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““The balance of nature has been a background assumption in natural history
since antiquity’’ (Egerton 1973, p. 322). This continues to be true today; some
modern field ecologists, assuming that natural ecosystems are stable, have applied
ideas of mathematical stability theory to the actual communities they are study-
ing. We believe that, before one applies such theory to a natural population or
community, one should first decide whether or not it is stable. Our aim here is to
describe the sorts of evidence one would need to obtain from natural populations
or communities in order to decide whether they are stable or persistent, as defined
below. One aspect we shall stress in particular is whether any given real commu-
nity exists in multiple stable states in different places at the same time or in the
same place at different times (Sutherland 1974).

When considering changes in natural populations and communities, it is impor-
tant to distinguish between two viewpoints. As Holling (1973) has pointed out, one
view is concerned with the degree of constancy in the numbers of organisms. With
this view, stability is the property of interest. In contrast is the view that concen-
trates, not on constancy of numbers, but on presence or absence. He states (1973,
p. 1): ““If we are dealing with a system profoundly affected by changes external to
it, and continually confronted by the unexpected, the constancy of its behavior
becomes less important than the persistence of the relationships. Attention shifts,
therefore, to the qualitative and to questions of existence or not.”

Past discussions of stability have sometimes confused these two viewpoints and
have also applied identical terms to both. Therefore we would like first to define
and discuss the terms we will use in this paper, as well as those previously used.
Some of these terms have also been applied by theoretical and mathematical
workers to model ecosystems under particular specified assumptions. We want to
emphasize that our usage applies not to these models but only to the real world.
We are not interested in testing the assumptions of these models, nor in using
them to interpret data from actual ecosystems. We do not seek to contribute here
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to the theory of stability in model ecosystems. With that caveat, let us consider
the following definitions.

We will first discuss the quantitative viewpoint, that of stability. For a system to
be considered stable, there must exist one or more equilibrium points or limit
cycles (1) at which the system remains when faced with a disturbing force or (2) to
which it returns if perturbed by the force. (Theoretically a system could have
unstable equilibrium states which satisfy 1 but not 2; we will not consider this
possibility further.) This concept requires two things: (¢) the existence of stable
equilibrium states which for the remainder of this paper refer either to stable
points or stable limit cycles; and (b) the existence of forces that may be capable of
perturbing the system so that it is no longer at equilibrium. (A stable equilibrium is
defined as a particular state of a characteristic, e.g., population density, at which a
population will remain, or if moved away from it, to which the population will
return.) )

In regard to the first point, i.e., remaining at equilibrium when faced with
potentially disturbing forces, the terms used have been inertia (Murdoch 1970;
Orians 1974), persistence (Margalef 1969), and resistance (Boesch 1974). Some
workers have considered the situation of a simple lack of change in numbers,
without reference to the existence of disturbing forces. For this the following
terms have been applied: constancy (Orians 1974; Whittaker 1974; Golley 1974),
persistence (Boesch 1974), conservatism, and endurance (Margalef 1969). How-
ever for any situation to be included under the concept of stability as defined here,
there must also exist disturbing forces; without them, simple lack of change in
numbers is of little interest. In general the term resistance seems most appropriate
for this aspect of stability since it implies that a force has been applied and
resisted.

The second aspect, return to equilibrium after being perturbed, has been called
adjustment by Margalef (1969). It is usually considered in two parts. The first
concerns the speed of return; this has been called either elasticity (Orians 1974) or
resiliency (Boesch 1974). The second part is concerned with the distance from
which the system is capable of returning; Hurd et al. (1971) and Orians (1974) call
this amplitude.

The term resilience has also been used to refer to the amplitude concept,
namely, ‘“how much disturbance—of kind, rate and intensity—a system can
absorb before it shifts into a fundamentally different behavior’” (Holling 19753, p.
249). Holling (1973, p. 17) also used the term resilience to refer to “‘the ability of
these systems to absorb changes . . . and still persist.”” He draws a distinction
between resilience and stability in that resilience refers to the behavior of the
system far from equilibrium, whereas stability refers only to its behavior very near
to equilibrium points. However his use of the area and height of the boundaries of
the model ‘‘basin of attraction’’ as a measure of resilience (Holling 1973, fig. 4)
indicated that it is related to the distance from which the model system is capable
of returning, and therefore should be included under the amplitude aspect of
stability. Because resilience has been used in very different ways by Holling
(1973) and Boesch (1974) we suggest that amplitude and elasticity be used for the
two aspects of adjustment stability.
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A stable model system that, if perturbed sufficiently, can return to one or more
different equilibria, has multiple stable points (Lewontin 1969). We will apply this
term to natural populations if, for example, a given population can exist either at
different stable densities at different places at the same time or at different times at
the same place.

In contrast to the quantitative viewpoint of stability, is the qualitative one of
‘‘questions of existence or not”’ (Holling 1973). Here there is no requirement for
the existence of equilibrium, and attention shifts away from the idea of a return to
equilibrium, and focuses instead on the boundaries of fluctuations, on whether a
system persists or not, on ‘‘how the population is buffered against extinction in
adverse periods’’ (Whittaker 1974). Jacobs (1974) also drew this distinction be-
tween stability as defined above and ‘‘persistence of a given state.”” Others have
used the term differently, as ‘‘persistence of a community in time with little
fluctuation in species populations’’ (Boesch 1974; also used similarly by Margalef
1969; Lie and Evans 1973). In contrast, we will use persistence to indicate that a
population or species either did not become extinct during a given period of time
and in a given area, or if it did, that it recolonized the area within the time span
required for one turnover of all individuals of that species in the place.

We would like to make one further point. Local extinctions or invasions of a
new species often occur as a result of shifts in the boundaries of species ranges,
probably as a result of slight shifts in climates. For example Holbrook (1977) has
demonstrated such changes in rodent communities in Arizona and New Mexico
over the past 1,000 yr. Historical records of shifts in geographic boundaries are
common. For example the armadillo has expanded north from Texas to Nebraska
since the early 1900s (Humphrey 1974). Such shifts are not the concern of this
paper; we will deal only with the question of whether, under the same average
climatic regime, populations are stable or persistent in the face of discrete,
punctuated disturbances.

