, but vary in 
space and time. Despite the prevalence of parasites, their potential influence on soft-sediment 
communities is poorly understood. None of the conceptual models of soft-sediment com- 
munity structure or dynamics published to date considers the impact ofparasitism. A variety 
of potential direct and indirect effects of parasites on host populations and communities are 
discussed. The greatest challenge for future research in this area is the development of 
experimental methods for manipulating the abundance of parasites under field conditions. 

INTRODUCTION ical stress (e.g., mortality due to heavy sed- 
During the past two decades, consider- imentation [Peterson, 19851) have been less 

able progress has been made in understand- extensively investigated, but a recent exper- 
ing the processes that structure assemblages imental study by Peterson and Black (1988) 
of invertebrates inhabiting nearshore, soft- demonstrated that the level of mortality 
sediment environments. Early efforts sought caused by sedimentation may depend on the 
a general explanation for observed discon- prior history of competitive stress experi- 
tinuities in the distribution and abundance enced by the buried organisms. 
of deposit- and suspension-feeders with The above studies have examined an 
sediment type (e.g., Rhoads and Young, impressive array of interactions and taxa. 
1970; Levinton, 1972). Subsequent studies Many of them have demonstrated strong 
revised and expanded on this simple, tro- effects of adult-adult and adult-larval biotic 
phic-based categorization, placing greater interactions, both competitive and preda- 
emphasis on variation in mobility (seden- tory. Yet one potentially important factor 
tary tube-builder vs. active burrower) and has been overlooked in every investigation: 
negative effects of adults on settling larvae the fact that an appreciable proportion of 
(Woodin, 1976; Brenchley, 198 1, 1982). the organisms examined in these studies may 

Throughout the late 1970s and 1980s, the have been infected by parasites. All the 
focus of most ecological research in soft- 'major players' in soft-sediment commu- 
sediment habitats shifted from the distri- nities: the clams, snails, worms, crabs, 
bution and dynamics of functional groups amphipods, and seagrasses, are hosts for 
of species (sensu Woodin and Jackson, 1979) micro- and macroparasites (sensu Anderson 
to the mechanisms and strengths of inter- and May, 1979; May and Anderson, 1979; 
actions among particular species. Con- Dobson and Hudson, 1986). There is noth- 
trolled field and laboratory manipulations ing unusual about this omission. Of two 
were embraced as the method of choice. recent books on the ecology of soft-sedi- 
These experimental studies investigated ment habitats, Gray (1 98 1) fails to mention 
intra- and interspecific competition, pre- parasites, and Reise (1985) devotes only two 
dation, biotic disturbance and refugia, fac- sentences to the subject. General textbooks 
tors affecting larval settlement and recruit- in marine ecology do not treat population 
ment, and mechanisms of successional and community-level effects of parasites in 
replacement (see Wilson, 1990, for a recent much greater depth. Valiela (1984) refers 
review). The direct negative effects of phys- only to the impact of disease on sea urchin- 

kelp interactions; Levinton (1 982) devotes 
three paragraphs to the general topic, but 
cites no specific studies. 

From the Symposium on New Perspectives in Soft- 
Sediment Ecology presented at the Annual Meeting of The truth of the matter is that, while there 
the American Society of Zoologists, 27-30 December is abundant evidence that parasites nega- 
1990, at San Antonio, Texas. tively affect individual hosts, there are only 
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a few well-documented cases of parasites 
causing large declines in natural host pop- 
ulations in soft-sediment environments. One 
of the best examples is the wasting disease 
that nearly eliminated eelgrass populations 
from the North Atlantic during the 1930s, 
and continues to cause localized dieoffs of 
eelgrass beds (Den Hartog, 1987; Short et 
al., 1987; Muehlstein, 1989). For most soft- 
sediment communities, however, we simply 
do not know what impact parasites are hav- 
ing. With the existing data we can begin by 
examining three more fundamental ques- 
tions: 

1) What are the primary parasites of soft- 
sediment organisms? 

2) How prevalent are parasitic infections? 
3) How might parasites affect host indi- 

viduals, populations, and communities? 
1will address these questions in turn with 

the aim of identifying some of the potential 
impacts of parasites on assemblages of 
organisms living in marine soft-sediment 
habitats. A complete review of the literature 
on host-parasite interactions in these hab- 
itats is beyond the scope of this paper. 

