PNAS www.pnas.org

1 2 3	Supplementary Information for
4 5 6	Vertebrate adaptive radiation is assembled from an ancient and disjunct spatiotemporal landscape
7 8	Emilie J. Richards, Joseph A. McGirr, Jeremy R. Wang, Michelle E. St. John, Jelmer W.
9	Poelstra, Maria J. Solano, Delaney C. O'Connell, Bruce J. Turner, Christopher H. Martin*
10	
11	*Correspondence to: chmartin@berkeley.edu
12	
13	
14 15	This PDF file includes:
15 16	This I DF the includes.
17	Supplementary text
18	Figures S1 to S17
19	Tables S1 to S19
20	SI References
21	
22	Other supplementary materials for this manuscript include the following:
23	
24	Datasets S1 to S9
25	
26	
27	
28	
9	
0	
1	
2	
3	
4 5	
) 5	
37	

38 **Table of Contents**

1. Supplemental Materials and Methods	Page
1.1 Sampling	4
1.2 Genomic Library Prep	5
1.3 De novo genome assembly and annotation	5
1.4 Population genotyping.	6
1.5 Population genetic analyses	8
1.6 Mutation rate estimation.	10
1.7 Demographic Inferences	12
1.8 Introgression in SSI specialists	13
1.9 Search for candidate adaptive alleles in SSI specialists	15
1.10 Introgression in outgroup generalist populations	18
1.11. Characterization of adaptive alleles through GO analysis	19
1.12 Characterization of adaptive alleles through genome-wide association mapping	19
1.13 Characterization of adaptive alleles through differential gene expression and QTL analysis from previous studies	22
1.14 Timing of divergence among adaptive alleles	23
1.15 Timing of selective sweeps on adaptive alleles	26
2. Supplementary Results and Discussion	31

2.1 Spatiotemporal stages of adaption based on timing of divergence among adaptive alleles	31
2.2 Spatiotemporal stages of adaptation based on timing of selection on adaptive alleles	35
3. References	36
4. Supplementary Figures S1-17	43
5. Supplementary Tables S1-18	61
6. External Datasets S1-S9 captions	105

1. Materials and Methods

41 **1.1. Sampling.**

42 Pupfishes were collected from across the complete Atlantic and Caribbean range of *Cyprinodon* from Massachusetts to Venezuela. For the three species in the SSI radiation, individual pupfish 43 were collected from 15 isolated hypersaline lakes on SSI (Table S1; Data S1) and one estuary 44 45 (Pigeon Creek) using hand and seine nets between 2011 and 2018. We sequenced 36 Cyprinodon variegatus, 47 C. brontotheroides, and 39 C. desquamator across these lakes, including six lakes 46 in which one or two specialist species occur in sympatry with the generalist (Crescent Pond, 47 Storr's Lake, Little Lake, Oyster Pond, Osprey Lake, Moon Rock Pond). We also sequenced 48 outgroup high-coverage focal populations of generalist pupfish including 17 individuals from C. 49 laciniatus from Lake Cunningham, New Providence Island, Bahamas; 18 C. variegatus from 50 Lake George, Rum Cay, Bahamas; 12 C. higuey from Laguna Bavaro, Dominican Republic; 14 51 C. variegatus from Fort Fisher estuary, North Carolina, United States; and 14 C. dearborni from 52 53 Isla Margarita, Venezuela. 37 individuals were also sequenced from other islands and localities spanning the range of Cyprinodon across the Caribbean and Atlantic coasts, including captive-54 bred individuals from the extinct species *Megupsilon aporus* and threatened species *Cualac* 55 56 *tessellatus*, the most closely related outgroup genera to Cyprinodon ((1, 2), Fig. 1A; Table S1;Data S1). Voucher specimens are catalogued in the Museum of Vertebrate Zoology Fishes 57 58 collection under catalog numbers MVZ:Fish:467-626. 59 Fishes were euthanized in an overdose of buffered MS-222 (Finquel, Inc.) following approved protocols from the University of California, Davis Institutional Animal Care and Use 60