SCALES OF OBSERVATION APPROPRIATE FOR JUDGING STABILITY OR PERSISTENCE OF
REAL ECOLOGICAL SYSTEMS

Several scales must be recognized in judging the stability or persistence of a
natural population or community. These are the intensity and time scale of the
perturbations and the time and spatial scales of the observations of the responses
of the populations themselves.

If the intensity of the disturbing force does not cause a significant change in the
characteristic of interest, there is no perturbation; the assemblage has resisted the
force. A perturbation is a significant change in the characteristic of interest (see
Sutherland [1981] for an alternate interpretation). If, for example, the characteris-
tic were biomass or energy flow (McNaughton 1977), then a perturbation would be
a significant change in these variables. Here we are interested in numerical
abundance of populations and relative abundance of species in guilds and com-
munities, so a perturbation is a significant change in either numbers of a popula-
tion or relative abundance of species in a community. Clearly there are small and
large perturbations and the spectrum of change is a continuum.
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The time scale of the perturbation is also important. Concepts of stability or
persistence refer to responses to discrete, punctuated disturbances that perturb
abundances but do not cause long-term changes (i.e., longer than the turnover
time of the assemblage) in the abiotic environment. They do not refer to responses
to changes in the average values of the abiotic variables themselves (e.g., cli-
mate), which are known to affect abundances and species composition of com-
munities. Thus, when alternate or multiple stable states are postulated to exist, it
is essential to establish that any relevant conditions of the abiotic environment are
similar (in average value and in variance) in both situations. For example, Mat-
thews (1979) suggested that two different end points of a plant succession on a
glacial moraine beginning with the same pioneer species represented alternate
stable points. But the two end points were at different elevations, slopes, and
aspects on the moraine, so were more likely to have been a result of different
average environmental conditions than of different histories of succession within
the same environment.

Appropriate scales of time and space must also be specified for the observations
of the responses of the populations, before meaningful judgments concerning
stability or persistence can be made. With regard to time, Frank (1968) warned of
the tautology in reasoning that mature communities are stable, when in fact the
reason for their constancy is that they are composed of long-lived individuals. His
warning was reiterated by Pielou (1977, p. 1). There are two ways to avoid this
tautology. One must either observe the replacements for all adults or else predict
the transition probabilities of future replacements for all adults. In either case the
minimum time period is at least one complete turnover of all individuals, including
discrete colonies or clones. The usual method of calculating the transition proba-
bilities in a community of long-lived species is to use the relative abundance of the
juveniles of the different species present (Horn 1975; Culver 1981; Runkle 1981).
This assumes that each juvenile has an equal chance of surviving to become a
replacement; none of the studies cited tested this assumption. It also assumes
constant probabilities, which is very unlikely under natural conditions.

By observing or predicting patterns of replacement over at least one complete
turnover of all individuals, the stability or persistence of each population will be
scaled to the particular life histories of its members, allowing comparisons be-
tween different populations. Since the ultimate fate of all species is extinction,
judgments concerning the persistence or stability of a particular population or
community characteristic must necessarily be relative (Maynard Smith 1974;
Botkin and Sobel 1975).

The spatial scale of a study will also affect judgments of the stability or
persistence of a population or community. If the population or community is
defined for the purposes of the study as the assemblage on a small area, it is
unlikely to be either stable or persistent, since even small perturbations could
cause local extinction. In contrast, if the same assemblage is monitored over a
very large area (which in effect averages out the variation in dynamics of subpopu-
lations), it will be found to be persistent and possibly stable unless the species in
question is (are) becoming extinct globally.

Usually the choice of spatial scale for a study (including those discussed here) is
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arbitrary. In our view, a better but more demanding approach is to search for the
minimum area in which a population or community is stable and/or persistent. We
will define this as the smallest area that provides adequate conditions (i.e., enough
propagules and the environmental conditions required for the development,
growth, and survival of offspring) for the replacement of existing adults some-
where within that area. These conditions must occur within the area during the
course of at least one turnover of the population or community. For example, if
both the production of seeds and the growth and survival of juveniles within a
particular hectare of forest is sufficient to provide replacements for all adults on
the same hectare, then the minimum area within which the assemblage of trees is
stable is indeed one hectare. In contrast, if there are adults present whose seeds
and seedlings cannot survive in the hectare, requiring, for example, very large
light gaps for germination and growth, then the minimum area on which the
assemblage is stable and/or persistent is much larger, encompassing the area
within which enough large light gaps will occur within the lifetime of those trees to
allow their replacement.

One may determine the minimum area for a species either directly or indirectly.
To do so directly one must follow the replacement of all adults on a number of
different spatial scales for the minimum period of one turnover. The smallest of
these scales on which replacement is found to occur would constitute the
minimum area. One might also estimate it indirectly using the life history charac-
teristics and age structure of the populations on an area in which suitable habitats
are expected to occur within the period of adult replacement. Obviously the larger
the area studied, the more likely it is that the minimum area will be encompassed.
Species whose propagules do not travel far and whose offspring are able to
survive and grow in the vicinity of the adults probably tend to have small
minimum areas. Species with highly mobile propagules and offspring that require
conditions very different from those in areas occupied by their adults, probably
tend to have relatively large minimum areas, e.g., species with planktonic larvae.
Thus both the minimum area and the minimum time period for which an assem-
blage may be judged as stable or persistent are functions of the life history
characteristics of the species being considered. The minimum area may also
change with the location of the study area within the species range(s) and with
temporal and spatial variation in the environment, all of which influence recruit-
ment, growth, and survival and thus the likelihood of replacement.

Most detailed ecological studies are done on small areas, so that it would not be
surprising if stability were seldom found. This could simply mean that the study
area was smaller than the minimum area and if one looked longer or over a wider
area, stability (or persistence) would be found. This might well be true (although
perhaps not, if the species was in the process of dwindling to complete extinction
as in some very rare species today). However, providing that the data are ade-
quate and our minimal criterion of time is satisfied, a judgment that the assem-
blage is neither stable nor persistent certainly applies within the spatial scale
studied, though perhaps not on some larger scale. We believe that such judgments
are useful even if they apply only to small scale studies which, after all, comprise
most ecological work. The finding of nonstable conditions on a local scale and/or
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over the course of a few turnovers has important ecological and evolutionary
implications. Disturbances causing local nonstable or persistent conditions are
frequently essential for the stability or persistence of species on larger scales
(Hutchinson 1951; Andrewartha and Birch 1954; Dayton 1971; Levin and Paine
1974; Sale 1977; Hastings 1977; Caswell 1978; Connell 1978; Sousa 1979; Paine
and Levin 1981). In addition, recent evolutionary theory suggests that nonequilib-
rium conditions in local populations (e.g., differential proliferation or extinction,
founder effects, etc.) can significantly alter their genetic structure (Wright 1940;
Levins 1970; Boorman and Levitt 1973; Wade 1978; Templeton 1980).

