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ABSTRACT
We develop a maximum-likelihood framework for using temporal changes in allele frequencies to

estimate the number of breeding individuals in a population. We use simulations to compare the perfor-
mance of this estimator to an F-statistic estimator of variance effective population size. The maximum-
likelihood estimator had a lower variance and smaller bias. Taking advantage of the likelihood framework,
we extend the model to include exponential growth and show that temporal allele frequency data from
three or more sampling events can be used to test for population growth.

BIOLOGISTS are often interested in the number of Scribner et al. 1997; Dallas et al. 1998; Laikre et al.
1998; Lehmann et al. 1998).reproducing individuals in a population, or in the

related quantity, the effective population size. If only With the advent of high-speed computers, maximum-
likelihood methods for estimating population geneticsmall numbers of individuals are reproducing success-
parameters have become increasingly popular. Al-fully, then loss of genetic diversity through genetic drift
though these methods can be computationally inten-and increased homozygosity due to unavoidable in-
sive, maximum-likelihood estimators have many desir-breeding may harm the long-term potential of the popu-
able statistical properties. One advantage of using alation to survive (Soulé 1986).
maximum-likelihood framework is that it is relativelyThe increase in homozygosity in small populations
simple to modify the underlying statistical model. Incan be quantified by the increase in variance in allele
this study we develop a maximum-likelihood frameworkfrequencies among identical loci. In a Wright-Fisher
for estimating population size from temporal changesmodel of diploid size N, the variance in allele frequen-
in allele frequencies. We then compare estimates ofcies among identical loci with initial allele frequency p
population size using maximum likelihood and the F-sta-is p(1 2 p)/2N after one generation. For many other
tistic approach on both real and simulated data. Finallymodels of population structure, one can define a vari-
we extend the model to include population growth andance effective population size, Ne, such that after one
show that it is possible in principle to estimate bothgeneration the variance in allele frequency among ini-
population size and growth rate simultaneously fromtially identical loci is p(1 2 p)/2Ne (Ewens 1979). This
temporal allele frequency data, although large numbersvariance effective population size is related to the ex-
of loci are needed.pected value of F, the standardized variance of change

in allele frequency. The mathematical relationship be-
tween F and the variance effective population size led THEORY
to the development of a statistic for estimating variance

Our likelihood method is based on the Wright-Fishereffective population size from temporal samples of al-
model of neutral genetic evolution in an isolated popu-lele frequency data (Krimbas and Tsakas 1971; Nei
lation (Ewens 1979). The Wright-Fisher model assumesand Tajima 1981; Pollak 1983; Waples 1989a). These
discrete, nonoverlapping generations and constant pop-methods have been applied to data taken from a wide
ulation size, N. Gametes are chosen randomly and withvariety of taxa in both natural and artificial (i.e., hatch-
replacement from the previous generation. Samplingery) populations (Waples 1990; Waples and Teel 1990;
from the parental generation with replacement is equiv-Hedgecock et al. 1992; Husband and Barrett 1992a,b;
alent to assuming that the gamete pool is infinitely large.Jordan et al. 1992; Lessios et al. 1994; Hedrick et al.

The likelihood of a discrete parameter value given1995; Burczyk 1996; Jorde and Ryman 1996; Rich-
some data is, by definition, the probability of observingards and Leberg 1996; Miller and Kapuscinski 1997;
the data given the parameter value (Edwards 1992).
In the present case, the data consist of the counts of
each allelic type at several unlinked neutral genetic
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configuration of alleles at each locus can be represented N, given the data, is
by vectors n0, nt1, nt2 , . . .ntf , where the ith element in

P(n0,nt|N) 5 o
p0,pt

P(n0|p0)P(nt|pt)P(pt|p0,N)P(p0|N). (4)n0 is the number of alleles of type i. The likelihood of
N, the population size, given the data, is equal to the

In general, P(p0|N) will be unknown. We assume thatprobability of observing the data given N; L(N | n0, nt1,
any starting frequency, p0, is equally likely. We choosent2 , . . .ntf) 5 P(n0, nt1, nt2, . . .ntf |N). This N is a parame-
a uniform distribution for p0 because no additional pa-ter in the Wright-Fisher model and will not always be
rameters need to be specified. We define C to be thethe same as the variance effective size estimated by the
number of possible allelic configurations for the popula-F-statistic method. However, these quantities are related;
tion. In the diallelic case, C 5 N 1 1. Cpoly 5 N 2 1 ofwhen a population is evolving according to the Wright-
these configurations are polymorphic. If p0 is uniformlyFisher model, the variance effective size and N are the
distributed, then P(p0) 5 1/C. If we assume only poly-same.
morphic markers are sampled, then P(p0|N) 5 1/Cpoly.In a Wright-Fisher population, the configuration of

