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Abstract

An importance-sampling method is presented for computing the likelihood of the configuration of population genetic data under

general assumptions about population history and transitions among states. The configuration of the data is the number of

chromosomes sampled that are in each of a finite set of states. Transitions among states are governed by a Markov chain with

transition probabilities dependent on one or more parameters. The method assumes that the joint distribution of coalescence times

of the underlying gene genealogy is independent of the genetic state of each lineage. Given a set of coalescence times, the probability

that a pair of lineages is chosen to coalesce in each replicate is proportional to the contribution that the coalescence event makes to

the probability of the data. This method can be applied to gene genealogies generated by the neutral coalescent process and to

genealogies generated by other processes, such as a linear birth–death process which provides a good approximation to the dynamics

of low-frequency alleles. Two applications are described. In the first, the fit of allele frequencies at two microsatellite loci sampled in

a Sardinian population to the one-step mutation model is tested. The one-step model is rejected for one locus but not for the other.

The second application is to low-frequency alleles in a geographically subdivided population. The geographic location is the allelic

state, and the alleles are assumed to be sufficiently rare that their dynamics can be approximated by a linear birth–death process in

which the birth and death rates are independent of geographic location. The analysis of eight low-frequency allozyme alleles found

in the glaucous-winged gull, Larus glaucescens, illustrates how geographically restricted dispersal can be detected.

r 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

The explosive growth of molecular analysis of genetic
variation in human and other populations has led to the
development of new statistical methods of data analysis.
One class of methods calculates the likelihood of one or
more population genetic parameters as a function of the
observed configuration of data. Such methods make full
use of data rather than relying on summary statistics
and provide a statistical framework within which to test
hypotheses and estimate parameters. Except in a few
special cases, likelihoods cannot be computed analyti-
cally, so the focus of recent theoretical efforts has been
on the development of efficient computer-intensive
methods that rely on randomly generated replicates of
population genetic models. At present, these methods
fall into two categories: methods based on the Metro-

polis–Hastings algorithm (MH) and methods based on
importance sampling (IS). Both classes of methods rely
on coalescent theory, and both have been called Markov
chain Monte Carlo (MCMC) methods, although some
reserve MCMC for MH methods only. The important
distinction between MH and IS methods is that different
replicates are independent in IS methods and are
correlated in MH methods. Felsenstein and his colla-
borators (Kuhner et al., 1995, 2000; Beerli and
Felsenstein, 1999) initiated the use of MH methods in
population genetics and have developed several pro-
grams that analyze a variety of processes, including
population growth, migration and recombination. Re-
cently, several other papers employing MH methods
have appeared (e.g., Nielsen, 2000; Pritchard et al., 2000;
Rannala and Reeve, 2001).
Griffiths and Tavaré (1994a,b) introduced an IS

method that has been widely used. Their method,
which they called an MCMC method, chooses amongE-mail address: slatkin@socrates.berkeley.edu (M. Slatkin).
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coalescence and mutation events based on prior
probabilities of occurrence. Stephens and Donnelly
(2000) examined the general theory of IS as applied to
the neutral coalescent and introduced another IS
method that is more efficient than the one proposed
by Griffiths and Tavaré. The Stephens–Donnelly
method uses an approximation to the posterior prob-
abilities of coalescence and mutation events as a guide to
sampling gene genealogies. In this paper, I will introduce
still another IS method which differs from those of
Griffiths and Tavaré and of Stephens and Donnelly. In
this method, for each replicate a set of coalescence times
is randomly generated and then, given the coalescence
times, a gene genealogy is generated by non-randomly
choosing among coalescence events based on the
contribution each event makes to the overall likelihood.
Associated with each branch of the gene genealogy is a
vector whose elements are the probabilities of being each
of the genetic states. Transitions among states on each
branch are modeled by taking the appropriate power of
the Markovian transition matrix. Generating coales-
cence times separately allows this method to be easily
applied to models other than the neutral coalescent. Any
process, such as a linear birth–death process, for
generating a random set of coalescence times can be
used. Representing the state of each lineage by a vector
and employing efficient methods of matrix multiplica-
tion make it possible to allow for an arbitrarily large
number of transitions on each branch with no increase
in running time.
In this paper, I will introduce the general method and

