
A User’s Guide to the

GLUT for Markov Chain Monte Carlo

Graphical Interface

Version 1.0

Eric C. Anderson∗

April 8, 2002

Abstract

The GLUT for Markov chain Monte Carlo (Gf(MC)2) library provides a system for visual-
izing the variables involved in Markov chain Monte Carlo. It is designed to provide a relatively
simple user interface that allows the management of multiple windows which provide different
views of the variables involved in the simulation. It is written in C/C++. The window manage-
ment system uses calls to Mark Kilgaard’s OpenGL Utility Toolkit (GLUT). GLUT is almost
platform independent, so the features of Gf(MC)2 should work in almost the same way across
different platforms (e.g., Macintosh, Windows, Linux, etc.).

This document describes the features available to the user of an application that draws
upon the Gf(MC)2 library. The table of contents provides a good overview of those features.
A separate document will be prepared for developers interested in incorporating the Gf(MC)2

library into their own software.

Contents

1 Several important reminders. Read these now! 3

2 System Requirements 3
2.1 Macintosh . 3
2.2 Microsoft Windows . 4
2.3 Linux . 4
2.4 Unix . 4

3 Introduction to the Gf(MC)2 System 4
3.1 Input Capabilities and Notation . 5

4 Controlling the Simulation 6
4.1 Starting/Stopping the Simulation . 6
4.2 Single Sweep Mode . 6
4.3 Initializing the Simulation from New Starting Conditions 7

4.3.1 Starting from the same random seeds . 7
4.4 Resetting the Averages Being Accumulated . 7
4.5 Quitting the Program . 7
∗Department of Integrative Biology, University of California, Berkeley, eriq@u.washington.edu

1

5 Window Management 7
5.1 The “Info” window . 8
5.2 Opening Windows . 8
5.3 The Current Window . 8
5.4 Closing Windows . 9
5.5 Moving and Resizing Windows . 9

5.5.1 Automatic Full-Size Window . 9
5.6 Bringing Windows to the Front . 9
5.7 Views . 9

5.7.1 Using Predefined Views . 10
5.7.2 Saving and Using User-Defined Views . 10
5.7.3 Smashing and Stretching Views . 10

6 Controlling the Viewable Area 11
6.1 “Edgeward” Expansion and Contraction . 11
6.2 Moving the Viewing Area . 11
6.3 Drag-Box Zoom . 11
6.4 Auto-fitting the Viewable Area . 11

6.4.1 Fit to Default Viewing Area . 12
6.4.2 Fit to Max/Min Viewing Area . 12

7 Legends 12
7.1 Showing/Hiding the Legend . 12
7.2 Moving the Legend Around . 12
7.3 Changing the Legend Text Size . 12

8 Axes 13

9 Color Schemes 13
9.1 Selecting a Pre-Defined Color Scheme . 13
9.2 Designing Your Own Color Scheme . 13

10 Selected Items and Displayed Items 14

11 Controlling Column Numbers 15

12 Gf(MC)2 Error and Warning Messages 15

13 Wish List 15

14 Software Agreement 15

2

1 Several important reminders. Read these now!

Before we start describing the system, these are some very important notices to take to heart:

1. Most operating systems have a facility for closing a window. For example by clicking in a
box at the upper left of the window, etc. Using such a method for closing windows opened
by Gf(MC)2 may lead to unpredictable results. It is recommended that you close windows
using the menu and keyboard commands available to do so through the Gf(MC)2 interface.

2. The GLUT interface allows for mouse input from right, left, and center mouse buttons.
Macintosh systems have only a single mouse button, but can emulate multiple mouse buttons
by combining the option key with a mouse click (Center Mouse Button) or the ctrl key with
a mouse click (Right Mouse Button). At the same time, the current GLUT library for PC’s
seems unable to attach pop-up menus to all three of the mouse buttons available. For this
reason, some customization may be necessary.