We now have equations for the probabilities P(n0|p0),alleles in each generation has a multinomial probability
P(nt|pt), and P(p0|N) of Equation 3. The remaining prob-that depends only on the allele frequencies of the previ-
ability, P(pt|p0, N), can be computed using a forwardous generation. Similarly, the probability of the allelic
transition matrix, M. The number of rows and columnsconfiguration n, a sample of size n taken randomly from
in the matrix is the number of possible allele configura-the gamete pool of a population at a locus with k alleles
tions, C. The population’s allelic configurations can bethat has allele frequencies p, is also multinomial and is
enumerated from 1 to C. A population configurationgiven by
can easily be converted into an allele frequency vector
by dividing the elements of the configuration by N. Each

P(n|p) 5 n! p
k

i51

pni
i

ni!
. (1) element of M, mij, is the probability of a population

going from the ith configuration in the parental genera-
The joint probability of observing the configuration tion to the jth configuration in the offspring generation.

n0 in a sample from generation 0, and nt in a second Because we are using the Wright-Fisher model, transi-
sample taken t generations later depends on the allele tion probabilities are multinomial. The mij are given by
frequencies at this locus in the population at genera- Equation 1 if the sample configuration n is replaced by
tions 0 and t, p0 and pt. Because the sampling events are the jth population configuration and the allele fre-
statistically independent, quency vector p is replaced by the ith population con-

figuration divided by N. The probability distribution ofP(n0, nt|p0, pt) 5 P(n0|p0) P(nt|pt), (2)
a population’s allelic configuration can be described by

where P(n0|p0) and P(nt|pt) are multinomial probability a vector v of length C, where the ith element in v is the
mass functions given by Equation 1. probability that a population has the ith configuration.

If sample data are from diallelic dominant markers To compute P(pt|p0, N), the transition matrix, M, must
such as RAPDs, then different equations must be used be raised to the power t, where t is the number of
for P(n0|p0) and P(nt|pt). If the markers are in Hardy- generations between sampling events. P(pt|p0, N) is
Weinberg equilibrium, then one can use diploid pheno- equal to Mt multiplied on the left by a row vector vT

0,
type frequencies from dominant diallelic markers in- representing a population with 100% probability of hav-
stead of allele frequencies and ing initial allele frequencies p0, and on the right by a

column vector vt , representing a population that has
allele frequencies pt in generation t,P(n|p) 5 1nT

na
2(p2

a)
na (1 2 p2

a)
nT2na (3)

P(pt|p0) 5 vT
0 Mtvt . (5)

instead of Equation 1. Here pa is the frequency of the
recessive allele, nT is the total number of individuals This method can be easily extended to include more
sampled, and na is the number of individuals in the than two sampling times. For example, if there are three
sample that have the recessive phenotype. samples, then the joint probability of the samples given

Because the parameter p0 is unknown and not directly the population size is
of interest, we treat it as a “nuisance” parameter. Simi-

P(n0, nt1, nt2|N) 5 o
p0,pt1,pt2

P(p0|N)P(n0|p0)P(pt1|p0,N)larly, the unobserved random variable pt is unknown
and we are not interested in estimating its value. If the · P(nt1|pt1)P(pt2,|pt1N)P(nt2|pt2), (6)
joint probability distribution of p0 and pt is known, then

where n0, nt1, nt2 and p0, pt1, pt2 represent sample allelewe can compute the marginal likelihood of N by sum-
ming P(n0, nt|p0, pt) over all possible values for (p0, pt) counts and population allele frequencies, respectively,
weighted by P(pt, p0|N). The population size, N, deter- at generations 0, t1, and t2.
mines the probability of pt given p0, and by the defini- For loci that have k . 2 alleles, the number of possible
tion of conditional probability, P(pt, p0|N) 5 configurations, C, is (N 1 k 2 1)!/(N !(k 2 1)!) of which