STABILITY: HOW CAN IT BE DEMONSTRATED?

We will first discuss resistance, the tendency of a population to withstand being
perturbed from equilibrium (Boesch 1974). When comparing the resistance of two
populations, one must first know the strength of the disturbing force. Long-term
records showing that one population changed more than another are not sufficient,
since the force of the disturbances may have been unequal. Unless one has either
measured or experimentally applied the force one cannot begin to judge the degree
to which an assemblage is resistant to change. Accurate measurement of such
forces is difficult and controlled disturbance experiments have been conducted in
only a few systems (e.g., Likens et al. 1970; Hurd et al. 1971; Hurd and Wolf 1974;
Bormann et al. 1974; Hall et al. 1980; Sousa 1980). In addition, the original state
from which a population or community is hypothesized to be resisting change
must be demonstrated to be a stable equilibrium one using our temporal and
spatial criteria. These criteria have not been met by any of the perturbation
studies just cited.

The second aspect, adjustment stability, is equally difficult to demonstrate. For
short-lived organisms, adjustment stability could be demonstrated if a single
population or community is perturbed and returns to the same stable equilibrium
point or limit cycle. Likewise if two populations or two communities were
changed to the same degree, the one which returned more rapidly and/or with
greater fidelity or from a greater amplitude of perturbation to its original equilib-
rium state would be judged to possess greater adjustment stability. Again as
discussed earlier, in these instances both the original state and that to which the
system returns must be demonstrated to be equilibria using our criteria for space
and time.

Unfortunately it will seldom be feasible to evaluate the adjustment stability of
any real community, because natural perturbations are often so frequent that
there is not enough time between them for a community to achieve a stable
equilibrium state. In such cases it is impossible to define the equilibrium state and
thus to demonstrate adjustment stability (Sutherland 1981). Using the pollen
history of forests in northern Minnesota, Botkin and Sobel (1975) point out that
disturbances and climatic changes sometimes occur at such frequent intervals that
they prevent a system from ever assuming a stable state (i.e., one that lasts for at
least one turnover of the member populations). Their conclusions are supported
by a more recent analysis of pollen records from the same forests by Amundson
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and Wright (1979). Many recent papers have demonstrated that physical and
biological disturbances are ubiquitous in natural communities and strongly in-
fluence their structure (see Heinselman and Wright 1973; Levin and Paine 1974;
Connell 1978; Sousa 1979; White 1979; Paine and Levin 1981; Pearson 1981;
Thistle 1981 for recent reviews). If an equilibrium state cannot be identified, how
can conclusions be made about this form of stability in real ecosystems?

There is also the danger of mistakenly concluding that communities subject to
frequent disturbances are less stable than those less frequently disturbed, simply
because the former will not have had as much time as the latter to recover
completely. The more disturbed community may in fact be more stable because
the species in the frequently disturbed community may colonize and grow so
rapidly that they can recover completely between disturbances. Comparative
statements: concerning the tendency of a system to return to equilibrium depend
both on accurate measurements of the regime of disturbance and on knowledge of
the biology of the species concerned, both of which are very difficult to obtain.
Clearly the existence of multiple stable states, though possible in theory, would be
even more difficult to demonstrate than single stable points.

THE EVIDENCE FOR MULTIPLE STABLE STATES

Several papers have recently delineated the theory of multiple stable states in
ecology using mathematical models (Lewontin 1969; Holling 1973; Noy-Meir
1975; Gilpin and Case 1976; Southwood and Comins 1976; Southwood 1977; May
1977, 1979; Peterman 1977; Levin 1978; Ludwig et al. 1978; Peterman et al. 1979;
Clark and Holling 1979; Anderson 1979; Botsford 1981). Here we are concerned,
not with this body of theory, but with whether there is good evidence for the
existence of multiple stable states in actual populations or communities. First we
will review the examples given in the theoretical papers cited above. These all
have various shortcomings that fall into one of three categories listed below: (1)
Examples in which the evidence is inapplicable since the physical environment is
different in the different alternate states. (2) Examples in which one or both of the -
alternative states persists only when artificial controls are maintained. (3) Exam-
ples in which the evidence is simply inadequate.

Under the first category are examples in which either the assemblages occupy-
ing a particular site before and after a change in the physical environment are
interpreted as alternate stable states or the assemblages at separate sites differing
in their background physical environments are interpreted as alternate stable
states. As discussed earlier, one would expect such differences in the environ-
ment to cause-differences in population size or community composition; they
should not be considered to be examples of alternate stable states of the kind
described above or as originally proposed by Lewontin (1969). For example,
Holling (1973) cites several instances in which changes in average nutrient levels
in lakes, as a result of road-building, pollution, agricultural runoff, etc., caused
changes in the planktonic and/or benthic communities (Hasler 1947; Edmondson
1961; Beeton 1969; Hutchinson 1970). Similarly there were changes in breeding
fish populations when average flow rates, water temperatures, and sediments in
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streams were altered to a new level as a result of deforestation of the watersheds
(Smith 1968).

Another example is the often-cited instance of the Australian herbivorous insect
Cardiaspina albitextura that feeds on Eucalyptus (Clark 1964; Clark et al. 1967,
Southwood and Comins 1976). In some places the numbers were usually kept low
by a complex of many species of natural enemies, with occasional outbreaks in
numbers which caused defoliation and death of trees and subsequent crashes in
numbers of the insect back to the normal ‘‘endemic’’ low levels. In other places,
densities on host trees remained high and yet did not result in defoliation, so the
high numbers were regarded as an alternate stable ‘‘epidemic’ state. However,
the latter situation occurred only when the environment was greatly changed. The
epidemics persisted only where the host trees had been cleared or thinned by
settlers, which would change the physical structure of the habitat and according to
Clark et al. (1967) probably reduced the natural enemies as well as preventing the
normal dispersal of Cardiaspina. In addition, where the epidemic state persisted,
a new species of hyperparasite, Echthroplexis psyllae, appeared, greatly increas-
ing the mortality of the natural enemies and so preventing them from reducing
Cardiaspina (Clark 1962).