then apply it to two data sets. The first application is to
two samples of microsatellite alleles in a human
population. Microsatellite alleles are assumed to be
neutral and the coalescence times are generated by a
neutral coalescent model in an exponentially growing
population. The goal is to determine whether the data
can be accounted for by a mutation model that assumes
a change in only one repeat unit each generation (the
one-step model) or whether multiple steps must be
allowed for. In this case, the genetic state is the number
of repeat units of the microsatellite motif and transitions
among states are governed by a mutation matrix that
allows for changes in allele size by one or more repeat
units.
The second application is to the numbers of allozyme

alleles in a geographically subdivided population. In this
case, a birth–death model is used to approximate the
dynamics of a rare allele. Because the birth–death model
assumes that each copy of the allele reproduces
independently of all others, allelic reproduction is
independent of geographic location. The genetic state
is the geographic location of each copy and transitions
among states are modeled by a migration matrix. In this
example, the goal is to determine whether the data show
evidence of geographically restricted dispersal, i.e.,

whether the migration pattern differs from an island
model of migration.

2. Theory

2.1. The model

The data consist of the genetic states of n chromo-
somes in a sample. Each chromosome can be in one of d

states, so the data set is a set of numbers D ¼ fi1;y; ing;
where 1pijpd: For example, for a microsatellite locus
at which allele sizes differ by the number of repeats
units, ij is the number of repeats of the allele on
chromosome j: For microsatellite loci, the total number
of states may not be known but d can be chosen to be
sufficiently large that its value does not affect the results.
The model assumes a single genetic locus at which
transitions occur independently on each chromosome.
The transition from one state to another on each

lineage is described by a Markov chain with transition
matrix F which has elements Fij ; the probabilities that a
chromosome will be in state j in generation t þ 1 given
that it is in state i in generation t: Time dependence of F
can be incorporated if necessary but that possibility will
not be considered here. The stationary distribution of F;
if it exists, will be denoted by the row vector p: i.e.,
pF ¼ p:
The mathematical problem is to find the probability

of the data given F and assumptions about the
population from which the sample is drawn. As
Felsenstein (1988) has pointed out, this problem can
be expressed as a summation over all gene genealogies
with n tips:

PrðDÞ ¼
X

G

PrðD j F;GÞ PrðGÞ; ð1Þ

where G is a gene genealogy. PrðGÞ is the probability of
G for the population from which the sample is drawn.
For neutral alleles, PrðGÞ depends only on the demo-
graphic history of the population, while PrðD j F;GÞ
depends on mutation and other processes that create
diversity among lineages.
For small n and simple assumptions about a popula-

tion, Eq. (1) can be evaluated by direct summation and
integration, but for larger n that becomes impossible
because of the rapidly increasing number of gene
genealogies. The method introduced in this paper relies
on separating the summation over genealogies into two
summations, one over the set of coalescence times and
the other over the set of topologies:

PrðDÞ ¼
X
t

X
B

PrðD j F; t;BÞ PrðtÞ PrðBÞ; ð2Þ

where t ¼ ftn; tn�1;y; t2g is the set of coalescence times
of a gene genealogy and B is the topology (or branching
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pattern) of the genealogy. The time tk is the time at
which the number of descendent lineages increases from
k � 1 to k; as illustrated in Fig. 1.

2.2. Probability of the data

The first step is to apply the standard method of
Felsenstein (1973) to compute the probability of the
data, given the transition matrix, the coalescence times,
and the topology PrðD j F; t;BÞ: I will describe this
method in terms of vectors and matrices because that is
the basis for the method of IS described later. A rooted
genealogy with n tips has 2n � 2 branches, as illustrated
in Fig. 1 for a tree with five tips. In this paper, the first n

branches are the terminal branches. The internal
branches will be numbered in increasing order as they
are formed by coalescence events going backwards in
time. With that convention, branch n þ 1 is created at tn;
branch n þ 2 is created at tn�1; and so on. Branch 2n � 1
is created by the last coalescent event (at t2) and
represents the most recent common ancestor of the gene
genealogy.
The branch lengths are also needed. Let ui; be the

length of branch i measured in generations. At the time
branch i is formed, a vector vi is associated with it. In
what follows, the elements of vi sum to 1, and they can
be interpreted as being a vector of probabilities of being
in each of the d states at the time the branch is formed.