Cpoly 5 (N 2 1)!/((N 2 k)!(k 2 1)!) are polymorphicP(pt|p0, N) · P(p0|N). Thus the marginal likelihood of
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TABLE 1(Feller 1950). Unfortunately, working with large tran-
sition matrices can be extremely computationally inten- Results from simulation tests in haploid numbers
sive. Because C and Cpoly increase rapidly with k, we
restrict the analysis in this article to diallelic loci. Likeli- Maximum-

F-statistic likelihoodhood methods for loci with k . 2 will probably require
estimate estimatesimulation approaches such as Monte Carlo integration

or Markov Chain Monte Carlo to approximate the likeli- No. loci d/s mF sF dF mML sML dML
hood function (E. C. Anderson, unpublished results).

Samples at generations 0 and 4This likelihood function is slightly unusual in that the
5 74/1000 84 74 71 76 64 46parameter to be estimated, N, is a discrete parameter

10 15/1000 75 61 10 67 49 5
that determines the number of summands in the com- 15 4/1000 68 43 4 62 35 2
putation of the likelihood (Equations 4 and 6). Thus, 25 0/200 61 24 0 58 21 0
it is not practical to differentiate the likelihood function 50 0/200 57 15 0 55 11 0

100 0/200 56 10 0 54 8 0with respect to N either analytically or numerically. The
200 0/200 54 6 0 54 5 0maximum-likelihood estimate of N must be determined

on a case-by-case basis from the likelihood function; Samples at generations 0 and 8
there seems to be no general equation for the maxi- 5 44/1000 86 72 43 67 53 24

10 3/1000 72 46 3 60 33 1mum-likelihood estimate of N using temporal allele fre-
15 0/1000 67 32 0 57 23 0quency data.
25 0/200 64 21 0 56 18 0
50 0/200 60 12 0 54 9 0

100 0/200 58 9 0 53 7 0ASSESSING THE MAXIMUM-LIKELIHOOD
200 0/200 56 6 0 52 5 0ESTIMATOR

Samples at generations 0, 4 and 8Simulation methods: We compared the maximum- 5 15/1000 76 57 14 60 42 7
likelihood estimator to the F-statistic estimator with sim- 10 2/1000 66 37 2 55 21 0
ulation tests. As noted earlier, these two estimators do 15 0/1000 63 24 0 54 16 0
not always estimate the same quantity. The F-statistic 25 0/100 63 20 0 54 12 0

50 0/100 59 10 0 53 7 0method estimates the variance effective size and the
100 0/100 59 8 0 53 6 0maximum-likelihood approach described above esti-
200 0/100 57 5 0 52 4 0mates the parameter N of a Wright-Fisher population.

In these simulation tests the two estimators estimated Simulated populations had a true haploid size of N 5 50.
The first column indicates the number of diallelic markersthe same quantity because our simulated populations
in each sample. Initial allele frequencies for these loci wereevolved according to the Wright-Fisher model. In each
generated randomly from a uniform distribution. Samples ofsimulated replicate we selected starting frequencies for
haploid size 100 were drawn with replacement. Runs were

each locus from a uniform distribution. The simulated discarded if either estimate of population size was .500. The
populations consisted of 50 alleles (25 diploid indivi- number of runs discarded is d and the total number of runs

for each simulation test is s. Note that the value of s variesduals). We sampled 100 alleles (50 diploid individuals)
between tests. For each estimator, we list the mean, m, andfrom the population, with replacement, according to
the standard deviation, s, of the estimates of population sizethree different sampling regimes (see Table 1). For each
from runs in which both estimators were ,500. dF and dMLreplicate we computed both maximum-likelihood and are, respectively, the number of runs in which the F-statistic

F-statistic estimates of the population size. The F-statistic estimate or the maximum-likelihood estimate of N was .500.
was computed according to

harmonic mean of the N̂ estimates for the two intervals.F̂k 5 21(p0,A 2 pt,A)2

(p0,A 1 pt,A)
1

(p0,a 2 pt,a)2

(p0,a 1 pt,a)
2 (7)

This estimator was derived by pooling the two F-statistic
estimates and using this pooled value to compute N.

from Waples (1989a, Equation 9), where p0,A, pt,A, p0,a, Pollak (1983) developed similar estimators for popula-
and pt,a are the allele frequencies of allele types A and tion sampling without replacement (hypergeometric).
a in the samples taken at generations 0 and t, respec- In the examples we considered, the three estimators
tively. The variance effective size was then computed derived by Pollak (1983) are the same as the harmonic
according to mean estimator except larger by multiplicative con-

stants. Because in our simulation tests the F-statistic esti-
N̂ 5

t
2[F̂k 2 (1/n0) 2 (1/nt)]

(8) mator was biased upward, the Pollak estimators of N
were less accurate than our harmonic mean estimator
and are not shown.also from Waples (1989a, Equation 11), where n0 and

nt are the total number of alleles sampled at generations In all replicates, the number of sampled individuals
in each sampling event was twice as large as the size of0 and t.