Another example comes from drastic changes in fish species in the Great Lakes.
Between 1920 and 1950 several species were overexploited and their populations
collapsed. Holling (1973) suggests that this is a case in which populations had been
moved from one domain of attraction to another because ‘‘once the populations
were lowered to a certain point the decline continued even though fishing pressure
was relaxed’” (p. 8). However the only evidence for a relaxing of fishing was the
prohibition of deep trap netting for lake whitefish in Lake Huron after 1935 (Smith
1968). In other instances, fishing continued, with new species replacing the ones
that had been overfished; yet the original species continued to be caught in small
numbers by the fishery. The nonrecovery of the original species probably resulted
from several extreme changes in the physical and chemical environment, plus the
introduction of an effective predator, the sea lamprey, as well as several probable
competitors (alewife, carp, and smelt). Given all these interventions and alter-
ations by man, it is difficult to accept the conclusion that the native fish assem-
blage in the Great Lakes had been moved into an alternate basin of attraction
below a ‘‘breakpoint’ by a reduction in population caused simply by overfishing.

The second category consists of examples in which one state is artificially
maintained, e.g., where natural enemies are kept in either high or low numbers by
man’s intervention, e.g., overfishing, pesticide spraying, overgrazing of range-
lands, etc. One example cited by Holling (1973) is the perch in Lake Windemere
which, after being greatly reduced by experimental fishing, did not return to its
former level even though no longer fished. The reason for its nonrecovery,
however, was probably man’s continual intervention. After the removal of perch
was stopped, another species, the pike, continued to be fished. Since only the
larger pike were caught, the population structure was changed, so that the remain-
ing pike were smaller sized but much more numerous. These pike attacked the
young perch and apparently kept the population from increasing. As stated by
LeCren et al. (1972, p. 830): “‘preliminary calculations show that consumption of
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young perch by pike is of similar order of magnitude to the production of young
perch.” )

Another example comes from the management of grazing systems. For pastures
in Australia and New Zealand which are continually managed to improve plant
production, the evidence seems adequate to support the theory of multiple stable
points (Noy-Meir 1975; May 1977). For unmanaged, extensive range systems,
however, the evidence is only anecdotal. For these three examples, populations
were kept at a different, possibly stable state only by man’s intervention.

Our third category includes examples in which the evidence is inadequate. The
assemblage of invertebrate colonies studied by Sutherland (1974, 1981) and
Sutherland and Karlson (1977) comprised a marine fouling community which was
considered stable if it occupied and held most of the space on a panel until it died
and fell off. The vacated space was then colonized and held by other species until
they died. Since each of these states was defined as being a stable equilibrium
point, the sequence was defined as a system with multiple stable points. The
criterion for stability was that the colonies had persisted ‘‘for some period of time
in a given physical locality, in spite of forces with the potential of altering their
structure’’ (Sutherland 1974, p. 860). The forces in this case were planktonic
larvae capable of colonizing the panel but apparently prevented from doing so by
the presence of the occupants. However, the time scale is too short; if this scale
were accepted, almost any set of organisms that, within their lifetimes, prevented
another set from invading could be regarded as a stable population or community.
In none of the instances cited by the above authors, either from their own work or
from studies of animals or algae in the marine intertidal zone, vegetation on coral
reefs, zooplankton in lakes, protozoa and algae in phytotelmata, or perennial
grasses and woody vegetation in Britain, has it been shown that assemblages
maintain a persistent or stable composition beyond the lifetimes of individual
members by preventing invasion of other species. The same is true of examples
cited by Gray (1977). The problem is that, although Sutherland’s study clearly
showed that historical events did determine the structure of the communities
studied, none of them was shown to be stable at appropriate scales of space and
time.

Another case is that of the European spruce sawfly (Diprion hercyniae) in-
troduced into Canada. Southwood (1977) has calculated that it has two stable
points, a lower one determined by both introduced parasitoids and virus disease
and an upper one when the disease alone controls it. However the populations rise
to the epidemic level only occasionally, and there is no evidence that the popula-
tion is stable there. It seems likely that the parasitoids would soon respond
functionally and numerically (Solomon 1949) to the high densities and drive the
prey back to the lower endemic level. Until evidence is adduced to show why this
should not happen, the upper, epidemic, level cannot be regarded as stable.

The same reasoning applies to the well-known case of the spruce budworm
(Morris 1963). It has been proposed (Holling 1973; Ludwig et al. 1978; Peterman et
al. 1979) that the upper epidemic level is an alternate equilibrium point to the
lower endemic levels. However the budworm at epidemic levels is not stable, but
defoliates and kills the mature fir and spruce trees it lives on and then crashes. The
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forest then regenerates and eventually the budworm irrupts to epidemic levels. As
May (1977) points out, this could represent a single stable limit cycle rather than
alternate stable points.

May (1977) has suggested that parasites or pathogens might exhibit alternate
stable states. In all his examples one of the states was the absence of the parasite.
This follows MacDonald (1965) who proposed that bisexual parasites, such as
helminths, could maintain a population only if they exceeded a numerical ‘‘break-
point’’ determined by the probability of finding mates. Since there is only one
state at which the population is stable, this is hardly a relevant example. Anderson
(1979) has since proposed a theoretical model in which the parasite could persist at
two stable states; no supporting examples from actual populations have yet been
cited.