Several excellent reviews offer a wealth of 
information on the parasites of soft-sedi- 
ment organisms (Kinne, 1980, 1983; Rohde, 
1982; Sindermann, 1990). Microparasites 
that infect soft-sediment organisms include 
viruses, bacteria, fungi, and a variety of pro- 
tozoans. Macroparasites are represented by 
numerous taxa including acanthocephalans, 
cestodes, nematodes, and rhizocephalans, 
but digenetic trematodes are the most com- 
mon metazoan parasites of soft-sediment 
invertebrates. The digenetic trematode life 
cycle is complex, typically including one 
definitive and two intermediate hosts. In 
marine environments, a bird or fish most 
commonly serves as definitive host for the 
adult fluke. Gastropods are the most com- 
mon first intermediate hosts for pre-cercar- 
ial larval stages (sporocysts and rediae), but 
a few trematodes exploit clams or annelids 
as first intermediate hosts. A wide variety 
of organisms serve as second intermediate 
hosts for the encysted metacercarial stage of 
the digenean life cycle. These include gas- 

tropods, clams, annelids, crustaceans, bra- 
chiopods, and sipunculans. 

How PREVALENT ARE 
PARASITICINFECTIONS? 

Existing information is insufficient to 
answer this question with any degree of cer- 
tainty for most natural populations of soft- 
sediment organisms. Information is most 
complete for commercially important spe- 
cies of oysters and crabs (Sindermann, 1990). 
High percentages (> 50%) of oysters in cer- 
tain beds can become infected by protozo- 
ans such as Haplosporidiurn nelsoni (Haskin 
and Andrews, 1988) or Perkinsus marinus 
(Andrews, 1988). Outbreaks ofthese disease 
organisms are often associated with partic- 
ular levels of salinity and water tempera- 
ture, and can cause high levels of mortality, 
sometimes exceeding 90% of the bed. Spo- 
rocysts of bucephalid trematodes can infect 
more than a third of the oysters in some 
localized inshore sites (see references in 
Table 13-10 of Lauckner, 1983). Preva- 
lences of castrating infections by rhizoceph- 
alan barnacles in commercially harvested 
populations of blue crabs (Callinectes sa- 
pidus), sand crabs (Portunus pelagicus), and 
king crabs (Paralithodes spp. and Lithodes 
spp.) may exceed 50% (see references in Sin- 
dermann, 1990). Similarly, epicaridean iso- 
pods may infect and castrate >50°/o of the 
individuals in some commercially impor- 
tant shrimp populations (see references in 
Sindermann, 1990). Population outbreaks 
of nemertean worms that prey on the brood 
of some species of commercial crabs (e.g., 
Cancer magister, Wickham, 1986) can cause 
high rates of egg mortality. 

Fewer estimates of parasite prevalence (% 
of hosts infected) and intensity (number of 
parasites per host) are available for the non- 
commercial host species that have been the 
primary subjects of experimental field stud- 
ies (Wilson, 1990). Measurements of the 
prevalence of microparasite infections in 
populations of such species are especially 
limited. Rates of infection by macropara- 
sites in particular host species have been 
documented in some detail due largely to 
the efforts of individual investigators. For 
example, Kuris and coworkers have esti- 
mated the prevalences ofa variety of macro- 



TABLE1. 

Host specics 

Batillaria minima 
Buccinum undatunz 

Cerithidea californica 

Cerithideu pliczllo.sa 
l-lydrobia stagnorum 
IIydrobiu ulvae 
Ilyanassa ohsoleta 
Ilyanassa ol~soletu 

Zlyanassa obsoleta 
(> 1 cm only) 

11.vanassa ohsoleta 

Nas.sarrus rc~trrulatus 

Ol~vrlla brplrcata 
P~renellu conrca 

(>6  mm only) 

Prevalence ofdigenetic trematode, pre-cercarial larval infections in selected soft-sedimc~nt gastropod populations. 