When there were three sampling events we used the the simulated population. When sample sizes are small,
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sampling error rather than genetic drift may be the tributions with varying parameters (not shown). Thus
the maximum-likelihood estimate seems robust to viola-primary reason for observed changes in allele frequen-

cies (Waples 1989b). We avoided this problem by as- tions of our assumption that allele frequencies are
drawn initially from a uniform distribution.suming large samples could be taken from the popula-

tion. Fortunately, it is frequently possible to sample large As expected, increasing the number of loci or the
number of sampled time-points reduced both the vari-numbers of individuals even when the number of breed-

ing individuals is low. Often, juveniles are sampled from ance and the bias in both estimators (Table 1). When
the number of markers was very large, on the order ofpopulations with high juvenile mortality, and the num-

ber of breeding adults may be orders of magnitude 100 to 200 loci, then both estimators performed very
well. The difference between the two estimators waslower than the number of juveniles. Thus, our sampling

scheme is representative of those found in the literature more obvious with samples of fewer markers. Increasing
the number of sampling times improved the estimates(Waples 1990; Waples and Teel 1990; Hedgecock et

al. 1992; Husband and Barrett 1992a,b; Jordan et al. for both methods (Table 1). The dramatic improvement
in both estimators with multiple sampling (Table 1) may1992; Lessios et al. 1994; Hedrick et al. 1995; Burczyk

1996; Jorde and Ryman 1996; Richards and Leberg be explained by the initial rapid increase in accuracy in
both estimators, particularly the F-statistic estimator, as1996; Miller and Kapuscinski 1997; Scribner et al.

1997; Dallas et al. 1998; Laikre et al. 1998; Lehmann the number of sampled loci increases. Having samples
covering two time intervals of the same length is roughlyet al. 1998).

In an application to real data rather than a simulation equivalent to sampling twice as many loci over one time
interval.test, the F-statistic or the maximum-likelihood estimate

can always be computed, but the estimate may be infinity
or very large. In our simulation tests, to reduce running

ANALYZING A REAL DATA SET
time, the program halted all searches for the maximum
of the likelihood curve if the maximum-likelihood esti- We chose data from Miller and Kapuscinski (1997)

to use as an example of the maximum-likelihood ap-mate of population size was determined to be .500.
We chose 500 because it is an order of magnitude larger proach to estimating population size. These authors

typed seven polymorphic microsatellite loci using a his-than the true population size, 50. To be fair to both
estimators, we discarded all simulation replicates in torical collection of fish scales taken from a completely

isolated population of Northern pike (Esox lucius). Ofwhich either estimator was .500. For each estimator,
we computed the mean and standard deviation for the the seven loci, five had two alleles and two had three

alleles. For our analysis in this article, we combined theestimates of N using the replicates that were not dis-
carded. As a separate statistic we recorded the number two least common allelic classes together for the two

loci with three alleles to artificially create a completelyof times each estimator was .500. The number of dis-
carded replicates was the union of these events. These diallelic data set. The scales had been removed from

individuals in the population in 1961, 1977, and 1993.simulation tests were computationally intensive, so we
ran many more replicates for the cases in which there These dates represent two intervals of approximately

four generations each. The samples in 1961 and 1993were 5, 10, or 15 loci as these are the most realistic
values for applications of this method to real data. were taken with replacement to the population. The