2 System Requirements

GLUT is a windowing system that has been designed to be portable across most major operating
systems. Some configuration of the system may still be necessary. Information about the require-
ments for running OpenGL (necessary for rendering the graphics in Gf(MC)2) on different platforms
is found at

http://www.opengl.org/users/downloads/index.html

Libraries necessery for GLUT are in different locations, as indicated below for each platform.
The information page for GLUT is at:

http://www.opengl.org/developers/documentation/glut.html

2.1 Macintosh

As you can read on the OpenGL website:

OpenGL ships with OS 9 and OS X. You can also optain the latest software version
on the Apple OpenGL web site. You also need an OpenGL hardware accelerator driver.
All new PowerMac G4, iMac, iBook and PowerBook computers ship with built in hard-
ware acceleration and include the correct hardware driver. If you buy a different or
additional hardware board, you can obtain the driver from each board manufacturer’s
web site.

So if you have OS 9 or higher you shouldn’t have to do anything other than run the program.
Otherwise, or if there is a problem, it is probably because the system does not have the necessary
GLUT and/or OpenGL libraries. These may be found at

http://docs.info.apple.com/article.html?artnum=120000

As far as I can tell from the website this stuff will be compatible with OS 8.1 or greater.

3

2.2 Microsoft Windows

To run the GLUT portion of Gf(MC)2 you have to be able to link the the dynamic library glut32.dll.
Go to the website

http://www.opengl.org/developers/documentation/glut/index.html#windows

and follow the directions. Basically you have to download a file, unzip it, and put glut32.dll in your
system folder.

For the OpenGL part, everything should be set to go, but you may need a hardware driver to
speed things up. As reported on the OpenGL website:

OpenGL v1.1 software runtime is included as part of operating system for WinXP, Windows
2000, Windows 98, Windows 95 (OSR2) and Windows NT. So you only need to download this
if you think your copy is somehow missing . The OpenGL v1.1 libraries are also available as
the self-extracting archive file from the Microsoft Site via HTTP or FTP.

OpenGL v1.2 & 1.3 are included with the drivers for your OpenGL video cards. So you only
need to make sure you have the latest OpenGL driver for your video card. If you do not have
the latest driver with OpenGL 1.2 or 1.3 support, either use GLSetup (for Win95/98 only) or
contact the video card manufacturer directly and ask them for an OpenGL 1.2/1.3 driver for
your card and OS.

You do need an OpenGL hardware driver for your particular 3D hardware accelerator board..
For consumer-level boards under WIndows 95 or Windows 98 run Glsetup to automatically
download and install the latest & greatest video driver. Glsetup is a program written specifically
to analyze your hardware and install working OpenGL drivers for that hardware. Currently (Jan
2001), Glsetup supports cards using the following chipsets:
• 3Dfx Voodoo, Voodoo2, Voodoo Rush, Banshee, Voodoo3, Voodoo3 3500TV, Voodoo5
• 3Dlabs Permedia 2 and Permedia 3
• ATI Rage 128, Rage 128 Pro, Rage Fury MAXX, Rage Pro, Radeon
• Intel i740, i810 and i815
• Matrox G200, G400 and G450
• NVidia Riva 128/128ZX and Riva TNT/TNT2/GeForce1&2/Quadro1&2
• Rendition Verite 2200
• S3 Savage3D, Savage4, and Savage2000

For cards with chipsets not listed, for WinNT, Win2000 or WinXP or for professional work-
station graphic cards you can obtain OpenGL drivers directly from each board manufacturer’s
web site.

2.3 Linux

Will deal with this later. In the meantime, if you are using Linux, you probably already know what
you need to do.

2.4 Unix

Will deal with this later.