Percent infected 
Number of samples

Habitat (range of n) Site Median Range Reference 

mangrove sand flat 
sand bottom 

(20-30 m depth) 
tidal mud/sand flat muddy 

sandy 
mangrove channel 2 (101/282) 
brackish pond PS* (16,326) 
marsh pool 8 (252-626) 
tidal mud flat 12 (353-1,153) 
tidal mud flat 14 (144-586) high 

low 
tidal mud flat 34 (300 each) high 

low 
tidal mud flat zone a 

zone b 
mud bottom 8 (200 each) shallow 

deeper 
sandy beach 
lagoonal sand/mud 

Sousa, unpubl. data ? 
K ~ i e ,  1969 P 

%
7Sousa, unpubl. data B 

Sousa, unpubl. data s 
Vaes, 1977 tl 
Rothsch~ld, 1941 
M~ller and Northrup, 1926 g
Gambino, 1959 3:3: 
Smdermann, 1960 

C3 
4Curt~sand Hurd, 1983 
V, 

Tallmark and Norrgren, 1976 2
5 


Onuf, 1972 2
Taraschewski and Paperna, 198 1 % 

* Only value for pooled sample reported by author. 



TABLE2. Prevalence of digenetic trematode, pre-cercarial larval infections in selected soft-sediment bivalve 
populations. 

Number of samples 
Host species Habitat (range of n) 

Abra tenuis mud flat 2 (72/500) 
Cerastoderma estuarine 28 (82-655) 

edule mudhand 
Cerastoderma brackish PS* (1 15) 

glaucutn pond 
Gernma gemma tidal sand 1 (824) 

flat 
Hiatella arctica tidal sand 2 (13/136) 

flat 
Macoma tidal sand PS (1,138) 

inconspicua flat 
Mya arenaria tidal sand PS (> 1,000) 

flat 
Transennella tidal sand 1 (200) 

tantilla flat 
(adults only) 

* Only value for pooled sample reported by author. 

parasites in populations of the shore crab, 
Hemigrapsus oregonensis, at several sites 
along the Pacific coast of the U.S. The crab 
is sometimes collected for bait by fisher- 
men, but is of little commercial value. Rates 
of infection and castration by epicaridean 
isopods range from 20-91% (Kuris et al., 
1980). Parasitic nematodes infect 13-64% 
of the crabs (Poinar and Kuris, 1975), and 
occasional outbreaks of nemertean worms 
prey heavily on brooded egg masses (Shields 
and Kuris, 1983). 

Larval digenetic trematodes are not only 
the most common, but also the most com- 
prehensively studied parasites of non-com- 
mercial soft-sediment invertebrates. Con- 
sequently, I will restrict my discussion to 
this group of parasites for the remainder of 
this section. Even published data on rates 
of larval trematode infection must be inter- 
preted with caution. Traditionally, most 
marine parasitologists have devoted their 
efforts to the elucidation of parasite life 
cycles, and have only rarely investigated 
population or community-level effects of 
parasites. As a result, investigations of 
trematode life cycles typically have been 
based on small, non-random samples, and 
published descriptions of such cycles either 
contain no estimates of overall infection rate 
or what amount to subjective estimates 

Percent infected 

Site Median Range Reference 

2.0 Campbell, 1985 
muddy 0.9 Sannia and 
sandy 1.2 James, 1978 

1.7 Vaes, 1977 

Stunkard and 
Uzmann, 1958 

Stunkard and 
Uzmann, 1958 

Ching, 1965 

Stunkard and 
Uzmann, 1958 

Kabat, 1986 

without supporting data. In some studies, 
sizeable samples of hosts have been exam- 
ined, but usually little or no effort is made 
to collect random samples, or sampling pro- 
cedures are simply not described. There is 
no way of knowing if such samples are rep- 
resentative of the size/age structure of the 
host population; most haphazardly col-
lected samples will be biased towards larger 
individuals. This sampling procedure also 
makes it impossible to assess levels of small- 
scale, spatial variation in infection rates 
because the sample is often collected over 
a broad area or, alternatively, from one spot. 
Further, a single sample provides no infor- 
mation on temporal variation in parasitism 
rates. An additional problem arises when 
infection rates by trematodes are deter-
mined by cercarial shedding rather than by 
dissection. The shedding method can greatly 
underestimate true levels of infection 
because immature infections that are not 
releasing cercariae go undetected (Curtis and 
Hubbard, 1990). 