61 Committee (#17455), the University of North Carolina at Chapel Hill Animal Care and Use

62	Committee (#18-061.0), and the University of California, Berkeley Animal Care and Use
63	Committee (AUP-2015-01-7053) and preserved in 95-100% ethanol.
64	
65	1.2 Genomic Library Prep.
66	DNA was extracted from muscle tissue using DNeasy Blood and Tissue kits (Qiagen, Inc.) and
67	quantified on a Qubit 3.0 fluorometer (Thermofisher Scientific, Inc.). Genomic libraries were
68	prepared using the automated Apollo 324 system (WaterGen Biosystems, Inc.) at the Vincent J.
69	Coates Genomic Sequencing Center (QB3). Samples were fragmented using Covaris sonication,
70	barcoded with Illumina indices, and quality checked using a Fragment Analyzer (Advanced
71	Analytical Technologies, Inc.). Nine to ten samples were pooled per lane for 150PE sequencing
72	on four lanes of an Illumina Hiseq4000 and an additional 96 individuals were sequenced on one
73	150PE lane of Illumina Novaseq with S4 chemistry. This included 42 individuals from a
74	previous genomic study (3).
75	
76	1.3 De novo genome assembly and annotation.
77	We constructed a hybrid de novo assembly from an inbred lab-raised individual of <i>C</i> .
78	brontotheroides using three different sequencing technologies: Oxford Nanopore sequencing was
79	performed at UNC's High Throughput Sequencing Facility, a 10X Genomics synthetic long-read
80	library was prepared and sequenced by Hudson Alpha, and Chicago and HiC libraries were
81	prepared and sequenced by Dovetail Genomics. Genomic DNA was extracted from an inbred F4
82	male C. brontotheroides individual, an offspring from three generations of full-sib mating in the
83	lab, starting with an F0 pair collected from Crescent Pond, SSI (the type locality;(4)). 10X
84	sequencing was performed on this individual according to 10X Genomics' recommended

85	protocol and sequenced on an Illumina HiSeq4000, resulting in 460 million 2x150 bp reads.
86	DNA was extracted from this same molluscivore individual for Nanopore sequencing using a
87	modified phenol:chloroform extraction protocol (5). Two libraries were sequenced on R9.4 flow
88	cells on Nanopore's GridION desktop sequencer – one using the Rapid Sequencing Kit
89	(RAD004) and one Ligation Kit (LSK109), producing 4.9 Gbp of sequences with a read length
90	N50 of 4.7 Kbp.
91	10X Genomics sequences were first assembled using Supernova (v2.0.0, (6)) to produce a
92	preliminary "pseudohap" assembly. Nanopore reads were corrected using FMLRC (7). The
93	Supernova assembly was scaffolded with corrected nanopore reads using LINKS (8) with the
94	recommended iterative approach (34 rounds). The Nanopore-scaffolded assembly was further
95	scaffolded using HiC and Chicago sequences. We predicted Hi-C contacts using Juicer (v1.6.2;
96	(9)), followed by scaffolding with 3D-DNA (v180922; (10)). We performed a final polishing
97	with four rounds of Racon (v1.3.1; (11)) using the corrected Nanopore reads. The final assembly
98	consisted of 1.16 Gbp in 15,698 scaffolds with an N50 of 32,013,756 bp (32 Mb).
99	To validate our assembly, we ran BUSCO (v3.0.1; (12)) to identify known single-copy
100	conserved genes. We found 86.4% of BUSCOs in the Actinopterygii class assembled
101	completely, and 83.4% into single copy orthologs. We annotated this assembly using the Maker
102	pipeline (v3.01.02;(13)), providing alternate ESTs and protein evidence for ab-initio gene
103	prediction from C. variegatus (14), which is closely related and expected to have very similar
104	genic structure and codon usage. Predicted genes were assigned putative function by aligning
105	(BLASTp) to the UniProt database (15).

1.4 Population genotyping.

108	Raw reads were mapped from 222 individuals to our de novo assembly of the Cyprinodon
109	<i>brontotheroides</i> reference genome (v 1.0; total sequence length = $1,162,855,435$ bp; number of
110	scaffolds = 15,698, scaffold N50 = 32 Mb) with bwa-mem (v $0.7.12$; (16)). Duplicate reads were
111	identified using MarkDuplicates and BAM indices were created using BuildBamIndex in the
112	Picard software package (http://picard.sourceforge.net; (v.2.0.1)). We followed the best practices
113	guide recommended in the Genome Analysis Toolkit (v 3.5; (17)) to call and refine our single
114	nucleotide polymorphism (SNP) variant dataset using the program HaplotypeCaller. We filtered
115	SNPs based on the recommended hard filter criteria (i.e. $QD < 2.0$; FS < 60; MQRankSum < -
116	12.5; ReadPosRankSum < -8; (17, 18)) because we lacked high-quality known alleles for these
117	non-model species. Poorly mapped regions were removed using a mask file generated from the
118	program SNPable (http://bit.ly/snpable; k-mer length = 50, and 'stringency' = 0.5). SNPs for SSI
119	individuals were additionally filtered to remove those with a minor allele frequency below 0.05,
120	genotype quality below 20, or containing more than 20% missing data across all individuals at
121	the site using vcftools (v.0.1.15; (19)). This set of 9.3 million SNPs was then further filtered for
122	alleles that had minor allele frequencies above 0.05 and less than 50% missing data across all
123	Caribbean outgroup individuals with population level sampling. The resulting dataset that we
124	used for all downstream analyses, unless otherwise noted, contained 5.5 million SNPs. The MAF
125	threshold we used as a quality filter (excluding minor allele frequencies below 5%) will bias any
126	search for rare alleles in this system. However, our main objective in this study was to
127	characterize candidate adaptive alleles that have swept within specialist populations on SSI,
128	alleles that would not be influenced by this MAF filter because they are not expected to be rare
129	alleles within our specialist populations of interest. For some calculations that are heavily
130	influenced by the presence/absence of minor alleles, such as Dxy , π , and allele frequency

distributions across Caribbean populations we used a version of the genetic dataset without the minor allele frequency filter and note when we have done so.