1977 sample was taken without replacement, althoughSimulation results: Both estimators tended to overesti-
mate population size and had a high variance for sam- probably after reproduction for at least some of the

sampled individuals. Miller and Kapuscinski used theples with few loci. This upward bias and large variance
of the estimators would have been much greater if we F-statistic method to estimate variance effective popula-

tion size two ways, first assuming the 1977 data werehad not discarded replicates. However, in all of our
simulation tests, the mean maximum-likelihood esti- generated with replacement, then without. They con-

cluded that the two estimates are not significantly differ-mate of population size among the replicates that were
not discarded was closer to the simulated population ent because the census size is orders of magnitude larger

than the estimated number of breeders. In our analysis,size than was the mean F-statistic estimate (Table 1).
Similarly, the variance in the likelihood estimates for simplicity, we assumed that the samples in the Miller

and Kapuscinski study were taken with replacement.among these replicates was smaller than the variance
in F-statistic estimates (Table 1). Also, the F-statistic esti- Our results agreed with those of Miller and Kapuscin-

ski. Our maximum-likelihood estimate of populationmate was more than an order of magnitude larger than
the true value about twice as often as the maximum- size based on their data was 46, with a support interval,

based on a decrease of two in the log-likelihood, of 21likelihood estimate (Table 1). The estimates were posi-
tively correlated and the F-statistic estimate was generally to 112 (Figure 1). In their article, Miller and Kapuscinski

estimated variance effective population size using the.500 whenever the maximum-likelihood estimator was
.500. We had similar results when we ran simulation same F-statistic method that we used for the simulation

studies in this article. They estimated the variance effec-tests with initial allele frequencies drawn from beta dis-
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Figure 1.—Likelihood function of population size using
Figure 2.—Likelihood function of initial population sizedata from Miller and Kapuscinski (1997).

and exponential growth rate parameter using data from
Miller and Kapuscinski (1997). The shading scale for the
log-likelihood is shown on the right.

tive population size to be 48 with a confidence interval
of 19 to 101. The agreement between the two estimators
for this data set suggests that the assumptions of the recapture studies, fluctuated without any clear trend in
underlying models on which these statistics are based the study interval between 1961 and 1993 (Miller and
are probably well met by this population, as is discussed Kapuscinski 1997, Table 4).
by Miller and Kapuscinski in their article. To test the potential utility of our method for a much

larger data set, we generated samples with 150 loci from
a simulated population. Three samples were taken with

ESTIMATING POPULATION GROWTH RATE replacement, four generations apart, from the simu-
lated population. The simulated population grew at aOne advantage of the likelihood framework for pa-
rate of 120% per generation with an initial size of 25.rameter estimation is the flexibility to modify the under-
These parameters are the maximum-likelihood esti-lying model. Here, we modified the Wright-Fisher
mates from the Miller and Kapuscinski data. The maxi-model to include exponential growth. In this model the
mum-likelihood estimates from the simulated data werepopulation size at generation t, Nt, is the smallest integer
equal to the true parameter values (Figure 3). The sup-less than or equal to r tN0, where r is the growth rate and
port interval was much smaller with this many markers,N0 is the initial population size. Still treating the initial
and it could be unambiguously determined that theallele frequency as a nuisance parameter, we computed
population was growing (Figure 3). Thus, maximumthe marginal likelihood of the growth parameter and
likelihood can be used to estimate growth rate fromthe starting population size simultaneously. To compute
temporal changes in allele frequencies, but only withthe transition probabilities, the matrix Mt of Equation
extensive data.5 was replaced by M1, M2, . . . Mt, where Mi is a matrix

with Ni columns and Ni-1 rows. Computing the likelihood
of each combination of N0 and r requires different matri-

DISCUSSION AND CONCLUSIONS
ces, M1, M2, . . . Mt. As a result, this method is computa-
tionally intensive, even in the diallelic case, and so we The F-statistic method of estimating the variance ef-

fective population size is known to be biased upward andwere not able to do extensive simulation tests to evaluate
this method. have a large variance (Pollak 1983; Waples 1989a).

Estimates of the number of breeding individuals in aAs an example, we applied the method to the data
from the pike population of Miller and Kapuscinski population may be needed to help guide management

and conservation decisions for endangered species and(1997). The maximum-likelihood estimate was a growth
rate of 120% per generation with an initial diploid popu- populations. Therefore, any method that offers an in-

crease in accuracy in estimating population size fromlation size of 25 in 1961 (Figure 1b). However, with the
data available, the likelihood support interval is so large genetic data should be seriously considered. The likeli-

hood estimator for N appears to have a lower variance(entire graph in Figure 2) that it is impossible to deter-
mine if the population is growing, shrinking, or stable. and smaller bias than the F-statistic estimator of the

variance effective size (Table 1).The census size of this population, estimated from mark-