In spite of the problems described above, 
a brief look at some selected examples of 
data on trematode infections in gastropod, 
bivalve, and polychaete populations is 
instructive (Tables 1-4). In these cases, 
infection rates were determined by dissec- 
tion. The prevalence of pre-cercarial larval 



TABLE3. Prevalence of digenetic trematode, metacercarial larval infections in selected soft-sediment bivalve 
populations. 

Host species 

Abra tenuis 
Cerastoderma edule 

Cerastoderma edule 
Gemma gemma 

Macoma inconspicua 
Mya arenaria 
Mya arenaria 

Percent ~nfected 
Number of samples 

Habitat (range of n) Median Range Reference 

mud flat 2 (72/500) 73.0 46.0-100.0 Campbell, 1985 
mud flat PS* (?) 

mud flat 
tidal sand flat 

tidal sand flat 

tidal sand flat 
tidal sand flat 
tidal sand flat 

* Only value for pooled sample reported by author. 

infections in soft-sediment gastropod pop- 
ulations can be quite high (Table 1). Within 
a host species, rates of infection may vary 
considerably in space and time. As noted 
earlier, gastropods can also serve as second 
intermediate hosts, but I could not find any 
studies that quantified the levels of meta- 
cercarial infection (either prevalence or 
intensity) in a soft-sediment species. Avail- 
able data suggest that soft-sediment bivalve 
populations are less infected by pre-cercar- 
ial trematode larvae than are gastropod 
populations, but there are exceptions to this 
pattern, e.g., Transennella tantilla (Table 2). 
On the other hand, bivalve populations are 
often heavily infected by metacercariae 
(Table 3). Lauckner (1980, 1983) summa- 
rizes many additional estimates of the prev- 
alence of trematode infections in gastropod 
and bivalve populations. 

Reports of trematode infections in poly- 
chaetes are rare. Whether this is because 
such infections are truly uncommon, or 
because they have not been looked for, is 
unclear. Two studies report high frequen- 
cies of metacercarial infection in poly-
chaetes, and a third found a low percentage 
infection by pre-cercarial larval stages (Table 
4). Although the data are obviously scant, 
the pattern of trematode infection in poly- 
chaete populations appears more similar to 
that of bivalve than gastropod populations, 
i.e., high frequencies of metacercarial infec- 
tion and relatively infrequent infections by 
pre-cercarial stages. 

The metacercariae of microphallid trem- 

100.0 	 - Bowers and 
James, 1967 

100.0 - Lauckner, 197 1 - 10.0 - Stunkard and 
Uzmann, 1958 

~ 2 0 . 0  	 - Stunkard and 
Uzmann, 1958 

72.0 	 - Ching. 1965 
? 43.0-100.0 Uzmann, 195 1 

225.0 	 - Stunkard and 
Uzmann, 1958 

atodes are common parasites of soft-sedi- 
ment crustaceans including amphipods, 
crabs, and shrimp, but there are relatively 
few quantitative estimates of their preva- 
lence in natural host populations (see exam- 
ples in Overstreet, 1983; Sparks, 1985; 
Lauckner, 1987; Sindermann, 1990). 

Parasites can have a variety of direct 
effects on their hosts; they can alter host 
physiology, reproduction, growth, and 
behavior. Tissue damage or disruptions of 
physiological processes by parasites may be 
sufficient to kill the host. Microparasite 
infections appear to cause rapid, direct mor- 
tality more often than do infections by 
macroparasites such as trematodes. Mol- 
luscs fully infected by larval trematodes can 
survive for long periods of time in nature, 
up to several years in some cases (e.g., the 
salt marsh snail, Cerithidea californica, 
Sousa and Gleason, 1989; Sousa, unpubl. 
data). However, infections by either micro- 
or macroparasites can cause high rates of 
host mortality when acting in concert with 
environmental stress (Lauckner, 1980, 1983; 
Sousa and Gleason, 1989). 

Another potential source of host mortal- 
ity attributable indirectly to parasites 
involves modifications in host behavior 
induced by infection. Such behavioral mod- 
ifications may make the infected host more 
vulnerable to predators (Holmes and Bethel, 



TABLE4. Prevalence of digenetic trematode, pre-cercarial (PCL)and metacercarial (MCL) larval infections in 
selected soft-sediment polychaete populations. 