1.5 Population genetic analyses.

134	The filtered genomic dataset was first pruned to SNPs in linkage disequilibrium using the LD
135	pruning function (indep-pairwise 50 5 0.5) in plink (v1.9;(20)), leaving 2.6 million SNPs. To
136	visualize population structure in our dataset, we ran a principal component analysis using the
137	eigenvectors outputted by plink's pca function (pca). The first two principal components were
138	plotted in R (R Core Team 2018; v3.5.0). To visualize admixture among the species we
139	estimated the proportion of shared ancestry among individuals in our dataset using
140	ADMIXTURE (v.1.3.0;(21)). The number of populations (K) was chosen using ADMIXTURE's
141	cross-validation method (cv) across 1-20 values of K. K = 11 populations was then chosen
142	using the broken-stick method, following (22). Ancestry proportions estimated by ADMIXTURE
143	were plotted in R. Four individuals that appeared to exhibit recent hybrid ancestry between C.
144	variegatus and C. brontotheroides and two individuals that appeared to exhibit recent hybrid
145	ancestry between C. variegatus and C. desquamator were removed from downstream analyses.
146	We also excluded 15 individuals that appeared as strong outliers in the PCA and ADMIXTURE
147	analyses (3 C. variegatus from SSI, 1 C. brontotheroides, 3 C. laciniatus, 2 C. higuey, 3 C.
148	variegatus from North Carolina, and 3 C. dearborni from Venezuela), resulting in 32
149	Cyprinodon variegatus, 44 C. brontotheroides, and 26 C. desquamator individuals from SSI, 16
150	individuals from C. laciniatus from Lake Cunningham, New Providence Island in the Bahamas,
151	17 C. variegatus from Lake George, Rum Cay, 10 C. higuey from Lake Bavaro, Dominican
152	Republic, 12 C. variegatus from Fort Fisher estuary North Carolina, and 11 C. dearborni from

153	Isla Margarita, Venezuela (Fig 1E). None of the 37 single individuals from other locations were
154	removed. The final dataset used in downstream analyses included 202 individuals.
155	For analyses of genetic variation within sliding windows, we used a window size of 50-
156	kb based on the extent of linkage disequilibrium (LD) along a scaffold estimated by LD decay
157	along the largest scaffold in our genome. We calculated LD decay from pairwise calculations of
158	LD between all SNPs within 100-kb of each other along the largest scaffold using PLINK's LD
159	function (r^2). Linkage disequilibrium decayed to background rates after 50-kb at a threshold of
160	$r^2 \ge 0.1$ (Fig. S6).
161	Within-population nucleotide diversity (π) was calculated in 50-kb windows across the
162	genome for each of eight focal populations (>10 individuals resequenced) using the python script
163	popGenWindows.py available from <u>https://github.com/simonhmartin/genomics_general</u> (23).
164	Since this calculation can be heavily influenced by minor alleles, we calculated π without the 5%
165	minor allele frequency filter. Instead, we filtered all minor alleles with a read depth less than 5 in
166	order to remove any rare variants that may be the result of sequencing error rather than a true
167	minor allele, resulting in 10.8 million variants. We then calculated Dxy and π in sliding
168	windows. The number of nonvariant sites in each window was also factored into these
169	calculations. To ensure equal sample sizes among populations, we downsampled individuals
170	from each population to the number of individuals in the focal population with the lowest
171	sampling ($n = 10$). We randomly selected 10 individuals from each population before calculating
172	π in sliding windows. We repeated this 100 times and averaged π across the replicates (Fig. S1).
173	Due to the large sample size of windows for each population ($N=30,762$), slight differences in
174	mean genome-wide within-population genetic diversity resulted in statistically significant
175	differences in genome-wide diversity among populations (ANOVA, <i>P</i> -value > 2.2×10^{-16}).