A case has been made (Holling 1973; Peterman 1977; Peterman et al. 1979) that
some species of exploited Pacific salmon exhibit alternate stable states. The pink
salmon (Oncorhynchus gorbuscha) has a 2-yr life cycle, so that the stocks in
alternate years do not meet each other. In some streams one stock was consis-
tently very much larger than the other. For example at Sooke, B.C., the odd-year
stock was 100 times larger than the even-year one for the 12 yr of record (Neave
1953). A similar record for over 24 yr from another region is given by Peterman
(1977). In other areas the stocks often differed, but the difference did not persist
(Neave 1953). The mechanism maintaining the consistent difference between the
stocks is not known for certain but Neave (1953) suggested the following hy-
pothesis. Predation on the young fish as they migrate out of the streams is often
proportionately heavier on smaller than on larger populations. If this is so, the
smaller stocks would be kept at a low ‘“‘endemic’’ level while the larger ones
would not be significantly affected by the predation. If this proves to be the
correct explanation it would provide strong evidence for the existence of alternate
stable states in an exploited population.

Some of the examples cited above as evidence for multiple stable points use the
two states at high versus low densities of predators as the alternative states. There
is much evidence that a population which has been kept low by intense predation
will rise to a high level when all the predators are removed, or vice versa. Many
examples from biological control of introduced pests and from ecological field
experiments testify to the generality of this finding (DeBach 1974; Connell 1975).
Two examples of this have been frequently cited as supporting the notion of
multiple stable states. Sutherland (1974) proposed it for some marine invertebrate.
fouling communities when fish were experimentally excluded. Similarly, Simen-
stad et al. (1978) suggested that very different nearshore communities found on
Aleutian islands with and without sea otters (Estes and Palmisano 1974; Estes et
al. 1978) represent alternate stable states. On islands where sea otters were
absent, removed either by fur traders or apparently much earlier by aboriginal
hunters, their herbivorous invertebrate prey were common and had eliminated
much of the fleshy macroalgae. In contrast, on islands where the numbers of
otters had recovered, herbivores were scarce and a dense macroalgal canopy had
developed. The lush kelp beds on islands with otters provided habitat for fishes
which in turn supported populations of seals and eagles. However, in Sutherland’s
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study the prey species were not shown to be stable for the necessary minimal time
scale, and in both studies the state without predators could only be maintained
with human intervention. Fish were absent only when experimentally excluded
from the fouling communities, and sea otters (now under federal protection) are
gradually reoccupying the Aleutians (Palmisano and Estes 1977; Estes et al. 1978).

Therefore, we endorse Paine’s (1977) suggestion that communities without
consumers should seldom be regarded as being stable. If the consumers disappear
(or are experimentally removed) and prey increase until they dominate the space,
this situation will persist only as long as the consumers are absent. Since any
situation in which prey are present is attractive to consumers, if it is possible for
them to reinvade, they probably will (e.g., starfish predation on mussels, Landen-
berger 1968; Paine 1974, 1976; sea otter predation on grazers, Estes et al. 1978). If
the consumers return, they will either reduce the prey again, or if the prey have
reached an invulnerable size (as in some of the examples cited by Sutherland
1974), the consumers will eat most or all of the offspring (unless there is parental
care, which does not apply to these cases). When invulnerable individuals eventu-
ally die, whatever the cause, the situation will return to the original state that
existed before the consumers were eliminated. Thus, the situation without the
consumer will rarely be a stable one, and only in instances in which there are
extremely effective barriers to movement of the consumers, will systems without
them be stable. Small isolated islands, mountain tops, or lakes seem to us to be the
only good possibilities for this sort of stability. However, to regard a situation
having barriers to movement of consumers as a multiple stable state adds nothing;
the explanation is clear, why obfuscate it?

EVIDENCE FOR STABILITY OR PERSISTENCE BEYOND ONE COMPLETE
POPULATION TURNOVER

We now examine other studies that satisfy our criterion that populations be
followed for at least one complete turnover of all individuals. Our purpose is to
assess whether, from census data alone, it is possible to distinguish a subset of
populations or communities that exist in an equilibrium state. We have not
included studies that attempt to predict the next generation from the age structure
of the present one; in our opinion, none of those published have yet sufficiently
evaluated either the assumption that the relative abundances of the different
species of younger individuals is an adequate estimate of their probabilities of
replacing the present adults or the assumption that the probabilities are constant
(Hartshorn 1975; Horn 1975; Culver 1981; Runkle 1981).

Long-term records (i.e., over a number of turnovers) of the numbers of individ-
uals of two or more species in a community, especially where the mechanisms of
interaction have been demonstrated with field experiments, are rare. Most long-
term studies are of changes in the densities of populations of one species rather
than of assemblages of interacting species. Few of these studies have gathered
data on more than one spatial scale. We have limited the following review to
studies in which detailed records of density have been kept for more than a
turnover of the population and in which sufficient demographic information has
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been collected to estimate turnover times. The latter is not a problem for annual
species. For other organisms we have used either the estimates of specialists of
particular taxa, or the maximum lifespan of the species recorded during a particu-
lar study as the time required for one turnover of its population. This method
undoubtedly underestimates the actual number of observed turnovers for studies
of species other than annuals.

It should be noted that the studies included in this review are probably neither
an exhaustive nor an unbiased sample of natural populations. Some are econom-
ically important, either as pests of agriculture or forests. These species as well as
some of the others listed, e.g., small mammals, are conspicuous by virtue of large
fluctuations in their numbers. Others have been studied because they are easy to
count accurately. The fact that some of the available long-term records are of
populations that undergo large fluctuations makes it difficult to generalize how
common a particular type of persistence is in natural systems. Also such evidence
can never be completely conclusive because it is always possible that further
sampling might reveal a different pattern of population dynamics. The best we can
do is to examine those long-term data that are available to determine whether
present evidence supports the notion that a particular form of stability or persis-
tence exists in nature. We hope this effort will stimulate the collection of data on
other sorts of species. |

Although there are long records for many exploited populations of fish, fur-
bearers, game, etc., they have certain drawbacks for our purpose. First, in most
instances there is no way of accurately estimating the proportion of the total
mortality that has been imposed by the harvesting itself; only for certain species
(e.g., some species of salmon) is this proportion known with accuracy. (See
Weinstein [1977] and Winterhalder [1980] for further discussion of this problem.)
Second, it is difficult to estimate the effect of this additional harvesting mortality
since, to our knowledge, no study has had a control population which is not
harvested, to serve as a comparison. For these reasons we have referred to only
one exploited population, the muskrat (Ondatra zibethicus), because accurate
information has been gathered on the effects of natural perturbations on local
extinction and recolonization.