Parasite Percent infected 
taxon Number of samples 

Host s~ecies  Habitat (stage) (range of n) Median Range Reference 

Eupornatus mud flat PCL 1 (1,500) 0.8 - Rankin, 1946 
dranthus 

.Yerers brack~sh pond MCL PS* (7,57 1) >45.6 - Vaes, 1977 
dl vers~color 

Scoloplosfragilrs tidal mud flat MCL 3 (30 each) 100.0 40.0-100.0 Brown and 

* Only value for pooled sample reported by author. 

1972). Depending on the life cycle of the 
parasite, this predation may or may not 
result in parasite transmission. One often 
cited example of parasite-induced modifi- 
cation of host behavior is surface crawling 
by the clam, Macoma balthica, when 
infected by sporocysts and metacercariae of 
the digenetic trematode, Parvatrema aflnis 
(Swennen, 1969; Hulscher, 1973; Swennen 
and Ching, 1974). The clam usually lives 
completely burrowed in the sediment, but 
infected individuals move to the sediment 
surface during low tides where they produce 
conspicuous crawling tracks. Interestingly, 
Hulscher (1 973) found that oystercatchers, 
important predators on the clam and the 
definitive hosts for P. aflnis, sometimes 
reject infected clams. Hence, it is unclear 
whether this behavioral modification results 
in increased transmission of the parasite. 
Lauckner (1 98 3, pp. 749-7 50) discusses 
other examples of trematodes causing sur- 
facing and track-digging by clams. Simi- 
larly, heavy metacercaria infections of 
Himasthla elongata in the foot of the clam, 
Cerastoderma edule, greatly reduces the 
clam's ability to burrow (Lauckner, 1983, 
p. 704). Whether such modifications result 
in increased predation is unknown, but in 
studies of other clam species, individuals 
living closer to the sediment surface have 
been shown to be more vulnerable to snail 
(Peterson, 1982) and crab predators (Blun- 
don and Kennedy, 1982). In any case, ani- 
mals at the surface will be more vulnerable 
to environmental extremes. 

As mentioned earlier, we have very little 
idea how much of the mortality suffered by 
soft-sediment organisms can be attributed 
to parasitism as compared to abiotic stresses, 
predation, and competition. Observed mass 

Prezant, 1986 

mortalities of certain species with no obvi- 
ous cause are often ascribed by default to 
some unknown disease organism. Such 
statements should obviously be viewed with 
some skepticism. Lauckner (1984, 1987) has 
attempted to estimate the lethal impact of 
trematode infections on North Sea tidal flat 
populations of the periwinkle, Littorina lit- 
torea, from changes in host size-distribu- 
tions over time, but the validity of such 
indirect analyses rests on numerous untested 
assumptions about rates of host recruitment 
and growth, as well as other sources of mor- 
tality. 

While it is often difficult to state with any 
certainty the degree of mortality caused by 
parasites, the negative effect of parasitism 
on host reproduction is relatively unambig- 
uous. Most infections by micro- and macro- 
parasites cause marked reductions in the 
reproductive output of invertebrate hosts, 
often resulting in complete and permanent 
castration (Lauckner, 1980, 1983; Over- 
street, 1983; Sousa, 1983; Sindermann, 
1990). For example, Kabat (1986) esti- 
mated about a 30% loss of reproduction to 
parasitic castration in a population of the 
clam, Transennella tantl'lla. While negative 
adult-larval interactions may greatly reduce 
recruitment of some soft-sediment inver- 
tebrates (Woodin, 1976; Peterson, 1979), 
castration of adults by parasites prevents 
larvae from being produced in the first place. 
Generally, rates of parasitism and, there- 
fore, castration increase with host size/age 
so the reproductive output of the most 
fecund portion of the host population 
(Peterson, 1983) is most negatively affected 
by parasites. While castrated individuals no 
longer contribute directly to population 
growth, they continue to consume resources 



that might otherwise be used by uninfected 
individuals and, thereby, may affect popu- 
lation and community dynamics. 

