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Abstract

This paper explores the idea that predators may disrupt plant–pollinator relationships

and consequently inhibit reproduction in flowering plants. Amidst growing evidence that

predators influence plant–pollinator interactions, I suggest that such pollinator-mediated

indirect effects may be a common feature of terrestrial communities, with implications

for research into top-down effects and pollination ecology. Experimental evidence of

such an effect from a riparian system in northern California is provided, where crab

spiders decreased seed production in inflorescences of the invasive plant Leucanthemum

vulgare by reducing the frequency and duration of floral visits by pollinating insects.
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I N T R O D U C T I O N

Cascading impacts can be transmitted from a predator

through its prey to primary producers. These top-down

indirect effects can have important consequences for the

structure and productivity of ecological communities, and

ecologists have long sought to clarify their prevalence in

nature. Top-down effects with community-wide bearing have

been documented in intertidal (e.g. Paine 1966; Menge 1976),

marine (e.g. Estes et al. 1978), lake (e.g. Carpenter et al. 1987)

and river (e.g. Power 1990) systems. In terrestrial ecosystems,

predation on herbivores has been shown to affect plant

damage (e.g. Spiller & Schoener 1996), biomass (e.g. Schmitz

& Suttle 2001), reproduction (e.g. Schemske 1980; Barton

1986) and diversity (Schmitz 2003), although the generality

and community-scale importance of such interactions have

been questioned (Strong 1992; Polis & Strong 1996; Polis

1999; et al. 2000; Shurin et al. 2002). In assessing the

prevalence and importance of top-down effects in terrestrial

communities, however, predation on a widespread, diverse,

and invaluable guild of prey organisms has rarely been

considered. The potential for top-down effects to transmit

through pollinators warrants greater attention.

While top-down effects were originally proposed to

explain patterns of terrestrial plant production (Leopold

1949; Hairston et al. 1960; Fretwell 1977), the concept was

concretized with experimental demonstrations of trophic

cascades in aquatic and marine systems (e.g. Estes et al.

1978; Carpenter et al. 1987; Power 1990). Following

suggestions that trophic cascades were restricted to these

�wet� environments (Strong 1992; Polis & Strong 1996),

interest focused on whether analogous effects occur on

land. This question has been the centre of work on top-

down effects ever since (Polis 1999, Schmitz et al. 2000,

Polis et al. 2000, Halaj & Wise 2001; Shurin et al. 2002) and

has brought to light important differences in the structure

and dynamics of aquatic, marine and terrestrial communi-

ties. It has also emphasized the importance of consumptive

interactions, largely to the exclusion of important non- or

quasi-trophic processes (sensu Polis & Strong 1996) that

can similarly propagate through ecological communities.

Thus, herbivory is rigorously incorporated into theory on

top-down effects while pollination has received little

consideration.

Just as pollinators have not factored heavily into studies

of top-down effects on plants, so have predators been

largely overlooked in pollination research. Apart from

effects of ants, little is known about the influence of

predators in plant–pollinator mutualisms, particularly when

compared with other factors that can disrupt these

mutualisms and indirectly inhibit plant reproduction (e.g.

habitat fragmentation: Jennersten 1988; Aizen & Feinsinger

1994; extreme climatic events: Rathcke 2000; species

invasions: Waring et al. 1993; pesticides: Kevan 1977; see

Buchmann & Nabhan 1996; Allen-Wardell et al. 1998;

Kearns et al. 1998; Wilcock & Neiland 2002 for reviews).

Very few authors (Louda 1982; Wilkinson et al. 1991;

Altshuler 1999) have examined consequences for plants of

Ecology Letters, (2003) 6: 688–694 doi: 10.1046/j.1461-0248.2003.00490.x

�2003 Blackwell Publishing Ltd/CNRS



predation on pollinators, and none to date have uncovered a

net negative effect. One study even revealed a positive

effect, wherein the presence of ants led to increased

relocation of winged pollinators on flowers of the tropical

shrub Psychotria limonensis (Rubiaceae), contributing to higher

flower visitation and seed production (Altshuler 1999).

Notwithstanding this beneficial role for ineffective preda-

tion, there are reasons to believe that predation can obstruct

plant–pollinator mutualisms to the detriment of flowering

plants.