A vector v2n�1 is associated with the most recent
common ancestor of the genealogy and represents the
probabilities of the ancestral state. At the tips, v1;y; vn

represent the data. In what follows the data will be
assumed to be known perfectly, so the jth element of vi

will be 1 if that tip is in state j and 0 otherwise. The same
formal theory can allow for the possibility that there is
some uncertainty in the data, which might result from
errors or intrinsic ambiguity in genotyping. In that case,
v1;y; vn would indicate the probabilities of each tip
being in each state.
At the other end of each branch, a vector v0i ¼ ðFTÞuivi

is associated, where FT is the transpose of F:Note that v0i
is not necessarily normalized unless F is symmetric (i.e.,
if FT ¼ F). When F is symmetric, v0i can be interpreted as
the vector of state probabilities immediately before that
lineage joins another at a node. When F is not
symmetric the v0i do not have that meaning, but they
are still the vectors that arise naturally in computing of
the likelihood.
At each node, the vector v associated with the

ancestral lineage is obtained by taking the Schur
product and renormalizing so that the elements sum to
1. The jth element of the Schur product of vectors x and
y is xjyj ; where xj and yj are the jth elements of x and y;
and the normalization constant is the dot product x 

y ¼

Pd
j¼1 xjyj : I will denote the normalized Schur

product by * ; so the jth element of x*y ¼ xjyj=ðx 
 yÞ:
Although this notation is non-standard, it will simplify
the description of the IS method presented later.
The probability of the data, i.e., the likelihood, is

obtained by taking the dot product of the final Schur
product with the assumed distribution of ancestral
states. Often the ancestral distribution is assumed to
be the stationary distribution, p; but in other cases it
may be better to assume that the ancestral state is
known.
To illustrate this method, assume that the data are

represented by vectors v1;y; v5 and the genealogy is as
shown in Fig. 1. The probability of these data is
obtained by working down the tree to obtain

v6 ¼ v04 *v
0
5;

v7 ¼ v01 *v
0
2;

v8 ¼ v03 *v
0
6;

v9 ¼ v07 *v
0
8;

ð3aÞ

and then multiplying the accumulated dot products,

PrðD j F; t;BÞ ¼ ðv04 
 v
0
5Þðv

0
1 
 v

0
2Þðv

0
3 
 v

0
6Þðv

0
7 
 v

0
8Þðv9 
 pÞ; ð3bÞ

if it is assumed that the ancestral state is randomly
drawn from the stationary distribution.
In a phylogenetic context, each tip of a genealogy

represents a different taxon, and the data vector
associated with a tip represents the observed state of
that taxon. The population genetic problem is different

t

t

t

t

5

4

3

2

v v v v v

v

v

v

v

1                                    2 3 4 5

6

7

8

9

Fig. 1. Genealogy for a sample size of 5 illustrating the notation used

in the text. The ti are the coalescence times at which the number of

lineages decreases from i to i � 1: The vi are the vectors indicating the

probabilities that each lineage starts in one of the d allelic states.
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because the assignment of the data vectors to tips is
arbitrary. The algorithm described above gives the
probability for a particular assignment of data to tips.
To compute the overall probability of the data, the
result for a single assignment must be multiplied by the
number of distinguishable rearrangements of the data
on the tips. The problem is the same as the one that
arises in the derivation of the Ewens sampling formula
(Ewens, 1972). For a given data set, ak is the multiplicity
of state k; and the number of distinguishable configura-
tions of the data is

CD ¼
n!

a1!a2!?an!
:

For example, one of the data sets analyzed later is of the
number of repeat units of a microsatellite locus
in a sample of size 10. The data vector is
f8; 11; 11; 11; 11; 12; 12; 12; 12; 13g; where the numbers
are the numbers of repeat units of each allele in the
sample. In this case, CD ¼ 6300: To obtain the prob-
ability of the data, the probability obtained from a
single assignment of the data to the tips, as calculated by
the algorithm described here, has to be multiplied by
CD: When the probability of the data is used for the
estimation of parameters by maximum likelihood, the
value of CD does not matter, but it is needed when
results are compared to those obtained from other
methods (cf. Fig. 2).

2.3. Generation of coalescence times

The joint distribution of coalescence times depends on
what process is assumed to have generated the data. In
this paper, I will consider two possibilities: the neutral
coalescent and a linear birth–death process. For the
neutral coalescent, a scaled time t is defined by

tðtÞ ¼
Z t

0

dt0

2Nðt0Þ
: ð4Þ

In terms of t; the distribution of times during which k

ancestral lineages are present is exponential with mean
2=ðkðk � 1ÞÞ and the distributions for different values of
k are independent (Griffiths and Tavaré, 1994a). A
random set of coalescence times is generated by drawing
ðtk�1 � tkÞ from an exponential distribution with the
appropriate mean and then transforming the resulting tk

back to the natural time scale using the inverse of
Eq. (4).
A linear birth–death process provides an accurate

approximation to the dynamics of a low-frequency
allele, even if there is selection in favor of or against
heterozygous carriers. Wiuf (2001) shows that if hetero-
zygous carriers of an allele have a relative fitness 1þ s

compared to individuals lacking that allele, then a birth–
death process with birth rate l ¼ s þ r þ 1