One can speculate about any number of 
additional indirect effects of parasitism on 
soft-sediment community structure and 
dynamics. Differential parasitism of partic- 
ular species may alter their competitive 
interactions with others if survival or repro- 
duction of the infected species is reduced 
(e.g., Park, 1948). Parasitism might alter host 
movement and spatial distribution (e.g., 
Curtis, 1987, 1990) or feeding rate (e.g., 
Meuleman, 1972). Either of these effects 
could alter interactions between the host 
species and others in the community. For 
example, the mud snail, Ilyanassa obsoleta, 
reduces the abundance of postlarval and 
juvenile infaunal invertebrates and surface- 
dwelling tubiculous polychaetes, gastro- 
pods, and harpacticoid copepods (Hunt et 
al., 1987). It can also reduce microalgal bio- 
mass and productivity (Pace et al., 1979; 
Connor et al., 1982). At the same time, I. 
obsoleta populations are often heavily 
infected by larval trematodes (Table I), and 
at least some of these parasites are known 
to alter the snail's movements (Curtis, 1987, 
1990) and may affect other aspects of the 
snail's behavior, including feeding. There- 
fore, larval trematode infections could be 
mediating biotic interactions between I. 
obsoleta and other species. However, none 
of the above studies of the impact of the 
snail on benthic assemblages investigated 
this possible influence of parasites, nor did 
any report the prevalence of parasites in the 
studied snail population. 

When a host species constitutes an impor- 
tant component of a habitat's structure, 
reduction in its abundance by parasites may 
cause a variety of indirect effects on other 
species. For example, seagrass beds may 
serve as important refugia from predators 
for many infaunal species (e.g., Peterson, 
1982; Peterson et al., 1984, and references 
therein). In addition, invertebrate larvae or 
suspended food may be trapped in the beds 
by the baffling action of the seagrass blades 
(Peterson, 1986). Whatever the mechanism 
generating higher abundances of infauna in 
seagrass beds, the loss of seagrasses to wast- 
ing disease (Den Hartog, 1987; Short et al., 

1987; Muehlstein, 1989) should have a large 
influence on infaunal communities. This 
expectation is supported by Stauffer's (1 937) 
and Rasmussen's (1 977) descriptive 
accounts of the dramatic changes in habitat 
features and fauna that followed the 
destruction of eelgrass beds in the north- 
eastern United States and Denmark, respec- 
tively, during the 1930s. I know of no mod- 
ern quantitative studies of changes in 
community structure resulting from recent 
seagrass dieoffs. 

The primary purpose of this essay is to 
drive home the point that ecologists work- 
ing in soft-sediment habitats should, at the 
very least, screen their study organisms for 
the presence of parasites. It is quite con- 
ceivable that parasites could be influencing 
the intra- and interspecific interactions of 
these species, as well as their responses to 
physical stresses. An honest answer to the 
question which titles this essay is: we simply 
do not know. With few exceptions, available 
data are insufficient to tell whether parasites 
exert an additive negative effect on popu- 
lations of soft-sediment organisms (Holmes, 
1982). In other words, we do not know if 
the elimination of parasites would alter host 
population dynamics or community struc- 
ture. 

Bearing this in mind, one of the greatest 
challenges for future research on soft-sedi- 
ment, host-parasite interactions is to develop 
methods of manipulating parasite abun-
dance, as we do the abundances of predators 
or competitors. Manipulating characteris- 
tics of host populations such as density or 
size-structure is relatively straightforward, 
but the infective stages of most parasites are 
microscopic and cannot be easily excluded 
or added. For digenetic trematodes, one 
solution might be to manipulate the abun- 
dance of the previous host in the life cycle. 
For example, if snails are the host of inter- 
est, one could attract or repel fishes or birds, 
which are definitive hosts, to or from certain 
areas, thus altering the local abundance of 
infective eggs and miracidia. If the second 
intermediate host is the one of interest, one 
could manipulate snail abundance, and 
thereby the local concentration of cercariae. 



Such experiments will not be easy, and arti- 
factual influences will have to be carefully 
controlled for. Obviously, future progress 
towards an understanding of the role of par- 
asites in soft-sediment communities rests 
on creative experimental solutions to the 
basic problem of manipulating parasite 
abundance. 

Finally, study of the structure and 
dynamics of parasite populations and com- 
munities themselves represents an exciting 
avenue offuture research (Esch et al., 1990). 
Parasites are as much a part of soft-sedi- 
ment communities as their free-living hosts. 
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