Appendix table Al lists the details of all the studies we have found that had
population censuses extending for at least one complete turnover of all individuals
in a local population. In some instances such data were taken for several local
populations of a species. To estimate the total variation observed for each local
population (independent of mean population size), we calculated the standard
deviation of the logarithms of the numbers in censuses separated by at least one
turnover. This enables us to compare species having different lengths of life. This
index is sensitive to low values (because logarithms are used); another commonly
used index, the coefficient of variation, is sensitive to high values (P. Chesson,
personal communication). Since we were more interested in population variation
at low numbers, we used the former index. The sample sizes vary among studies:
For some long-lived species only one turnover was available, in contrast to some
annuals in which many turnovers were observed.

The standard deviations for all populations are listed in Appendix table A2;
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Fi6. 1.—Distribution of variability among all populations studied. The shaded/unshaded
portions of each column indicate the proportions of the populations in categories of A, life
history and B, number of censuses.

these are presented in two frequency distributions in figure 1. Figure 2 shows the
same sort of frequency distribution but includes only one variation estimate per
species; when more than one population of a species was studied, the median
standard deviation was used.

As can be seen in these figures, there is a continuum of variability among the
populations or taxa studied. The distributions of variability in populations of
annual and perennial species (fig. 14) were not significantly different (Kol-
mogorov-Smirnov test, P >.95). There is no evidence that populations of peren-
nial species in general fluctuate any less than populations of annual species when
scaled to turnover time. The number of censuses taken, however, does appear to
influence the degree of variation measured (fig. 1B). The variation calculated for
populations censused only twice is less than that calculated for populations
censused more than two times (Kolmogorov-Smirnov test, P <.005). Thus, rela-
tively short-term studies spanning only one turnover tend to give a false impres-
sion of constancy in numbers. Terrestrial plants, terrestrial insects, and aquatic
invertebrates span the full range of variation. Birds (with one exception) and
mammals are not represented in either the least or most variable class, but this
may be because few long-term studies of these taxa were available. Parasites
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category, species are identified as possessing either a perennial (shaded) or annual (unshaded)
life history.

occur only in the three least variable classes; whether this is a consequence of the
few studies or an indication of genuine low variability cannot be decided until a
more extensive survey is available.

Within single species, populations in different localities varied con31derably As
shown in the tables, one mid-ocean copepod species spanned the entire range of
variation found among all organisms surveyed, and five other species each
spanned two thirds of the range (McGowan and Walker 1983). Different local
populations of the same species of Polish dune plant (Corynephorus canescens)
spanned most of the entire range (Symonides 1979a). Variation in populations of
the beetle Pterostichus coerulescens on a small area of heath spanned half the
entire range of all species (den Boer 1971).

Within local populations a few species exhibit rather regular numerical fluctua-
tions which could be regarded as stable limit cycles; the larch tortrix moth in
Switzerland is probably the best-known example (Baltensweiler 1968). Whether
the fluctuations in other populations of birds and mammals represent regular
cycles has long been debated (Cole 1951, 1954; Garsd and Howard 1981). Our
survey has revealed a continuum of variation among complete turnovers in popu-
lations, ranging from remarkable constancy to wild fluctuations, with many in-
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stances of local extinction (see footnote to table Al for a list of these instances).
Which, if any, of the populations of species listed in table Al exist in an equilib-
rium state would be difficult to decide, given the distribution of variation illus-
trated in figures 1 and 2.

There is also a continuum of change in the structures of species guilds over
time. The separate species of some guilds (e.g., insectivorous birds) vary in
abundance to about the same degree while in other guilds the abundances of the
individual species vary quite differently (e.g., meiobenthic copepods, oceanic
copepods, dune plants, annual grasses, grassland rodents). The relative abun-
dances of intertidal snails and forest moths vary to an intermediate degree. (See
data from study nos. 41, 4, 5, 27, 28, 47, 12, 33, and 34, respectively, in table A2.)
As before, when faced with this continuum of variation, it is impossible to decide
which of the assemblages of species are in equilibrium and which are not.

Is there any evidence from these studies of multiple stable states or cycles of
population density of relative abundance in different places under the same
environmental conditions? If so it would indicate that historical events have
generated true multiple stable states or cycles (sensu Lewontin 1969; Sutherland
1974). The problem, however, is to rule out the possibility that differing environ-
ments in the different places affect biological interactions in such a way as to
produce alternate patterns of population or community structure and change.

Some of the studies in table Al document differences in the dynamics of
populations or relative abundances of species in different locations. The intensity
and periodicity of insect outbreaks, for example, vary with the environment.
Larch tortrix moth outbreaks become increasingly less periodic and intense at
lower altitudes in the Alps (Baltensweiler 1968). However, at a given altitude
where presumably the physical environment is more similar than at different
altitudes, there is considerable synchrony in their periodicity and intensity over
wide areas. Similar variation between different sites in patterns of population
fluctuation have been reported for small mammals and gallinaceous birds (Keith
1963). The relative abundances of species within a guild also sometimes show
differences among sites. The relative abundances of insectivorous birds differed
to a fair degree at different sites, changing much less at one site than at another
through time (Perrins 1965; Lack 1966). However none of these examples can be
used as evidence for multiple stable states, because the differences can be more
parsimoniously ascribed to differences in the physical environments of the various
locations.

In contrast, other studies document similarities in the dynamics of populations
or the relative abundances of species in different locations. The periodicity and
range of fluctuations of some insect species (e.g., thrips, Davidson and An-
drewartha 1948a, 1948b; pine looper moth, Klomp 1966; Varley et al. 1973;
checkerspot butterflies, Ehrlich et al. 1975) appear to be similar in different places
although the average density levels about which the fluctuations occur are some-
times different. Fluctuations in numbers of the great tit have been quite synchro-
nous at several sites in England and Holland for over 17 yr (Perrins 1965; Lack
1966). In some cases the relative abundances of species also remain very much the
same over a number of turnovers in different locations. The rank order of the
relative abundances of forest moths remain approximately the same over large
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areas of England, Holland, and Germany (Klomp 1968). Likewise the rank order
of mid-ocean copepods varied little between two cruises 16 yr apart (McGowan
and Walker 1983).