3 Introduction to the Gf(MC)2 System

In this document, I try to describe the user-accessible features of Gf(MC)2 as tersely and quickly
as possible since I am really a statistical geneticist and not a software developer and I need to get
back to other work ASAP. My apologies for the unfinished and rough nature of this document.
Throughout I will refer to users and developers. Developers are those who have written MCMC

4

simulations (or other types of programs to which they wish to add the sort of graphical interface
provided by Gf(MC)2). They write code and would probably be appalled at the way I have written
the Gf(MC)2 library. Users, on the other hand, are those who will be using the applications written
by developers. This document is for the users. It is intended to be distributed by developers to the
users of their applications that rely on Gf(MC)2.

3.1 Input Capabilities and Notation

GLUT provides a number of ways of providing input to the computer. The Gf(MC)2 interface
relies heavily on keyboard and mouse input, and on GLUT’s facility for cascading pop-up menus.
Following is some notation that I will use to describe these things.

Standard Keyboard Input: Standard ASCII input is represented by the boxed, case-specific
character. For example, pressing the “f” key is denoted in this document as f , while pressing
the “f” key and holding the shift key together is represented by F . Likewise, keyboard input
involving all other ASCII characters is the same, i.e., a , ! , T , % , etc.

Special Keyboard Input: Most computers have special keys like the arrow and function keys.
Input using those keys will be denoted, by, for example, ← , ↑ , → , or ↓ , and F1 ,. . . , F12 .

Mouse Clicks: There are three different mouse clicks possible: the left, center, and right mouse
buttons denoted by LtMouse , CnMouse , and RtMouse . Mac users should read the im-
portant note in Section 1.

Modifier Keys: The three modifier keys available when doing input are the shift, control, and
alt, keys denoted by shift , ctrl , and alt , respectively. Note that on Macintosh systems,
alt is called the “option” key.

Putting It Together: The modifier keys and the mouse clicks and keyboard input can be com-
bined in the obvious way, denoted here by the plus symbol: shift + LtClick and alt + → ,
etc.

Cascading Menu Notation: One of the nicest features of GLUT is the cascading pop-up menus.
These are invoked by clicking on a particular mouse button (when the mouse cursor is inside
a currently open window) and then navigating through the menu. For example, the following
picture illustrates the selection of “Change Color Scheme” followed by the selection of “Select
Pre-Defined Scheme,” and finally selecting “Ol Grayback 20.”

This represents a selection from the “Main Menu,” and will be denoted in this document as
Main Menu→Change Color Scheme→Select Pre-Defined Scheme→Ol Grayback 20. The

5

Main Menu is accessed by doing RtMouse . Sometimes specialized menus are attached to
other mouse click buttons. In such a case, the sequence of selection will be denoted, for
example, RtMouse →First→Second→Third. To access a menu associated with a window,
the mouse pointer must be inside that window!

Note that if there is a keyboard shortcut for a particular menu item, I have tried to include
that shortcut in the menu item name (see for example, the next section on Controlling the
Simulation).

4 Controlling the Simulation

Gf(MC)2 provides several simple means for starting and stopping the MCMC simulation, for re-
initializing the starting values, and for resetting the Monte Carlo averages being accumulated as
the chain runs.

4.1 Starting/Stopping the Simulation

This action causes the chain (or the main loop in the developer’s program) to suspend execution.
Stopping and starting the chain is controlled by choosing in the main menu

Main Menu→Control Markov Chain→Stop Chain Execution
or

Main Menu→Control Markov Chain→UnStop Chain Execution

Or, as suggested in the pop-up menu:

hitting Space Bar is a keyboard shortcut for toggling between executing the simulation and mo-
mentarily suspending simulation execution.

4.2 Single Sweep Mode

Sometimes it is desirable to be able to watch the simulation change one step at a time. To do this,
use the o key (that is a lower-case “o” as in orangutan). Think of it as “ o ne step.” When you
hit o , continuous simulation of the chain will stop and you may proceed one step at a time by
hitting the o key. What is meant by “one step” in the simulation depends on how many variable
updates the developer has built into a single sweep. In many cases it will mean all the variables
in the simulation get updated (or updates are proposed to them) once. To restart the chain from
Single Sweep Mode, just hit the Space Bar .