Countless arthropods and birds prey extensively on

pollinating insects (Dukas 2001b and included references),

and human predation threatens populations of pollinating

mammals and birds throughout the world (Allen-Wardell

et al. 1998). At least 67% of flowering plants depend on

insect pollinators (Tepedino 1979), and perhaps 90% use

animals (Buchmann & Nabhan 1996). Several studies have

demonstrated top-down components to interactions

between flowering plants and their animal pollinators: both

ants (Willmer & Stone 1997; Altshuler 1999) and spiders

(Louda 1982; Dukas & Morse 2003), can interfere with

pollinator visitation to flowers, and certain pollinators

display pronounced anti-predator adaptations (Wasserthal

1993) and behaviours (Lima 1991). When one further

considers the high incidence of pollen limitation of fruit and

seed production in nature (Burd 1994), the potential for

predation on pollinators to affect plant reproduction is easy

to conceptualize.

Indeed, because many pollinators respond to predation

risk (Cartar 1991; Lima 1991; Craig 1994; Dukas 2001a;

Dukas & Morse 2003), direct lethal effects of predators on

pollinators should not even be necessary for indirect effects

on plants to manifest. Numerous arthropod predators hunt

directly from flowers (Gertsch 1939; Caron 1990); predator

avoidance by pollinators could trigger or exacerbate pollen-

limitation even where direct predation is infrequent.

Analogous behavioural changes in herbivores facing preda-

tion risk have been shown to produce dramatic effects on

plants (Power & Mathews 1983; Turner & Mittelbach 1990;

Beckerman et al. 1997; Schmitz et al. 1997; Rudgers et al.

2003).

Whether indirect effects on plants are brought about

through direct influences on pollinator behaviour, popula-

tion abundance or a combination of the two will probably

vary with predator species (see Schmitz & Suttle 2001). Crab

spiders and other floral predators may have more local

impacts by altering pollinator behaviour and host choice,

while highly mobile and roaming predators such as birds

and other flying animals may have broader impacts by

reducing pollinator population abundance.

While theories of top-down effects and plant–pollinator

interactions have yet to coalesce, this cannot be far off.

Even when focused on debate over trophic cascades, Polis

& Strong (1996) cautioned against the assumption that

feeding links are the major factor structuring ecosystems,

citing the general and profound importance of pollination in

terrestrial ecosystems. Many ecologists now espouse an

�interaction web� approach to community studies that allows

for the inclusion of important non-trophic interactions

precluded by a strict �food web� perspective (Menge 1995;

Price 2002). Likewise, researchers in pollination ecology are

advocating a broader, community-wide focus for the study

of plant–pollinator mutualisms (Kearns et al. 1998). Lima

(1991), Dukas (2001a,b), and Dukas & Morse (2003) have

called specifically for consideration of predators in studies

of plant–pollinator relationships.

E M P I R I C A L S U P P O R T

In support of this broadened perspective, I draw from

empirical work in a riparian system in northern California,

where pollinating insects mediate an indirect interaction

between crab spiders and an invasive plant. At the Angelo

Coast Range Reserve in Mendocino County, California

(39�43¢45¢¢ N, 123�38¢40¢¢ W), the crab spider Misumenops

schlingeri (Thomisidae) is a common sit-and-wait predator in

the flowers of riparian vegetation adjacent to the South Fork

Eel River. This system has been invaded by the ox-eye daisy,

Leucanthemum vulgare (Asteraceae), a short-lived perennial

forb native to Europe and a common hunting site for these

spiders. M. schlingeri preys on the many species of butterflies

(Lepidoptera), flies (Diptera) and bees (Hymenoptera) that

visit these inflorescences seeking nectar.

Several characteristics of this system make pronounced

and detectable effects of spiders on the ox-eye daisy

plausible.

Leucanthemum vulgare flowers in this system are self-

infertile and depend on insects as pollen vectors. Indirect

effects of predation should manifest more often in plants

with an obligate plant–pollinator mutualism than in those in

which the relationship is facultative. Automatic self-pollin-

ation in the absence of insects has been reported for a

L. vulgare population in England (Knuth 1908), but

pollination tests in this study system indicate that neither

automatic self-pollination nor self-fertility exists in this

population. In June 2002, 24 new inflorescences were

enclosed in mesh to prevent insect visitation. The disc

florets of 12 of these were gently brushed with separate

cotton swabs every 3 days to encourage pollen exchange

within each inflorescence, while leaving the other 12

enclosed but otherwise unmanipulated. No seeds were

produced in either group.