2
and death

rate m ¼ 1
2
approximates the dynamics of that allele in a

population that has undergone exponential growth at
rate r: If t1 is the time at which the allele arose by
mutation (i.e., the allele age), then the coalescence times
are generated by drawing n � 1 random variables
independently from the kernel distribution,

bðtÞ ¼
½Pð0; tÞ�2e�xt1

2½f � Pð0; t1Þe�xt1 �
; ð5Þ

on the interval ð0; t1Þ where x ¼ r þ s and Pð0; tÞ ¼
2f x=½f � ðf � 2xÞe�xt1 �; and arranging them in decreas-
ing order (Slatkin, 2002).
There are two possibilities for choosing t1: It may be

given a specific value as it is, for example, in the case of
linkage disequilibrium mapping of an allele found in an
isolated population founded at time t1 (Rannala and
Slatkin, 1998). In that case, one copy of the causative
allele is assumed to have been present in the population
at the time of founding t1 generations in the past. The
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Fig. 2. (A) Likelihood curves for the sample microsatellite data set

f8; 11; 11; 11; 11; 12; 12; 12; 12; 13g; assuming a one-step mutation

model. Each curve is based on 10,000 replicates of the IS method

described in the text. The results are not smoothed. These results are

comparable to those of Stephens and Donnelly (2000, Fig. 3) if their

results are multiplied by 1
20
; a factor that accounts for the assumed

uniform initial probability. (B) Posterior distribution of i; the allelic
state at t2; under the assumption that the prior distribution is uniform
on the integers between 1 and 20 (which was assumed in (A)).
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alternative is to assume that t1 is randomly drawn from
a prior distribution that depends on r; s; and the allele
frequency. Wiuf (2001) and I (Slatkin, 2002) provide
derivations of the prior distribution for a linear birth–
death process. In the general case,

Prðt1Þ ¼ C
e�rt1Eð1� EÞn�1

½f � ðf � 2xÞE�nþ1
ð6aÞ

if x ¼ r þ s > 0; and

Prðt1Þ ¼ C
e�rt1EðE � 1Þn�1

½Eðf � 2xÞ � f �nþ1
ð6bÞ

if xo0; where n is the number of copies of the allele
found in a sample, E ¼ e�xt1 ; f is the fraction of the
population sampled, and C is a normalization constant
that can be expressed in terms of hypergeometric
functions. The distributions for special cases (r ¼ 0; r þ
s ¼ 0; and r ¼ s ¼ 0) are obtained by taking the
appropriate limits. There is an efficient rejection method
to generate a random t1 (Slatkin, 2002).
When applying this theory to a sample of Nsam

individuals (2Nsam chromosomes) from a population of
N individuals, f ¼ Nsam=N and the allele frequency is
n=ð2NsamÞ: In most applications, N and Nsam are not
known precisely and the analysis has to be done for a
range of possible values of f : It is not necessary to
assume that f is small although it usually is. If f is small,
the Prðt1Þ and the joint distribution of coalescence times
depend only weakly on f so any uncertainty in its values
will not usually affect the results, although that has to be
checked in each case.
The linear birth–death process also describes the

numbers of copies of a low-frequency allele in a
geographically subdivided population, provided that
the same values of f ; s; and r are appropriate for each
subpopulation. Population subdivision can be ignored
in this case because, when an allele is in low frequency,
each copy replicates and survives independently of each
other copy and follows the same rules in each
subpopulation. Therefore, the geographic location of
each copy does not affect the number of descendent
copies. That restriction does not require that the
subpopulations be of equal size or that migration
among them is symmetric or conservative. One of the
applications of the methods developed later is to low-
frequency alleles found in geographically subdivided
populations. In that case, the state of each copy is its
geographic location and the transition matrix F is the
migration matrix.