176	However, the effect sizes of the difference in these means were small in all comparisons except
177	in the case of two comparisons. The SSI generalist population had a significantly greater
178	genome-wide genetic diversity of an appreciable effect size compared to North Carolina
179	(<i>Cohen's d</i> =0.87) and Venezuela generalist populations (<i>Cohen's d</i> =1.38). The significantly
180	lower within-population genetic diversity in Venezuela than other generalist populations may be
181	due to a recent population bottleneck that was not observed in any other populations (Fig. 1C and
182	S1).
183	Finally, allowing for some admixture, we calculated highly differentiated SNPs between
184	trophic specialists based on $F_{st} \ge 0.95$ (Fig. S2; Table S2-S4; Data S2-S3). F_{st} between the two
185	specialist populations was calculated per variant site using -weir-pop-fist function in vcftools
186	(v.0.1.15; (19)) on the 5.5 million variant dataset.
187	
188	1.6 Mutation rate estimation
188 189	1.6 Mutation rate estimation
	1.6 Mutation rate estimation The spontaneous mutation rate for Caribbean pupfishes was estimated from moderate to high-
189	
189 190	The spontaneous mutation rate for Caribbean pupfishes was estimated from moderate to high-
189 190 191	The spontaneous mutation rate for Caribbean pupfishes was estimated from moderate to high- coverage sequencing (15-69x) of parents and offspring from two independent pedigreed crosses
189 190 191 192	The spontaneous mutation rate for Caribbean pupfishes was estimated from moderate to high- coverage sequencing (15-69x) of parents and offspring from two independent pedigreed crosses of SSI species: one cross between a second generation inbred lab-reared generalist and third-
189 190 191 192 193	The spontaneous mutation rate for Caribbean pupfishes was estimated from moderate to high- coverage sequencing (15-69x) of parents and offspring from two independent pedigreed crosses of SSI species: one cross between a second generation inbred lab-reared generalist and third- generation inbred lab-reared molluscivore individual from Little Lake (<i>C. variegatus x C.</i>
189 190 191 192 193 194	The spontaneous mutation rate for Caribbean pupfishes was estimated from moderate to high- coverage sequencing (15-69x) of parents and offspring from two independent pedigreed crosses of SSI species: one cross between a second generation inbred lab-reared generalist and third- generation inbred lab-reared molluscivore individual from Little Lake (<i>C. variegatus x C.</i> <i>brontotheroides</i>) and another between a second-generation lab-reared generalist and second-
189 190 191 192 193 194 195	The spontaneous mutation rate for Caribbean pupfishes was estimated from moderate to high- coverage sequencing (15-69x) of parents and offspring from two independent pedigreed crosses of SSI species: one cross between a second generation inbred lab-reared generalist and third- generation inbred lab-reared molluscivore individual from Little Lake (<i>C. variegatus x C.</i> <i>brontotheroides</i>) and another between a second-generation lab-reared generalist and second- generation lab-reared scale-eater from Little Lake (<i>C. variegatus x C. desquamator</i>). Using the
189 190 191 192 193 194 195 196	The spontaneous mutation rate for Caribbean pupfishes was estimated from moderate to high- coverage sequencing (15-69x) of parents and offspring from two independent pedigreed crosses of SSI species: one cross between a second generation inbred lab-reared generalist and third- generation inbred lab-reared molluscivore individual from Little Lake (<i>C. variegatus x C.</i> <i>brontotheroides</i>) and another between a second-generation lab-reared generalist and second- generation lab-reared scale-eater from Little Lake (<i>C. variegatus x C. desquamator</i>). Using the same pipeline for alignment to the <i>C. brontotheroides</i> reference genome and variant calling as

199	ReadPosRankSum $<$ -8). Following the mutation rate estimation protocol outlined in (24), we
200	independently called alleles for these same individuals again using samtools mpileup (v1.9) with
201	the command line arguments <i>bcftools mpileup -Ou / bcftools call -m -Ob -f GQ,GP</i> . For both sets
202	of alleles (GATK and samtools), poorly mapped regions were then removed using a mask file
203	generated from the program SNPable (http://bit.ly/snpable; k-mer length =50, and
204	'stringency'=0.5). We further excluded sequences in which indels were called in any sample, as
205	well as 3 bp of sequence around the indel.

After variant calling, we searched for new mutations in the offspring by identifying sites 206 where an offspring was heterozygous for an allele not found in either of the parents. We first 207 looked for alleles which were heterozygous in the offspring and alternately homozygous in the 208 parents (i.e. known heterozygous sites). Ten measures of variant quality scores for these known 209 heterozygous sites in the offspring were then used to filter sites for new mutations in the 210 offspring following similar pipelines and filters from several previous studies (24-26). This 211 212 included filtering by 1) genotype quality, 2) mapping quality, 3) base quality rank sum, 4) mapping quality rank sum, 5) quality by depth, 6) site depth, 7) allele depth, 8) read position 213 rank sum, 9) strands odds ratios, and 10) fisher strand scores. Sites were filtered to those greater 214 215 than or equal to the mean score for known heterozygous sites in the offspring for filters 1 and 2 and scores within 2 standard deviations of the mean score for filters 3-10. For example, only new 216 217 mutation sites that had a depth within 2 standard deviations of the mean depth of the known 218 heterozygous sites in the offspring were kept (all specific values used for thresholds reported in 219 Table S9). Additionally, new mutations in the offspring were determined from sites in which parents were homozygous for the reference allele and the offspring were heterozygous with 220 221 quality scores within the range of known heterozygous sites (Table S9) and an allele balance

score between 0.3 and 0.7. This set of alleles was then filtered for those independently called in
both GATK and samtools following (24).