6

4.3 Initializing the Simulation from New Starting Conditions

The exact details of what these actions do depend on how the developer has decided to initialize
the variables in his program for MCMC simulation. In programs for Bayesian computation I have
written, I try to initialize variables by realizing them from their prior distributions. This gives
“overdispersed” starting values. Watching a chain unfold from many different starting points is
a good way to get a feel for how rapidly the chain mixes, and how prone it is to getting caught
in certain parts of the space. This is one of the primary applications for which I wrote Gf(MC)2.
Initializing the variables in the simulation can be done by choosing

Main Menu→Control Markov Chain→Start Chain From New Random State

or by hitting s .
Chain initialization should also invoke the resetting of Monte Carlo averages described below,

however, this is left to the discretion of the developer.

4.3.1 Starting from the same random seeds

Finally, if the developer has provided the right code to enable this feature, hitting alt + s will
reinitialize the chain to random starting values using the same random number seeds as when the
chain was last re-initialized. This is useful if you want to watch the Markov chain unfold in exactly
the same way as it did last time. There is currently no menu option for this.

4.4 Resetting the Averages Being Accumulated

Monte Carlo is an exercise in approximating expected values by the sample means (averages) of
simulated random variables. Quite often, in Markov chain Monte Carlo, upon initialization from
random starting points, the Markov chain should be run for some time so that the probability
of its being found in any particular state is close to the “stationary” or “limiting” probability of
being in that state. This “warm-up” period for Markov chains that are not initialized by a random
draw from their limit distribution is often called “burn-in,” and including values visited by the
chain during this time in your Monte Carlo averages may distort them. For this reason, Gf(MC)2

provides the menu option:

Main Menu→Control Markov Chain→Reset Monte Carlo Averages

which is equivalent to the keystroke command e . Once again, the details of this are developer-
specific, but the command should reset the Monte Carlo averages that have been accumulated over
the length of the Monte Carlo run. This has the effect of declaring all sweeps of the chain until the
present one to be “discarded” as burn-in.

4.5 Quitting the Program

You can exit the program by choosing the menu option

Main Menu→Control Markov Chain→***QUIT THIS PROGRAM***→Yes. I Really Want To Quit

5 Window Management

The visual heart of Gf(MC)2 lies in its management of multiple windows for viewing data. These
windows, for the most part, behave just like the windows in your normal operating system except
they will lack scroll bars, and perhaps a few other familiar features. Section 6 explains about

7

zooming in and out of windows and changing the area that is viewed within the window, while
this section explains the basics of opening, closing, moving, and resizing windows. It also describes
the use of “Views” which are collections of windows that have been opened and resized to give a
particular view of the data and variables. Rather than having to tediously open and resize all the
windows the next time you want to open them (i.e., after quitting the program) you can save the
current window settings, name it as a new “View” and then retrieve that view any time in the
future.

5.1 The “Info” window

There is one window that must always remain open. This is the “Info” window. Its contents are up
to the developer, but at a minimum it should list the name of the program, and it should list the
number of sweeps since the chain was last initialized and the number of sweeps since “burn-in” was
finished (i.e., the number of sweeps since the last issuing of the command to reset all the Monte
Carlo averages), and whether the simulation is currently executing, or is stopped. The info window
opens automatically when you launch the application. Though you may resize it and re-position
it as desired, you will not be able to close it from within the set of keyboard and menu commands
available in Gf(MC)2. An example Console window from one of my programs is:

5.2 Opening Windows

Gf(MC)2 keeps track of the available types of windows that the developer has defined for the
program. These may be selected by name under the Main Menu→Open New Windows menu
selection. That is about all there is to it. There are no keyboard shortcuts for opening windows.
The picture below shows an example of the sort of windows that might be available.