2.4. Sampling of topologies

One way of sampling topologies is random sampling
(RS) in which topologies are generated by assuming
that, when a coalescence occurs, each pair of lineages is
equally likely to coalesce. With RS, the sum in Eq. (2) is

computed approximately by generating for replicate h of
H replicates a random set of coalescence times th and a
randomly generated topology Bh; and then averaging
over replicates:

PrðDÞE
1

H

XH

h¼1

PrðD j F; th;BhÞ: ð7Þ

RS performs well for small values of n because all
topologies will be generated sufficiently often that all
terms in the summand will be adequately represented.
With larger values of n; however, RS does not perform
well because relatively few topologies contribute sig-
nificantly to the sum in Eq. (2), and RS does not find
those topologies often enough to provide a good
approximation.
An alternative to RS is IS. The idea is to sample

topologies in such a way that those for which
PrðD j F; t;BÞ is largest and hence contribute most to
the sum in Eq. (2) are sampled most often. When IS is
used, the results for each replicate must be weighted by a
factor that accounts for non-random sampling of
topologies:

PrðDÞE
1

H

XH

h¼1

wh PrðD j F; th;BhÞ: ð8Þ

As required by the general theory of IS (Stephens and
Donnelly, 2000), the weighting factor has to be

wh ¼
PrRSðBhÞ
PrISðBhÞ

; ð9Þ

where the numerator is the probability of Bh under RS
and the denominator is the probability under whatever
method of importance sample is used.
To choose a way of non-randomly sampling the

coalescence events, I use as a guide the algorithm for
calculating the probability of the data. First, a set of
coalescence times, t; is generated. At tk; each of the
kðk � 1Þ=2 pairs of lineages is considered. For lineage j

ð1pjpkÞ; the vector v0j ¼ ðFTÞujvj is computed, where uj

is the length of branch j: In this discussion, j numbers
the lineages present between tkþ1 and tk: The probability
that lineages j and j0 are chosen to coalesce is

Prðj; j0Þ ¼
v0j 
 v

0
j0Pk

j¼1

Pj�1
j0¼1ðv

0
j 
 v

0
j0 Þ
: ð10Þ

That is, the probability that a pair of lineages is chosen
to coalesce is proportional to the contribution that the
coalescence of those two lineages would make to the
probability of the data (cf. Eq. (3)). When a coalescence
occurs, the normalized Schur product v0j *v

0
j0 defined

above is assigned to the ancestral lineage.
This algorithm provides a way to non-randomly

sample the space of topologies. The weighting factor,
wr; in Eq. (9) is the product of weights from each of the

M. Slatkin / Theoretical Population Biology 62 (2002) 339–348 343



n � 1 coalescent events:

wr ¼
Yn

k¼2

wr;k; ð11Þ

where

wr;k ¼
2=kðk � 1Þ

ðv0l 
 v
0
lÞ=

Pk
l¼1

Pl�1
l0¼1ðv

0
l 
 v

0
l0 Þ

ð12Þ

and l and l0 are the lineages that actually coalesce.
This method of IS is computationally convenient

because the dot product in the denominator of Eq. (12),
vj 
 vj0 ; cancels the same dot product that appears in the
calculation of PrðD j F; t;BÞ (Eq. (3)). Furthermore, the
product of 2=ðkðk � 1ÞÞ is the same for every replicate,
so for each replicate it is necessary only to multiply the
terms corresponding to the double summation that
appears in Eq. (12) for each node in the genealogy.
Consequently, the calculations proceed relatively
quickly and with little risk of overflow or rounding
error.
The running time of this method increases rapidly

with n; the sample size. For large n; it can become
prohibitively slow. Running time can be decreased
substantially by placing an upper limit on the number
of lineages tested at each coalescent event, which I call
the span S of the simulation. At each coalescent event, S

lineages are chosen at random, all pairs of them are
tested, and one pair is chosen to coalesce. If the number
of lineages remaining is equal to or less than S; then all
pairs are tested. The weight in Eq. (12) needs to be
adjusted to account for this change in the algorithm.

3. Applications

The method described in the previous section provides
a way to approximate the probability of the data as a
function of parameters, i.e., the likelihood, from which a
maximum likelihood estimate and support interval can
be obtained. If a prior distribution of the parameter or
parameters is assumed, then the likelihood provides the
basis for computing the posterior distribution and
carrying out a Bayesian analysis.