As L. vulgare plants produce few inflorescences, impacts

within an individual inflorescence may translate to consid-

erable plant-level effects. Plants in this riparian system

produce between one and nine inflorescences, with most
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plants producing three and with a population average of 3.4

inflorescences per plant. In plants producing multiple

inflorescences, the pollination tests described above yielded

no evidence of compensation for decreased seed production

in one inflorescence with increases in the others. Seed

production in unmanipulated inflorescences on plants with a

covered (pollinator excluded) inflorescence was similar to

that in the general population, at 205.4 ± 26.0 and

219.5 ± 28.2 seeds, respectively (mean ± standard error;

t35 ¼ )0.37, P ¼ 0.71).

Finally, the arrangement of florets in daisy inflorescences

limits the possibility of concealment for these ambush

predators. When hunting on L. vulgare, crab spiders sit

motionless on the ray florets with their enlarged raptorial

forelimbs spread around the central disc florets (Fig. 1).

Conversely, spiders that hunt pollinating insects from

umbel-bearing plants tend to conceal themselves within the

umbels. This does not preclude influences on pollinators

(see Louda 1982; Dukas & Morse 2003), but renders such

effects more dependent on actual attacks or approaches by

predators, and subsequent association of patch and risk by

pollinators. Misumenops schlingeri may represent a more overt

threat when hunting on daisies, prompting avoidance by

pollinators.

Experimental Design

Paired-flower observations were conducted to determine

whether M. schlingeri influences the behaviour or host choice

of pollinating insects. Indirect effects of spider predators on

the ox-eye daisy were then explored with an experiment

comparing achene (i.e. small, dry seed-like fruit, hereafter

�seed�) production in flowers on which spiders were present

with those from which spiders were removed.

Direct effects of spiders on pollinators

Two observers simultaneously recorded data on individual,

unmolested inflorescences, similar in height, size and

appearance. One inflorescence contained a crab spider and

the other was a paired control from a nearby plant. I

selected inflorescences on which crab spiders naturally

occurred or were absent to avoid introducing observer bias

of inflorescence quality and altering the hunting behaviour

of spiders. As a result of natural variation in inflorescence

quality, a comparison of plants with spiders and those from

which spiders were removed may have provided a more

rigorous test, but it is unlikely that spiders would preferen-

tially choose low quality inflorescences and bias results for

pollinator visitation. Indeed, crab spiders are known to

assess flower quality and select high quality inflorescences as

hunting sites (Morse & Fritz 1982; Morse 1988, 1993).

Inflorescences were observed through binoculars from a

minimum distance of four meters to avoid influencing insect

or spider behaviour. The number and duration of all floral

visits by insects were recorded over a continuous twenty-

minute span between 10:00 AM and 2:00 PM, the hours of

maximum insect activity. Sixty such observations were

conducted during June 2000 and June 2001. Visit frequency

data were compared between inflorescences with a spider

and those without using a paired sample t-test, and visit

duration data with a t-test. Paired sample tests were not

appropriate for duration data because of �missing� data for

inflorescences receiving zero visitors. Duration data were

log-transformed to meet assumptions of normality.

Indirect effects of spiders on plants

On 12 June 2002, 25 pairs of inflorescences were

established, with each inflorescence in a pair occurring on

a different plant. One in each pair was randomly assigned as

�Spider Present� and the other as �Spider Absent�. Inflores-

cences that were just beginning to open were selected, and

the size and height were matched for each pair to minimize

a priori biases in pollinator preference. The following

morning, a female crab spider was placed on each �Spider

Present� inflorescence and any spiders found on �Spider

Absent� inflorescences were removed. Female crab spiders

showed high site fidelity, remaining on individual daisies for

up to 2 weeks, or nearly the entire flowering duration for a
Figure 1 The crab spider Misumenops schlingeri hunting on the

ox-eye daisy Leucanthemum vulgare.
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given plant. Nonetheless, some movement occurred, so

every morning until flowers senesced (from 15 to 22 days)

each experimental inflorescence was examined for spider

presence/absence. Any crab spider found on a �Spider

Absent� flower was removed and any spider missing from a

�Spider Present� flower was replaced.

Eight inflorescences did not retain spiders through the

first week of the experiment despite repeated restocking.