5.3 The Current Window

When multiple windows are open in Gf(MC)2, one of those windows will be in front and will have
the look of a typical “active” window in your operating system. This window is called the “current”
window. You can make a window the current window by clicking within its perimeter. Keyboard
input and mouse input usually changes the parameters associated with the current window. Most

8

of the commands described in this document are universal (i.e., the commands can be issued in and
“understood” by any open window”) but there are some exceptions (and maybe more depending
on the developer.)

5.4 Closing Windows

When multiple windows are open, then the current one can be closed by choosing

Main Menu→Close Windows→Close The Current Window

or by hitting w .
To close all of the open windows except for the Info window, you can choose

Main Menu→Close Windows→Close All Non-“Info” Windows

or hit x .

5.5 Moving and Resizing Windows

Windows may be moved and resized according to the rules for your operating system (for example,
clicking on “handles” in the lower-right corner of the window and dragging should resize the window,
while clicking and dragging on the window header should move it. etc..

5.5.1 Automatic Full-Size Window

If the GLUT system has been able to determine your screen dimensions from the operating system
(or if it has not, but you have provided Gf(MC)2 with those dimensions when it prompted you in
the beginning of the program), then you can make the current window expand to fill the entire
screen by hitting the backslash key, \ . Gf(MC)2 will store the current position and size of the

window, so that the next time you issue a \ to that window, it will return it to its original position
and size before you expanded it to fill the whole screen.

5.6 Bringing Windows to the Front

Gf(MC)2 keeps a list of the windows that you have opened, so that if one of them is obscured by
another window, you may bring it to the front by choosing

Main Menu→Bring Window To Front→“Name of Window”

On some systems, this operation may not turn the window now in front into the “current window,”
and it may be necessary to click on the window’s border to turn it into the current window.

5.7 Views

Gf(MC)2 is able to record which windows are open and with which settings, so that the next time
you run the program you can quickly and easily open all those same windows. The collection
of windows, their settings, positions, and sizes are referred to as a “View.” Most developers will
include with their program a text file that encodes some pre-defined views for the user, and users
may also record their own views.

Note that when views are recorded, information about the current screen size is also recorded.
This way, if you then change your monitor size (for example if you have to change the monitor
resolution to give a talk using a screen projector) then so long as GLUT can sense the change in

9

screen resolution, it will scale the view accordingly, so that all the windows will fit into the new
screen space. Note! You have to restart your Gf(MC)2-based application, after changing the screen
resolution, for these changes to take effect.

5.7.1 Using Predefined Views

The views that the developer has defined may be invoked by the menu call

Main Menu→Handle Views→Restore Predefined View→“Name of View”

And, there is also a keyboard shortcut. The first 9 predefined views may be restored to the screen
by pressing the appropriate numbered key, 1 through 9 . If the key pressed is greater than the
number of views, nothing happens.

The developer will have written the program to read the predefined views from a file with a
name like ProgramName PreDefdViews.txt. If such a file is absent from the directory (“folder” in
Mac-speak) in which the program resides, Gf(MC)2 issues a warning to the file GFMCMC Errors.txt
and no predefined views will be available.

5.7.2 Saving and Using User-Defined Views

After configuring a number of open windows, the user may save the current view by selecting

Main Menu→Handle Views→Save the Current View

When this is selected, a new window will pop up on top of the current window, prompting the user
for a name for the view. A descriptive name should be typed in followed by a carriage return. The
new view is then saved, and will be available for use by choosing

Main Menu→Handle Views→Restore User-Defined View→“Name of View”

or by hitting alt + 1 through alt + 9 for the first nine user-defined views.
The user-defined views are also stored in a text file named by the developer—probably named

something like ProgramName UserDefdViews.txt—and which will be written in the directory in
which you are executing the program. You can start with a clean slate by discarding that file. If
you are feeling more adventurous, you can go in and edit that file and remove individual views.
It’s pretty self-explanatory—erase the description of the view, and then decrease by one the “Num-
berOfViews” listed at the top of the file.