Our interpretation of the above evidence is that natural populations, guilds, or
communities have not yet been demonstrated to assume multiple stable levels,
cycles, or relative abundances over more than one turnover at different sites or at
different times at one site under the same environmental conditions. In most cases
the rank order of relative abundances of species at a particular site remained the
same for the duration of the study but in several instances it changed erratically
throughout the period showing little evidence of stability. Spatial differences in
the characteristics of population fluctuations or in the relative abundances of
species are either not very consistent or if they are, seem attributable to the
effects of differences in the physical environment.

EVIDENCE OF ADJUSTMENT STABILITY

Do the populations in table Al display adjustment stability? Adjustment to an
equilibrium state can usually be rejected as irrelevant, since only a few of the
records show evidence of the existence of such a state. However some of the
populations in table Al fluctuate in a cyclic manner; of these the response to
perturbations was studied in detail in only two. Errington (1939, 1940) carefully
documented the effects of drought and disease on muskrat populations. In a
number of marshes local muskrat populations completely disappeared and recov-
ery resulted from immigration. Cycling then resumed in these reestablished popu-
lations. In this example, readjustment to a cyclic pattern of population fluctuation
occurred and the mechanism of recovery is well understood.

An experimental study was made of the effects of an artificial perturbation on
the population dynamics of the larch tortrix moth, populations of which cycle
regularly in the European Alps (Bovery 1966 in Baltensweiler 1968). Two forest
plots were sprayed with pesticides in 1963 just before the peak density of a 7-yr
cycle; the density of larvae in these plots and in a third control plot were then
monitored. The pesticide killed approximately 95% of the larvae in the treatment
plots. Trees in these plots were not defoliated that year while those in the control
plots suffered heavily. In 1964, both treated populations returned, by a 15-fold
increase, to approximately the same density as that existing before the treatment.
The population in the control plot changed relatively little, increasing only 1.5
times in density. In 1965 all three populations declined dramatically and in 1966
this trend continued. The years 1965 and 1966 were part of the general decline
phase of the cycle in the region of Switzerland where the experiment was con-
ducted. Thus the perturbed populations returned to near control densities in one
generation, then began cycling as before. The mechanisms of adjustment to a
cycle are not as well understood in this case as in the muskrat study and no
mention is made of natural perturbations which might act in the same manner as
the treatment with pesticides.

McGowan and Walker (1979, 1983) studied the zooplankton (copepod) assem-
blage in the north Pacific Ocean central gyre, sampling nearly the same locations
on two cruises 16 yr apart. This very large area is regarded as geologically old and
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relatively homogeneous and isolated from exchange of either nutrients or species
with neighboring water masses (McGowan 1977). In the interval between the
sampling cruises an exceptional natural disturbance occurred, apparently as a
result of increased vertical turbulence in the thermocline region (Hayward and
McGowan 1979). As a result, the primary productivity approximately doubled and
there was a large increase in the biomass of the zooplankton. However, in spite of
this large perturbation, the numerical rank order of the copepod species changed
little between the two cruises. Our analysis indicated that in certain species none
of the different local populations showed much variation whereas the populations
of other species varied considerably. We interpret this result to indicate that,
although those species showing little variation may have displayed adjustment
stability, others in the same community probably did not.

Two other studies in table A1 documented changes following disturbances, but
neither gives evidence of adjustment stability. Jénasson’s study of Chironomuts
anthracinus showed that subsequent to a decline in numbers caused by the input
of sewage, larval densities returned to near original levels, though the pattern of
larval recruitment was quite different. The study continued for another 2 yr but
this was insufficient to document the maintenance of these new larval densities
over a number of turnovers.

Boesch et al. (1976) sampled 16 species in an estuary for 6 yr before a severe
hurricane and 4 yr thereafter. Four species were ‘‘more or less equally abundant’’
before and after the storm, four were much reduced, and five were much more
abundant afterwards, and three were classified as ‘‘irruptive,”’ both before and
after. The first four species which changed the least nevertheless were very
irregular and at times became locally extinct. Fourteen of the 16 species persisted
for the entire period but since no stable states or cycles were demonstrated, by
definition there was no adjustment stability. In none of the other accounts of
studies listed in table Al is there any mention or analysis of the effects of
disturbances.

There are at least two reasons for our conclusion that adjustment stability has
been demonstrated in only three instances, one of which involved an artificial
perturbation. First it may be that no significant natural perturbation occurred
while the other systems were under observation; this seems unlikely, given the
long periods of study. Alternatively, the investigators may have regarded them as
“‘noise,”” unworthy of study. Physical perturbations are often considered to be
extraneous and exceptional events, relatively unimportant to population and
community structure. A prevalent view is that one should minimize the chance of
such annoying events occurring so that the “‘real’” processes affecting populations
and communities can be identified. With this attitude, the effects of perturbations
will not be scrutinized in nearly as much detail as have the effects of strictly
biological interactions.

AN ALTERNATIVE: PERSISTENCE WITHIN BOUNDS

We conclude (as does Murdoch 1979) that ideas of population or community
stability based upon the existence of equilibrium states have seldom if ever been
tested adequately because of the difficulty of defining the equilibria, measuring the
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strength of the disturbing forces and measuring the rate or degree of recovery in
natural communities. Given the difficulties of testing these notions of stability it
seems more useful to study the broader class of mechanisms which ensure
population persistence regardless of whether equilibria can be identified. These
mechanisms include both those which reduce the likelihood of extinction or
irruption and those which result in the reestablishment of communities if popula-
tions of some of the component species become extinct locally. The idea that
populations or communities persist because they seldom exceed bounds (defined
stochastically) rather than (or in addition to) having one or more equilibria, is
discussed theoretically by Lewontin (1969), Holling (1973), and Chesson (1978).
To see whether this idea applies to real ecological systems one would need to
show that there were no trends in population numbers and no upward trend in the
magnitude of population fluctuations, i.e., of extinctions or irruptions of numbers
in populations within communities. To do so requires either experimental manipu-
lations of population density (Eisenberg 1966, 1970; Stimson and Black 1975;
Black 1977), or long-term observations during which the numbers approach hy-
pothesized bounds but rarely exceed them. Demonstrating the existence of den-
sity-dependent mechanisms that were effective in preventing the population from
exceeding the bounds would strengthen the evidence for a particular case (Mur-
doch 1979). Stochastic boundedness without equilibria would be suggested if, in a
number of experiments or observations under the same physical conditions, the
density of a population moved away from the extreme levels to which it had been
perturbed but did not consistently move to the same level between the bounds
after each perturbation. Our previous comments concerning the influence of
spatial scale on judgments of stability apply as well to the notion of boundedness.
The bounds of population fluctuation will in most cases narrow as the spatial scale
of observation becomes larger.