224	Using the GATK function <i>callable loci</i> , we then determined the 'accessible genome': the
225	total number of base pairs from the genome in which mutations could be confidently called for
226	each cross. This number was estimated using the same variant quality filters as for the mutation
227	estimate, excluding those filters that were only applicable to the new mutations and heterozygous
228	sites (i.e. filters assessing quality of alternative allele calls). Genomic regions were excluded if 1)
229	read map depth for a variant was not within two standard deviations of the average read map
230	depth (varies by sample; Table S9), 2) mapping quality scores were less than 50, or 3) base
231	quality scores were less than 30.
232	Since the de novo mutations observed could have originated on either chromosome, the
233	point estimate of the per site mutation rate is the number of new mutations observed divided by
234	two times the size of the accessible genome, following (25). The mutation rates were then
235	averaged across individual offspring for each cross (Table S9) to obtain a mean mutation rate
236	estimate of 1.56×10^{-8} mutations per site per generation. This is faster than mutation rate
237	estimates for other teleosts (26–28); however, short-lived smaller species with higher metabolism
238	rates like pupfishes are expected to exhibit faster mutation rates (29). We estimated generation
239	times in the field to be approximately one year based on laboratory and field (30) longevity
240	studies.
241	

243

242

1.7 Demographic Inferences

244	Various demographic histories can shift the distribution of low- and high-frequency derived
245	alleles to falsely resemble signatures of hard selective sweeps. In order to account for
246	demography in downstream analyses, we used the MSMC (v. 1.0.1; 24) to infer historical
247	effective population size (Ne) changes in our seven focal populations. We ran MSMC on
248	unphased GATK-called genotypes separately for a high-coverage individual in each of seven
249	focal populations (excluding generalist C. higuey due to poor sequencing quality of our single
250	high-coverage individual; 17-28x mean coverage across individuals; Fig 1D; Table S10). As
251	recommended in the MSMC documentation, we masked sites with less than half or more than
252	double the mean coverage for that individual or with a genotype quality below 20. We also
253	excluded sites with less than 10 reads as recommended by Nadachowska-Brzyska et al. (32). To
254	scale the output of MSMC to real time and effective population sizes, we used a one-year
255	generation time (29) and the estimated spontaneous mutation rate of 1.56×10^{-8} per generation
256	per base pair for Caribbean pupfishes (see previous section).

258 **1.8 Introgression** in SSI specialists

259

We characterized differential introgression between specialists in the SSI radiation on both a genome-wide and local level. We visualized the directionality of hybridization and introgression on a genome-wide level using *TreeMix* (v 1.13; (*33*)). *TreeMix* estimates a maximum likelihood phylogeny of the focal populations and then fits a user specified number of migration edges to the tree by comparing genetic covariances of allele frequencies among populations. We ran *TreeMix* with *C. dearborni* as the root node with 0 through 20 migration edges. The most likely number of migration events was chosen using the broken-stick approach (Fig. S7).

267	We investigated how signatures of hybridization at the genome-wide level contributed
268	variation potentially important to the divergence between species using the f_d statistic, which is
269	designed to look for signatures of introgression across sliding genomic windows (23). The f_d
270	statistic, a modified version of the D-statistic, looks at allele frequencies fitting two allelic
271	patterns referred to as ABBA and BABA based on the tree (((P1,P2),P3),O), where O is an
272	outgroup species in which no gene flow is thought to occur with the other populations (23) . We
273	used 2 individuals of C. artifrons from Cancun, Mexico as our outgroup population for this test,
274	which forms the deepest divergence event with C . variegatus within the Cyprinodon clade (1),
275	and focused on introgression between SSI specialists and outgroup Caribbean generalist
276	populations. Based on the tree (((P1,P2),P3), C. artifrons), the f_d statistic was calculated for the
277	combinations of populations in which the focal population (P2) was either the scale-eater or the
278	molluscivore, the other specialist population was the sister group (P1), and P3 was one of the
279	Caribbean outgroup populations (Table S11 and S12). f_d statistics were calculated from 50-kb
280	sliding windows with a minimum of 100 variant sites and no missing data in a population using
281	the ABBABABA.py script (available on
282	https://github.com/simonhmartin/genomics_general;(23)). To compare these patterns of
283	introgression into the specialist to patterns of introgression into focal generalist populations on
284	other islands, we also calculated f_d statistics for focal generalist populations (whenever we had
285	sister groups to fit the relationships necessary for the test (Table S12B and S12D)).
286	Significance of f_d values in sliding windows across the genome was evaluated using simulations
287	with no migration using ms-move (34) . We used estimates of changes in effective population
288	size for each population from our MSMC analyses. We set the divergence time between the two
289	specialists to 10,000 years based on the age of the hypersaline lakes on SSI. The threshold for