5.7.3 Smashing and Stretching Views

Sometimes, it is nice to be able to shrink or stretch all the open windows together, so that their
relationship to one another remains the same, but their size changes. Someday I may more fully
implement this. But for now we just have two keystroke commands: ; (a semi-colon) shrinks the
whole view by a factor of 2, and : (a colon) stretches the whole view by a factor of 2.

If you shrink the view too many times, the proportions of some windows become unstable (due
to rounding error, I believe) and it won’t be possible to expand it back up to look like it did before
you smashed it. The scaling may also not be perfect because different operating systems have
different-sized borders around their windows.

WARNING: Repeatedly shrinking the view until all windows are tiny (or stretching the view
until all windows are huge and mostly off the screen) may lead to program failure. Just don’t do
it.

10

6 Controlling the Viewable Area

Since GLUT windows lack the scroll bars familiar to many, I have hacked together some different
ways of changing the viewable area on the screen. They aren’t terribly intuitive, but after you get
used to them you can buzz around pretty well with them.

Almost all development of Gf(MC)2 so far has been toward viewing 2-dimensional images. This
is because they are faster to render and simpler to deal with. Later versions of Gf(MC)2 will
probably include facilities for rotating 3-D images and such. But for now, we are merely interested
in viewing things in a plane.

Note that some of the facilities here may be over-ridden by developers.

6.1 “Edgeward” Expansion and Contraction

The arrow keys can be used to make the viewable area of the window expand and contract. For
example, ctrl + → makes the right edge of the viewing area (not the window itself, but the
amount of the Cartesian plane that is visible in the window) expand to the right by a factor of .1
of the current viewable width. For example, if you were able to view the area of the unit square
with corners at (0,0), (0,1), (1,1), and (1,0), then ctrl + → would change the two right hand
corners of the viewable area to (1.1,1) and (1.1,0), respectively.

Issuing the keystroke shift + → would shrink the right hand edge back in so the edge of the
viewable area would again be defined by the points at (1,0) and (1,1).

The same manipulation works with the three remaining arrow keys. Take some time to play
around with it. As I said before, it is not very intuitive, but eventually you get used to it.

6.2 Moving the Viewing Area

Hitting one of the arrow keys without any modifiers (i.e., without shift , ctrl , or alt), causes
the viewing area to be translated as if you were looking at the viewed plane through a portal that
was being moved in the direction of the arrow. For example, if you were looking at the unit square
described above, then hitting ← would cause the viewable area to shift by a factor of 0.01 of the
current width of the viewable area, so that you would then be able to view a square with corners
at (-0.01,0), (-0.01,1), (0.99,1), and (0.99,0). The key sequence alt + ← does the same thing,
but shifts the view by a factor of 0.25 of the current viewable width or height (depending on if you
are shifting horizontally or vertically).

6.3 Drag-Box Zoom

To zoom into a specific rectangular region of the viewable area you can do shift + LtMouse
and then drag the mouse pointer while continuing to hold down the shift key and the LtMouse
button. A box will form on the screen. Drag the box out to the desired dimensions and release the
mouse button and shift key. At this point, hitting the lowercase z (that is a “z” for zoom!) will
cause the scene to zoom in to the area of the box.

If you don’t hit z , the box will remain there innocuously until you do another mouse click of
any sort.

This feature may be disabled in some windows.

6.4 Auto-fitting the Viewable Area

There are two different ways of “auto-fitting” the viewing area. One is to return the viewing area to
that which was set when the window was created. This method is always available, but not always

11

useful (because the initial settings of the window may have been prescribed by a pre-defined view
that was set up for a different set of data, etc.) The second method involves auto-fitting the view
to encompass the extrema in the plotted figure. This method requires that the developer enable it,
and this is not always the case.