3.1. Microsatellite loci

At a microsatellite locus, alleles are distinguished by
the number of tandemly repeated copies of a 2–6 base
pair motif. The number of repeats is the allelic state. In
principle, the number of states is infinite but, in practice,
relatively few states are found and the total number of
states, d; can be chosen to be large enough that its value
does not affect the results. A simple model of mutation
at a microsatellite locus and the one that is usually
assumed is the symmetric one-step model: in each
generation, an allele has a probability m=2 of increasing

or decreasing in size by one repeat unit and a probability
1� m of remaining the same size. Other mutation
models that relax the assumption of symmetry or the
assumption of changes by only one repeat unit have
been proposed.
To illustrate this method developed in this paper and

to test its performance, I will reanalyze a small data set
analyzed by Stephens and Donnelly (2000), a simulated
data set of size 10, f8; 11; 11; 11; 11; 12; 12; 12; 12; 13g:
They assumed a population of constant size, so the only
free parameter is the product of the mutation rate and
the population size, y ¼ 4Nm: Stephens and Donnelly
(2000) in their Fig. 3 showed that their method
produced likelihood curves that differed only slightly
from one set of 10,000 replicates to another and that
were nearly the same as a likelihood curve based on 107

replicates. In contrast, the IS method of Griffiths and
Tavaré (1994b), which was first implemented by Nielsen
(1997) for the analysis of microsatellite loci, yielded
likelihood curves that differed substantially from one set
of 10,000 replicates to another. Fig. 2A shows that the
IS method described in this paper results in likelihood
curves that are comparable to those obtained by
Stephens and Donnelly. The weighted average of the
ancestral vector provides the likelihood of the ancestral
type for each y; as shown in Fig. 2B. The simulations for
each set of 10,000 replicates took roughly 1 1

2
min on a

550 MHz PC running Linux.
One question that can be asked of a microsatellite

locus is whether the one-step mutation model is valid.
As an alternative to the one-step model, I analyzed a
symmetric geometric model in which the probability of
an increase or decrease by i repeat units is mð1� aÞai�1=2
if 0oao1; which is interpreted as the one-step model
when a ¼ 0:
To illustrate the use of the geometric mutation model,

I reanalyzed data from two loci of the 10 examined by
Di Rienzo et al. (1994) in a sample of 50 individuals
from Sardinia. One locus, STS 287, was typed on 88
chromosomes. The data can be represented by the
vector f41; 14; 27; 6g; meaning that 41 copies had the
minimum number of repeats observed, 14 had one
repeat more than the minimum, 27 had two repeats
more, and six had three repeats more. There were no
gaps in the distribution of allele sizes. The absolute
number of repeats does not matter in this case because
the geometric mutation model does not depend on the
absolute repeat number. The other locus was AFM 158
which was typed on 96 chromosomes. The configuration
was f36; 0; 42; 0; 8; 0; 0; 0; 10g: In analyzing both data
sets, I added 5 states lower than the smallest repeat
number and 5 larger than the largest repeat number in
order to minimize the effect of the limits allele size, so
d ¼ 14 for STS 287 and d ¼ 19 for AFM 158. The
population of Sardinia is typical of European popula-
tions in that it shows evidence of past population
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growth. In this analysis, I assumed a current population
size of N0 ¼ 107 and a past rate of exponential growth of
r ¼ 0:01: The value of N0 does not matter because, in the
analysis, only the product N0m affects the results.
Fig. 3 shows the likelihood as a function of y ¼ 4N0m

for a ¼ 0; 0:1 and 0.2 for STS 287. There is little
difference between the likelihood curves for a ¼ 0 and
0.1 but the curve for a ¼ 0:2 is substantially lower.
These results suggest that the one-step mutation model
is sufficient to account for these data and that it is
possible to reject a model that assumes frequent multi-
step mutations. Fig. 4, on the other hand, leads to a
different conclusion for AFM 158. Smaller values of a
(0, 0.2 and 0.4) result in much smaller values of the
likelihood. Although there is no power to distinguish
between a ¼ 0:6 and 0.8, this analysis strongly suggests
that when a mutation occurs, changes in allele size by
more than one step are relatively common. These results
also suggest that y is smaller for AFM 158 than for STS
287.
The likelihood curves shown in Figs. 3 and 4 are not

as pleasingly smooth as those in Fig. 2A because of the
larger sample sizes analyzed. Fig. 5 shows the variability
among sets of replicates for a ¼ 0 for STS 287 (part A)
and a ¼ 0:6 for AFM 158 (part B). Although there is
considerable variation among sets of replicates, the
underlying similarity provides confidence in the conclu-
sions. These runs are relatively slow, roughly 42 h for
200,000 replicates for STS 287 to draw each curve and
48 h for 100,000 replicates for each curve for AFM 158,
which is somewhat slower because d was larger. Using

computers and compilers optimized for floating point
vector calculations could decrease the running time
substantially.
I also examined how varying the span of the method