290	significant introgression regions was determined by simulating f_d statistics across the genome
291	under a coalescent model with no gene flow, consisting of 150,000 50-kb windows each
292	containing the mean number of alleles observed in our dataset. Empirical windows were
293	considered candidates for introgression if the f_d statistic was above the maximum simulated f_d
294	value (Table S11). We merged consecutive 50-kb f_d outlier windows to estimate the sizes of
295	introgressed regions and approximate the age of introgression events (Fig. 3E-F).
296	
297	1.9 Search for candidate adaptive alleles in SSI specialists
298	
299	1.9.1 Selective sweep detection.
300	We searched for hard selective sweeps in the trophic specialist populations using two different
301	approaches. The first method is based on the site frequency spectrum (SFS) calculated with
302	SweeD (v.3.3.4;(35)). This method calculates the composite likelihood ratio (CLR) of a sweep.
303	We incorporated our empirical estimate of the decrease in population size for each focal
304	population estimated from MSMC analyses in 50-kb windows across scaffolds that were at least
305	100-kb in length (99 scaffolds; 85.6% of the genome). We also calculated CLRs across 100,000
306	scaffolds consisting of neutrally evolving sequences simulated with ms-move (34), controlling
307	for the impact of the inferred population size decreases over time for each population from
308	MSMC runs mentioned above (Fig. 1D; Table S7). The CLR ratios for the simulated datasets
309	were then used to assess outlier CLR ratios from the empirical dataset. We considered regions
310	with CLR ratios above the 95 th percentile value of CLR from the neutral simulated dataset as
311	candidate hard selective sweep regions (scale-eater: $CLR > 5.28$; molluscivore: $CLR > 4.47$;
312	Table S7). We also inferred candidate hard selective sweep regions for the five focal Caribbean

generalist populations (sample size ≥ 10) following the same method outlined above for the specialists (Table S10).

315	To complement our SweeD selection analyses, we also used an LD-based approach for
316	detecting hard selective sweeps implemented in OmegaPlus (36). OmegaPlus implements the ω -
317	statistic introduced in (37) that looks for strong patterns of elevated LD in regions that are
318	associated with selective sweeps. We estimated ω -statistic values in similar 50-kb windows
319	across the scaffolds and across the same simulated datasets used in the SweeD analysis to assess
320	outlier selective sweep regions in the specialist genomes. There was strong overlap in the
321	candidate adaptive alleles between OmegaPlus and SweeD for 93% of candidate adaptive alleles
322	in the scale-eater and 99% of candidate adaptive alleles in the molluscivore (Table S2).
323	OmegaPlus detected many more outlier regions than SweeD (Table S2). LD-based estimates are
324	ideally suited for use with haplotype data rather than genotype data and might be more
325	susceptible to high false positive rates in cases where the demographic model is overly simplistic
326	(38). To be conservative, we only analyzed candidate adaptive alleles detected by both methods.
327	We chose to focus on detecting hard selective sweeps for our candidate adaptive variants
328	because a) their stronger pattern is easier to discern from neutral processes with our moderate
329	population-level sampling and coverage, and b) theoretical and experimental work suggest that
330	soft sweeps of multiple copies of an allele are unlikely for groups with smaller population sizes
331	(39). However, we acknowledge that we may have missed some candidate adaptive variation in
332	the specialists in the form of partial or soft selective sweeps.