6.4.1 Fit to Default Viewing Area

The key command V (uppercase) causes the viewable area in the window to return to the values
present at the time the window was created. In many instances, this will allow viewing of most if
not all of the contents of the window, however, in some cases it will not. This is a useful keystroke
for returning to the orginal viewing area after doing a drag-box zoom. It is also available as the
menu item:

Main Menu→Handle Views→Adjust Viewable Area→Set Viewable Area To Default

6.4.2 Fit to Max/Min Viewing Area

If the developer has added some code in the routine that draws the images that allows Gf(MC)2

to “sense” the boundaries of the plotted image, then hitting v (lowercase) will cause the viewing
area to adjust to fit all the plotted points in the viewable area, along with a developer-specified
amount of “padding” on the edges. This is also available as the menu option

Main Menu→Handle Views→Adjust Viewable Area→Auto Size Window To Fit Content

7 Legends

There is a rather clunky facility for Legends which describe the meaning of the different colors in
an image. The developer has to supply an array of strings and the number of color key labels for
the legend feature to be available, so it may not always be available.

7.1 Showing/Hiding the Legend

To make a legend appear in the current window (if a legend is available) you choose

Main Menu→View Legend→Hide or Show Legend

or you can hit the L key.

7.2 Moving the Legend Around

Legends may appear on the top, the right, or the bottom of the image. To change the position of
the legend you can hit the appropriate uppercase key T , R , or B , or you can choose the desired
option from the Main Menu→View Legend→ submenu.

7.3 Changing the Legend Text Size

Perhaps the klugie-est thing about the Legend features (well, apart from the fact that I really should
put the legend in a subfigure. . . but that is another story) is that the text in them is rendered as a
bitmap font that only has three sizes. The consequence of this is that sometimes the text is going
to run over from one item to the next. This can be taken care of by increasing the window size
(the bitmap fonts do not scale up with window size) or by changing the bitmap text size, or both.
There are three bitmap font sizes available for the legend text. You can cycle through them by

12

hitting the b key. This will cause the font size to increase to its maximum size, and then then
next time you hit b , the size will return to its smallest.

8 Axes

The axes in Gf(MC)2 have a number of settings that allow differences in the number of major ticks
and minor ticks, where the axes cross each other, the extent of the axes, whether the axes are fixed
in space or “float” within the boundaries of the viewable area, whether the axes are viewable or not,
and all that sort of stuff. These things are currently under the control of the developer. At some
point I may make these user-changeable, but for the most part there are usually sound reasons for
having axes set up as the developer wanted them to be.

The only kind of axes currently available are for 2-D figures.

9 Color Schemes

A color scheme in Gf(MC)2 is composed of the definitions for the colors of the:

1. background

2. on-screen text

3. legend background

4. legend border

5. axes

6. series of colors used to distinguish between different elements in a figure (for example, if you
plot three different lines on a graph, they can be drawn in three different colors drawn from
the Series colors in the color scheme).

9.1 Selecting a Pre-Defined Color Scheme

There are four color schemes that come predefined: Fisher Price 25 (a black background with lots
of primary colors early in the series and 25 colors total in the series), Ol Grayback 20 (light gray
background with 20 colors in the series), Deep Blue 15 (dark blue background with 15 colors in
the series) and GilbertAndSherman 15 (an olive green background with 15 colors in the series.) To
switch the current window to any of those color schemes simply choose them from the

Main Menu→Change Color Scheme→Select Pre-Defined Scheme→

submenu. See the figure on Page 5 for an example.