Stocked spiders may have responded to risk cues such as silk

lines already present on these inflorescences or to some cue

regarding flower quality. Each of these inflorescences and its

�Spider Absent� complement were eliminated from the

study. One additional matched pair was eliminated after the

spider wove the ray florets into a chamber around the disc

florets, presenting a physical barrier to insect visitation (see

Ott et al. 1998). Analysis is therefore based on 16 pairs of

inflorescences.

As flowers senesced, all seeds produced were collected

and counted. Seed production data were analysed with

analysis of covariance, including as a covariate the diameter

of each composite flower’s central disc, which was measured

as a proxy for the relative number of florets, or maximum

possible seed output, of each inflorescence.

Experimental Results and Discussion

Crab spiders had a significant effect on insect visitation to

L. vulgare inflorescences. Both the frequency and duration of

floral visits by insects were reduced in the presence of

M. schlingeri (Fig. 2a,b), so that fewer insects probably

transferred pollen to inflorescences occupied by crab

spiders, and those that did visited far fewer florets on those

inflorescences. This direct effect of M. schlingeri on pollinator

visitation cascaded to a significant indirect effect on

L. vulgare. Seed production was higher in inflorescences

from which crab spiders were excluded than in those on

which spiders hunted (F ¼ 6.12, P < 0.02). By repelling

pollinating insects, crab spiders reduced inflorescence seed

production from 214.2 ± 10.2 seeds to 178.2 ± 10.2 seeds

(least square mean ± SE) (Fig. 3).

The 36 seed difference amounts to a 17% mean reduction

in fecundity for spider-occupied inflorescences. Given the

observed range in plant inflorescence production, this

translates to single-year, individual plant fecundity losses

between 2 and 17% for plants occupied by a single crab

spider. Population-wide fecundity effects will depend in part

on the overall commonness of spiders on inflorescences,

which ranged through the years of this study from

12.5% ± 0.8% (mean ± SE) of flowers occupied in June

2000 to 6.8% ± 1.4% (mean ± SE) in June 2002. Crab

spider abundances in this riparian habitat are sufficiently low

so as to make population-level effects minimal (<2% overall

reduction in seed production in a given year).

The crab spider population is kept sparse by seasonal

inundation of the study site from winter flooding of the

South Fork Eel River, so that most crab spiders in the

riparian habitat are not members of a resident population

but colonists each year from surrounding meadows. The

opposite is the case for these meadow environments, where

M. schlingeri is abundant and L. vulgare is very rare. Although

the ox-eye daisy has intermittently occurred in low numbers

in these meadows in past years (Patterson 1977; K. B. Suttle,

personal observation), it is absent at present. Plants invading

systems with intact and abundant predator assemblages may

be most susceptible to pronounced population-wide effects,

as predator–plant and predator–pollinator ratios may be

highest under these circumstances.

C O N S T R A I N T S O N I M P O R T A N C E

High population turnover for L. vulgare in this riparian

system, attributable to periodic flooding and accompanying
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Figure 2 Flower visitation by nectarivorous insects (mean ± SE).

(a) The presence of a spider caused a significant reduction in visit

frequency, from 7.7 ± 1.1 visits per hour (mean ± SE) on

unoccupied inflorescences to 4.8 ± 0.7 visits per hour on those

with a crab spider (one-tailed paired sample t-test, t29¼2.8,

P < 0.01). (b) Visit duration fell from 28.0 ± 6.8 s (mean ± SE)

to only 8.0 ± 1.7 s (mean ± SE) in the presence of a crab spider

(one-tailed t-test, t50 ¼ 2.6, P < 0.001).
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physical disturbances, lends added importance to seed

production for this plant population. In general, conse-

quences for plants of pollinator-mediated effects on seed

production will depend on the role of seeds in population

dynamics. Specifically, impacts will hinge on the degree to

which plant population abundance and biomass depend on

seed production. Seed-limitation varies with plant life form,

habitat type, and the successional characteristics of the plant

species and habitat (Turnbull et al. 2000), but should be

particularly common and consequential in populations of

invasive plants (Parker 1997). Not just the presence or

absence, but the degree, of seed-limitation in a plant

population needs to be understood in order to evaluate

whether predation on pollinators will have meaningful

consequences at the population level.