1.9.2 Selection of candidate adaptive allele for both specialists

336	To identify candidate adaptive alleles underlying trophic specialists species divergence on SSI,
337	we looked for strongly divergent SNPs between the two specialist species in regions of the
338	genome that showed evidence of hard selective sweeps. We considered divergent SNPs to be
339	those that were nearly fixed ($F_{st} \ge 0.95$) between the specialists to accommodate the small
340	amounts of admixture that can occur between these nascent species (Fig. S2; Table S3-S4; Data
341	S2-S3). For the rest of this study, we considered the 3,258 and 1,477 alleles that were nearly
342	fixed between the species on San Salvador ($F_{st} \ge 0.95$) and located in a candidate selective sweep
343	(empirical CLR > demographic simulations CLR; empirical ω > demographic simulations;
344	Table S2) as the adaptive alleles for the scale-eater and molluscivore, respectively (Table S3-S4;
345	Data S2-S3).
346	
347	1.9.3 Categorization of the spatial distribution of adaptive alleles.
348	We then surveyed all pupfish individuals sampled from outside these populations for this set of
349	adaptive alleles. Alleles were separated into three categories of genetic variation: de novo (the
350	specialist allele was found only on SSI), introgressed (the specialist allele fell in a candidate
351	introgression region determined in the Introgression section) or standing genetic variation (the
352	specialist allele was also found in at least one generalist population sampled outside of SSI).
353	Introgressed variation was further parsed by geographic region of the outgroup source generalist
354	population: North Carolina (NC), New Providence Island (NP), or Dominican Republic (DR).
355	Given that the majority of the adaptive alleles for both specialists (98 and 100% the
356	scale-eater and molluscivores, respectively) exist as standing genetic variation across the
357	Caribbean (Fig. 2A), we looked for how many of these adaptive alleles in the specialists also
358	showed evidence of hard selective sweeps in focal generalist populations outside of SSI. Only

2% of the scale-eater adaptive alleles and 6% of the molluscivore adaptive alleles occurred in
regions that similarly exhibited signatures of a hard selective sweep in generalist populations
outside of SSI (Fig. S3).

- 362
- 363

1.10 Introgression in outgroup generalist populations

364

We were interested in whether San Salvador Island specialist genomes exhibited more 365 introgression in regions undergoing hard selective sweeps than other generalist populations. In 366 the absence of a clear null expectation for the number of introgressed regions, we calculated the 367 number of these adaptive introgression regions for the specialists that were also outlier f_d regions 368 in other combinations of populations across the Caribbean (Table S11), to determine if those 369 adaptive introgression regions observed in the specialists had also introgressed in other 370 populations. Since several outgroup generalist populations had multiple values for the number of 371 372 adaptive introgression regions (due to several different combinations of sister lineages (P1) available for testing against: Table S11), only the mean number of adaptive introgression regions 373 per generalist population was shown for ease of visualization (Table S11; Fig. 3E-F). North 374 375 Carolina and Venezuela were excluded as focal populations for these introgression tests because we lacked suitable outgroup taxa for them. Since these counts were not normally distributed, we 376 377 used the non-parametric Mann-Whitney U test to determine if the mean number of adaptive 378 introgression regions in each specialist was greater than the mean in the rest of the Caribbean (Table S12A v. S12B and Table S12C v. S12D) and calculated 95% confidence intervals around 379 these means using the boot.ci function in the R package boot (v1.3; Fig. 3C). Since neither of the 380 381 SSI specialists appear to have experienced adaptive introgression from the Venezuela C.

383

dearborni population, it was excluded as a potential donor population for the focal generalist populations on other islands as well in these comparative analyses.

384 385

1.12 Functional characterization of adaptive alleles through GO analysis

387

We performed gene ontology (GO) enrichment analyses for genes near candidate adaptive alleles 388 389 using ShinyGo (v.0.51;(40)). For genes with focal GO terms (e.g. feeding behavior, muscle, mouth, eye and craniofacial development) relevant to stages of diversification in this system (i.e. 390 habitat preference, trophic morphology, and pigmentation; Fig. 2C; Fig. 4; Table S5), we also 391 392 checked other annotation databases and studies for verification of putative function, including Phenoscape Knowledgebase (https://kb.phenoscape.org/#/home), NCBI's PubMed 393 (https://www.ncbi.nlm.nih.gov/pubmed), and the Gene Ontology database using AMIGO2 (41). 394 All genes had consistent annotations across databases, except galr2. Galr2 was annotated for 395 feeding behavior in the Biological Processes database (Ensemble 92), but recent studies indicate 396 that it does not play a role in feeding behavior (42, 43). Thus, we removed its annotation as a 397 candidate gene for feeding behavior, but kept it as a candidate for trophic morphology (Table S5-398 S6). 399

400

401 **1.13 Functional characterization of adaptive alleles through genome-wide association** 402 mapping

403

404 1.13.1 Morphometrics and caudal fin pigmentation

We measured two key morphological traits associated with the major axes of phenotypic 405 diversification in the SSI radiation, lower jaw length and nasal protrusion distance. Ethanol-406 407 preserved specimens from SSI were measured from external landmarks on the skull using digital calipers. Measurements were repeated on both lateral sides and averaged for each specimen. 408 Lower jaw length was measured from the quadrate-articular jaw joint to the tip of the most 409 410 anterior tooth on the dentary (Data S6). Nasal protrusion distance was measured by placing a tangent line from the dorsal surface of the neurocranium to the tip of the premaxilla and 411 measuring the perpendicular distance that the nasal region protrudes from this tangent (Fig. S8A; 412 Data S6). Each specimen was also measured for standard length using digital calipers to remove 413 the effects of variation in body size on the craniofacial trait measurements among individuals and 414 species. We log-transformed morphological measurements and regressed them against log-415 transformed standard length (Fig. S9; Data S6) and used the residuals for association mapping 416 analyses. 417