affected the results. The span, as defined above, is the
maximum number of lineages tested for possible
coalescence. Fig. 6 shows the results for 100,000
replicates on AFM 158 for the case with a ¼ 0:6: These
runs were made on a slightly faster computer
ð731 MHzÞ: They took 13:46 h for a span of 10,
26:42 h for a span of 20, 38:74 h for a span of 30, and
50:04 h for a span of 40. Thus, the span has a major
effect on the running time for this sample size ðn ¼ 96Þ:
Although there is considerable variability among the
results, the variability among these four sets of 100,000
replicates is not obviously greater than among the four
sets shown in Fig. 5B, which all used a span of 30.
Therefore, with larger sample sizes, it seems best to use a
small span for most cases. Conclusions based on those
simulations can be verified by running a few cases with
larger spans.

3.2. Migration rates and pattern in a

subdivided population

If a population is divided into several discrete
subpopulations, the geographic location of an allele
can be regarded as its state and the migration matrix can
be regarded as the transition matrix. The dynamics of an
allele in low frequency can be approximated by a linear
birth–death process even if the allele is not selectively
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Fig. 3. Log-likelihood of the microsatellite data set f41; 14; 27; 6g for
the locus STS 287 studied by Di Rienzo et al. (1994) in a sample of

Sardinians. The geometric mutation model with parameters y ¼ 4N0m
and a was assumed. The values for each point shown were obtained by
averaging results from 200,000 replicates of the IS method (with a span

of 30) described in the text. The demographic model assumed a current

effective population size of N0 ¼ 107 and a past rate of exponential
growth of r ¼ 0:01:
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Fig. 4. Log-likelihood of the microsatellite data set

f36; 0; 42; 0; 8; 0; 0; 0; 10g for the locus AFM 158 studied by Di Rienzo

et al. (1994) in a sample of Sardinians. As in Fig. 3, the geometric

mutation model with parameters y ¼ 4N0m and a and an exponential
model of population growth with N0 ¼ 107 and r ¼ 0:01 were

assumed. The values for each point shown were obtained by averaging

results from 100,000 replicates of the IS method (with a span of 30)

described in the text.
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neutral (Wiuf, 2001). The underlying assumption of a
linear birth–death process is that each copy of the allele
reproduces independently of all other copies. Therefore,
each allele reproduces independently of the subpopula-
tion in which it is present, provided that the growth rate
and selection intensity are the same in each subpopula-
tion and that the same fraction of each subpopulation
has been sampled. Consequently, the distribution of
intra-allelic coalescence times is independent of the
migration matrix and the IS method described above
can be used.
I will illustrate the use of this method by reanalyzing

allozyme data from the study by Bell (1992, 1996) of the
glaucous-winged gull, Larus glaucescens. Bell sampled
33 populations on the western coast of North America.
My previous analysis of these data showed that pairwise
estimates of FST exhibited a pattern of isolation by
distance, suggesting that dispersal is geographically

restricted (Slatkin, 1993). For application of the IS
method in this paper, I chose the eight alleles that were
found in 10 to 105 copies overall. These limits were
chosen to ensure that alleles were common enough to be
somewhat informative but rare enough that the birth–
death approximation is valid. Table 1 shows the data for
these eight alleles. All alleles except one at CK2 had
frequencies between 0.167 and 0.333 in at least one
subpopulation. The original data set is presented by Bell
(1992) and a file containing the data was kindly
provided by D.A. Bell.
In this example, subpopulations were treated as if

they were evenly spaced and of equal size, something
that is not true of the actual sampling locations in Bell’s
study. The intention is to illustrate the method in a
simple context rather than to draw strong conclusions
about dispersal tendencies of the glaucous-winged gull.
Each allele was analyzed separately, using a geometric
model of dispersal that is algebraically the same as the
geometric model of mutation used for microsatellite loci.
In this case, the number of states is the number of
subpopulations sampled, d ¼ 33: The model with a ¼ 0
represents the one-dimensional stepping-stone model
with dispersal at rate m=2 between adjacent subpopula-
tions. The model with a ¼ 1 corresponds to an island
model of dispersal with a probability 1� m of not
dispersing and a probability m=ðd � 1Þ of dispersing to
each other subpopulation. In this case, the question is
whether these data allow rejection of the hypothesis that
a ¼ 1; meaning that dispersal is geographically re-
stricted.
Fig. 7 shows the results for each allele separately for

a ¼ 0:2: To generate the intra-allelic coalescence times, it
was necessary to assume a value of f ; the fraction of the
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Fig. 5. (A) Four replicate sets of results for one of the cases shown in