9.2 Designing Your Own Color Scheme

There is a special “Color Picker Window” for designing your own color schemes. This window is
opened by choosing

Main Menu→Change Color Scheme→Create New Color Scheme

The window is pretty self-explanatory, but it may not work with Windows machines. Still have to
figure that out. The window looks like:

13

By clicking on the colors in the palette, you can change whatever part of the color scheme you
are currently involved in selecting. The first color to choose is the background color. Once you
have found a satisfactory choice, press c to confirm that choice. You will then be prompted to
choose the text color. If at any time you would like to go back and change a former choice, cycle
through the choices using b (b for back). When you are satisfied that you have defined a suitable
color scheme and are ready to save it, hit x . A new window will spring up, prompting you to
enter a name for the color scheme. Type a name and hit return. Your color scheme will then be
saved in a text file with a name like ProgramName UDColorSchemes.txt in the directory where the
Gf(MC)2-based program you are using resides.

While within the color picker window, it is also possible to load a pre-existing color scheme into
it so that you may modify a pre-existing color scheme. Do this by changing the color scheme for
the window in the usual way. Then, when you are prompted for new color choices, the default will
be the color associated with the color scheme that you just loaded. When you load a Pre-Defined
Color Scheme into the color picker window, you modify that color scheme in the program memory,
so it will change the appearance of all windows that currently have that color scheme. However,
when you restart the program, the original Pre-Defined Color Scheme will be restored. This is not
so if you modify an existing User Defined Color Scheme from within the color picker window. In
that case, you will overwrite the original User Defined scheme. Some day I hope to change this.

If you find you have a profusion of User Defined schemes, you can delete the file UserDefdColor-
Schemes.txt from the directory where the Gf(MC)2-based program you are using resides, or you
can edit that file. The first number in the file tells how many color schemes there are in the file
(and this will have to be changed if you delete some of the existing schemes) and the rest of the file
contains the definitions of the color schemes in human-readable text format. It should be pretty
self-explanatory.

10 Selected Items and Displayed Items

Some windows will display only a particular part of the data corresponding to the “Displayed Item.”
To increase the index of the Displayed Item use + and to decrease the index of the displayed item
use – (the “minus sign” key. The developer should have seen to it that if you try to increase or

14

decrease the index of the displayed item beyond the available boundaries, then hitting either +
or – should have no effect (or, perhaps, will cycle you back to the lowest value of the index.

Items is some windows may be selected by clicking on them. Sometimes you have to click on
the mouse and wiggle the mouse cursor over the item to be selected in order to get the program to
actually register your choice.

11 Controlling Column Numbers

In some windows, data are displayed in rows, and if there are too many rows, it is difficult to see
each one. In such cases, the data can be split into rows filling two or more columns. The number
of columns may be increased by hitting M (capital “M” for More) and decreased by hitting F
(capital “F” for Fewer).

12 Gf(MC)2 Error and Warning Messages

A file GFMCMC Errors.txt might appear in the directory from which the Gf(MC)2-based application
is running. This is just a little place where it barks out warnings and errors. Currently, I think it
just spews warnings if Gf(MC)2 can’t open certain files that it thinks it might be looking for. In
the future it will probably provide more useful information.

13 Wish List

There are many features I wish to eventually add to this. But that will happen in a later version.

14 Software Agreement

Copyright c©. The Regents of the University of California (Regents). All Rights Reserved.
Permission to use, copy, modify, and distribute this software and its documentation for educa-

tional, research, and not-for-profit purposes, without fee and without a signed licensing agreement,
is hereby granted, provided that the above copyright notice, this paragraph and the following two
paragraphs appear in all copies, modifications, and distributions. Contact The Office of Technol-
ogy Licensing, UC Berkeley, 2150 Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510)
643-7201, for commercial licensing opportunities. Created by Eric C. Anderson, Department of
Integrative Biology, University of California, Berkeley.

IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS,
ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF
REGENTS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION,
IF ANY, PROVIDED HEREUNDER IS PROVIDED ”AS IS”. REGENTS HAS NO OBLIGA-
TION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MOD-
IFICATIONS.

Also, if you use this software while giving a talk or presentation, please cite it and note that
it is available by contacting Eric C. Anderson: eriq@u.washington.edu. Eventually I will have a
web page from whence it may be downloaded without having to talk to me first!

15