IMPLICATIONS FOR STUDIES OF NATURAL COMMUNITIES

We have made the criteria for assessing community stability and persistence
quite strict, and few of the studies reviewed were rigorous enough to establish
unambiguously the relative stability and/or persistence of the population or com-
munity being studied. To achieve this depends in part.on the characteristic we
choose to study. If it is broad enough there is little difficulty: i.e., will the
community adjust back to a forest versus a grassland; to a mussel bed versus an
algal bed; to corals versus turtle grass, etc.? For example, pollen records from
bogs indicate that forests have occupied parts of western and northern North
America for longer than the turnover time of the trees, despite widespread fires
recorded as charcoal layers in the cores (Heinselman and Wright 1973). If,
however, we are interested in more detailed changes, e.g., in the composition or
relative abundances of the species, judgments about stability and/or persistence
are much more difficult. Yet these are characteristics that Lewontin (1969),
Holling (1973), and others refer to in their theoretical discussions of community
stability. There is, to our knowledge, no evidence to show that following a
disturbance any community has adjusted back to an original species configuration
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which then resisted change beyond one complete turnover. Most records are too
short to demonstrate this. The evidence for alternate stable communities is inade-
quate for the same reason. Most supposed cases are due simply to the persistence
of long-lived individuals and are therefore tautological (Frank 1968).

To evaluate the likelihood of community stability and/or persistence and avoid
the tautology is difficult, especially for long-lived organisms. When studying an
assemblage composed of both short-lived and long-lived species, it might be
possible to use our rigorous criteria for the members short lived enough that a
complete turnover of individuals can be documented. To assess the likelihood of
local replacement of the more long-lived species, several methods are possible.
The first is the method described above, using age structures to forecast the
probability of replacement. Obviously this strategy is only as good as the assump-
tion that the present age structure of a species is a good predictor of the likelihood
of its future replacement. If this assumption is evaluated and the scales of the
study clearly specified, judgments of the relative stability and/or persistence of
communities with long-lived members could be made. To our knowledge this
assumption has not yet been sufficiently evaluated in any study. A second method
is to reconstruct the past history of a community assuming that the climate has not
changed significantly over the period. Long-term studies using. for example,
pollen records are probably ruled out for the latter reason, but shorter-term
reconstructions may be possible. As far as we are aware, there are only a few
published instances of such reconstructions, e.g.. Peterkin and Tubbs (1965),
Henry and Swan (1974), Oliver and Stephens (1977), etc. In none of these in-
stances was the minimum area evaluated; however, within the spatial scales
studied, there was no evidence of stable states. A third method is to look for
mechanisms producing density dependence in recruitment, growth, and mortality
that would tend to prevent local extinctions and irruptions.

ON THE STABILITY AND PERSISTENCE OF ECOLOGICAL SYSTEMS

Elton (1930, pp. 16, 17), in discussing the then current views of the effects of
disturbances on ecological communities, had this to say:

It is further suggested that if we knew enough about the ecological relations of the animals we could
predict the effect of any interference, just as a clockmaker can work out the uitimate effect of the
twirling of one wheel upon the rate of revolution of any of the others. At the same time it is assumed
that an undisturbed animal community lives in a certain harmony. referred to as “"the balance of
nature,”” and that although rhythmical changes may take place in this balance. yet that these are
regular and essentially predictable and, above all, nicely fitted into the environmental stresses . . . .
The picture has the advantage of being an intelligible and apparently logical result of natural selection
in producing the best possible world for each species. It has the disadvantage of being untrue. *The
balance of nature’ does not exist and perhaps never has existed. The numbers of wild animals are
constantly varying to a greater or less extent. and the variations are usually irregular in period and
always irregular in amplitude. Each variation in the numbers of one species causes direct and indirect
repercussions on the numbers of others. and since many of the latter are themselves independently
varying in numbers the resultant confusion is very remarkable. The simile of the clockwork mecha-
nism is only true if we imagine that a large proportion of the cogwheels have their own mainsprings.,
which do not unwind at a constant speed. There is also the difficulty that each wheel retains the right to
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arise and migrate and settle down in another clock, only to set up further trouble in its new home.
Sometimes, a large number of wheels would arise and roll off in company, with no apparent object but
to escape as quickly as possible from the uncomfortable confusion in which they had been living.

In our opinion, the evidence gathered about numbers of animals and plants over
the past 50 yr upholds Elton’s description. If a balance of nature exists, it has
proved exceedingly difficult to demonstrate.

SUMMARY

To see whether real ecosystems (as opposed to model ones) are stable, i.e.,
whether they exhibit resistance to short-term perturbations or adjustment follow-
ing them, stable equilibria must be identified. To do this and still avoid trivial
results, certain criteria of scale must be satisfied. To judge resistance, the strength
of the perturbation capable of overcoming it must be estimated, and this usually
requires experimentation. On a temporal scale, the fate of all adults of the
population or community must either be followed for a minimal period of at least
one complete turnover, or their replacement probabilities estimated. In regard to
space, if one finds instability, this may apply only to the area studied, not to larger
areas. However it is useful to define the spatial scale for which instability versus
stability applies.

An analysis of census data from many long-term studies revealed a continuum
of temporal variability in the dynamics of natural populations and communities.
There is no clear demarcation between assemblages that may exist in an equilib-
rium state and those that do not. Only a few examples of what might be stable limit
cycles were found. There was no evidence of multiple stable states in unexploited
natural populations or communities. Previously published claims for their exis-
tence either have used inappropriate scales in time or space, or have compared
populations or communities living in very different physical environments, or
have simply misconstrued the evidence. Rather than the physicist’s classical ideas
of stability, the concept of persistence within stochastically defined bounds is, in
our opinion, more applicable to real ecological systems.
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