I M P L I C A T I O N S F O R C O M M U N I T Y E C O L O G Y

Pollinators interact within terrestrial food webs, deriving

their energy from primary producers and providing energy

to higher consumers. Yet the focal interaction of this plant–

pollinator association is not consumption, but mutualism via

pollen service, so the effects described cannot be considered

as trophic cascades. Pollination is a directly positive non-

food-web effect (Schoener 1993). While herbivores gener-

ally have a deleterious impact on primary producers,

pollinators are beneficial, if not essential, to most flowering

plants. The implications of this discrepancy for community

ecology are considerable.

According to classic food chain theory, a predator’s effect

on primary producers depends on the number of trophic

levels through which that effect transmits (Fretwell 1977;

Oksanen et al. 1981). In a food chain with three trophic

levels, the top predator exerts a positive effect on plants by

suppressing herbivores. Alternately, in a four-level food

chain, the top predator exerts a negative effect on plants by

reducing predators of herbivores and allowing herbivores to

flourish and suppress plants. There may exist a whole class

of unstudied top-down effects that propagate down

interaction webs in a manner similar to those cascading

through herbivores, but with opposite consequences for

primary producers. Interestingly, both types of effect could

arise from a single predator, if it interacts with both

pollinators and herbivores. Predators that remain on

inflorescences after pollination, for example, may dampen

or offset negative effects by repelling seed predators. Net

effects on plant fitness will then depend on the balance

between loss of pollinator services and reduction of plant

damage or seed predation. Louda (1982) observed such

counteracting top-down effects from the green lynx spider,

Peucetia viridans, hunting in umbels of Haplopappus venetus

(Asteraceae). As crab spiders, which often depart senescing

inflorescences prior to seed maturation, are much more

likely to interact with pollinators than with seed predators,

negative effects on pollination are unlikely to be mitigated

by reduced seed predation.

While the relative influence of top-down effects trans-

mitted through herbivores and those transmitted through

pollinators is obviously unclear, the lack of experimental

demonstrations of pollinator-mediated effects need not

imply that effects cascading through herbivores are neces-

sarily stronger or more important. As Polis et al. (2000)

point out, most experimental demonstrations of terrestrial

trophic cascades involve a subset of the community and

affect only one or a few plant species, carrying little

biological significance from a population or community

perspective (but see Schmitz 2003). As with the pollinator-

mediated effect I report, plant responses are usually

measured as some decrement in plant performance that

rarely translates clearly to meaningful population-level

impacts on plant abundance (Polis et al. 2000; Schmitz et al.

2000). Community-level pollinator-mediated effects are

conceivable, and perhaps likely, in ecosystems where

predation leads to local extinction of the pollinator guild.

For example, we can expect such effects on many South

Pacific islands from which human predation has eradicated

entire populations of flying foxes (Fujita & Tuttle 1991;

Nabhan 1996), keystone pollinators of most flowering

plants (Cox et al. 1991).

S U M M A R Y

Plant-pollinator relationships are often at the center of

research into pollen-limitation in flowering plants. I suggest

that this focus excludes an important interactor; clearly
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Figure 3 Seed production. Results of an experimental manipula-

tion of crab spider occurrence on daisy inflorescences. Accounting

for differences in the size of the composite flowers (F ¼ 112.9,

P < 0.0001), ANCOVA revealed a significant influence of crab

spiders on seed production (F ¼ 6.12, P < 0.02; non-significant

interaction term P > 0.85).
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predators have a greater role in pollination ecology than is

currently appreciated. Likewise, should we broaden our

thinking on the influence of predators in terrestrial

communities to include pollinators as potential prey animals.

The role of predators in natural systems was underestimated

until Leopold (1949), Hairston et al. (1960), and Paine (1966)

emphasized the community-wide importance of top-down

effects. We now recognize strong, indirect impacts of

predation and predation risk in aquatic, marine, intertidal,

and terrestrial environments, and we are learning that the

interactions mediating these impacts are not limited to

herbivory. Primary producers can be affected when

competition for space (Paine 1966; Menge 1976), nutrient

translocation (E. Danner & J. Estes, personal communica-

tion), seed dispersal (Rainey et al. 1995), and, as

demonstrated here, pollination are disrupted by predators.

Predation on pollinators is widespread, as is pollen

limitation of fruit and seed production in flowering plants.

We may begin to discern the extent to which the former

influences the latter by bridging gaps in our thinking on top-

down effects and pollination ecology.
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