Fig. 3 for STS 287. Each point is based on the average of 200,000

replicates. (B) Four replicate sets of results for one of the cases shown

in Fig. 4 for AFM 158. Each point is based on the average of 100,000
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population sampled. The value of f is n=ð2NÞ; where n is
the number of copies of each allele and N is the number
of individuals in each subpopulation (assumed to be the
same for the analysis here). The value of N is unknown,
but I have shown elsewhere (Slatkin, 2002) that the joint
distribution of intra-allelic coalescence times depends
only on the ratio f =n; which is 1=ð2NÞ in this case.
Hence, the results depend only on the product Nm; as is
in other models of gene flow and genetic drift. The results
in Figs. 7 and 8 are expressed as functions of Nm without
having to assume a particular value of either f or N:
As Fig. 7 shows, there is little information in each

allele, but because rare alleles are approximately

independent of one another, the likelihoods can be
multiplied to provide an overall likelihood, as shown in
Fig. 8. Based on these data, there is support for a model
of restricted gene flow because we can reject a ¼ 1 and
0.8. The rough estimate of the migration rates ð4NmÞ is
consistent with estimates based on FST (Slatkin, 1993).

4. Discussion and conclusion

In many applications of population genetics theory to
genetic data, the goal is to compute the likelihood of one
or more parameters as a function of the data. The
method presented in this paper employs importance

Table 1

List of allele counts for eight alleles found in Bell’s (1992) allozyme study of the Glaucous-Winged Gull, Larus glaucescens

ada 3 3 6 0 2 2 1 0 2 1 4 0 1 1 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ck2 0 0 0 0 0 0 0 0 2 2 3 0 0 2 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

eap1 0 0 0 0 0 0 0 2 3 5 6 1 1 8 2 5 6 5 7 2 6 2 8 6 1 3 3 1 5 1 13 3 0

est1 4 0 0 1 1 0 0 0 2 1 0 0 1 0 1 0 1 3 1 9 0 2 2 1 2 1 5 2 3 6 21 5 5

gpd 0 2 6 2 4 5 2 5 2 0 5 2 5 5 1 3 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0

icd1 1 0 3 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 10 1 2 0 0 0 5 0

pgm 5 0 1 2 1 0 1 1 2 4 4 0 1 0 0 1 0 0 1 1 0 3 4 1 0 1 1 1 0 0 3 1 0

pgm 2 3 3 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Note. These eight alleles were the only ones that had counts between 10 and 105. The numbers indicate the numbers of copies found at each of the 33

sampling locations, listed in the same order as in Bell’s (1992) thesis. These data were extracted from the full data set that was kindly provided in

electronic form by Bell. The locus names indicate the loci at which each allele was found. These data were analyzed using the importance sampling

method described in the text to produce the likelihood curves shown in Figs. 7 and 8.
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glaucous-winged gull, Larus glaucescens, of Bell (1992). The popula-
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sampling (IS) to allow efficient approximation of the
likelihood in cases in which numerous transitions among
genetic states can occur. In choosing a computer-
intensive method for approximating the likelihood,
there are three considerations: confidence in the results,
running time, and ease of implementation. At present,
neither IS nor MH methods can ensure complete
confidence. Convergence with increasing numbers of
replicates and low variation among sets of replicates for
the same parameter values usually indicate that accurate
results have been obtained, but it is still possible that
rare but important sample paths have been consistently
missed. Conclusions obtained from application of any
computer-intensive method, including the one described
here, must be regarded as tentative.
The IS method presented here has the advantage of

ease of implementation, but at the expense of longer
running times than methods tailored to particular
problems. A transition matrix for any type of Markov
chain can be substituted for the transition matrix based
on the geometric model used in the two examples. The
averaging over coalescence times and the IS of
genealogies proceeds in the same way in all cases. In
practical terms, other models are analyzed by modifying
the procedure in the C program that I freely distribute
that calculates the elements of the Markovian transition
matrix, F: The running speed does not depend on the
complexity of the transition matrix because the matrix
multiplication step relies on the diagonalization of the
transition matrix, which is done only once for each set of
parameter values.
As I have implemented this method, its application is

limited in practice to sample sizes of 100 or smaller when
the number of genetic states is on the order of 20. It is
possible that a more efficient implementation could be
made by using the same set of simulated topologies for
more than one set of parameter values and that faster
running times could be achieved by using a program-
ming environment optimized for vector and matrix
calculations. The goal of this paper has been to
introduce a new method of IS and illustrate its
application to two problems of biological interest.
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