418 The major axis of divergence in reproductive coloration and patterning between trophic specialists on SSI is the overall lightness or darkness of breeding males. Scale-eaters reach a 419 nearly jet black coloration in the wild while guarding a breeding territory whereas molluscivore 420 421 males remain paler throughout their body and fins (Fig 4). This pair of sympatric specialists exceeds the lightness contrast in male reproductive breeding coloration observed across all other 422 423 *Cyprinodon* pupfishes. Females of each species show the same general pattern of 424 lightness/darkness. We detected no difference in the total number of melanocytes on the caudal, 425 anal, or pectoral fins among the SSI species. Instead, we found that scale-eater individuals were significantly darker overall on their caudal fins (two-tailed *t*-test, t=5.25, df=45.5, P-value= 3.8 426 427 x 10^{-6} ; Fig. 4B; Data S6), perhaps due to larger melanocyte areas relative to molluscivores. We

428	found similar patterns for anal and pectoral fins and used only caudal fin lightness values for
429	genome-wide association mapping. A Meiji EMZ-8TR stereomicroscope with standardized
430	external illumination and an OMAX 18 Mp digital microscope camera was used to take lateral
431	photographs of the caudal fin of each individual against the same white reference background in
432	each image (Fig. 4B;Data S6). Adobe Photoshop (Creative Cloud) was used to select a
433	rectangular area from inside the caudal fin, not including the caudal peduncle region or terminal
434	marginal band, and measure the mean overall lightness of this region relative to a control region
435	selected from the illuminated white background (following (44)). Standardized caudal fin
436	pigmentation was then calculated as the proportion of the caudal fin lightness value relative to
437	the control background lightness value for downstream analyses.
438	
439	1.13.2 Genome-wide association mapping analyses
440	We employed a Bayesian sparse linear mixed model (BSLMM) implemented in the GEMMA
441	software package (v. 0.94.1; (45)) to identify genomic regions associated with variation in lower
442	oral jaw length, caudal fin pigmentation, and nasal protrusion distance across the three species on
443	SSI. We only included individuals from SSI given extensive Caribbean-wide population
444	structure (Fig 1C). We specifically performed genome-wide association mapping with GEMMA
445	because of its demonstrated effectiveness in accounting for relatedness among samples and in
446	controlling for population stratification by internally calculating a genetic relatedness matrix and
447	incorporating it as a covariate in the BSLMM. The BSLMM uses Markov Chain Monte Carlo
448	(MCMC) sampling to estimate the proportion of phenotypic variation explained by all SNPs
449	included in the analysis (proportion of phenotypic variance explained [PVE]; Fig. S10A-C), only
450	SNPs of large effect (proportion of genetic variance explained by sparse effects [PGE]; Fig.

451	S10D-F), and the number of large-effect SNPs needed to explain PGE (nSNPs; Fig. S10G-I).
452	GEMMA also estimates a posterior inclusion probability (PIP) for each SNP. We used PIP, the
453	proportion of steps in MCMC chain in which a SNP is estimated to have a non-zero effect on
454	phenotypic variation, to assess the significance of regions associated with jaw size variation. We
455	performed 10 independent MCMC runs of the BSLMM with 100 million steps and a burn-in of
456	50 million steps for three traits (lower oral jaw size ($n = 78$), caudal fin pigmentation ($n = 61$),
457	and nasal protrusion distance ($n = 65$)). We chose to only include SSI individuals in these
458	analyses given extensive Caribbean-wide population structure that could confound significant
459	associations (Fig. 1C). We summed PIP parameter estimates across 20-kb windows to avoid
460	dispersion of the posterior probability density across SNPs in linkage disequilibrium due to
461	physical linkage following (46). All 10 independent runs were consistent in reporting the
462	strongest associations for the same 20-kb windows. We identified regions strongly associated
463	with our traits of interests by a PIP score in the 99 th percentile across all regions (Data S7-9). Our
464	PIP estimates for strongly associated windows suggest that jaw length may be controlled
465	predominantly by a few loci of moderate effect (see bimodal PGE distribution, Fig. S10H). This
466	is consistent with a previous QTL mapping study in an F2 intercross between SSI trophic
467	specialists which detected one significant QTL with moderate effects on oral jaw size explaining
468	up to 15% of the variation and three to four additional potential quantitative trait loci (QTL) with
469	similar moderate effects (47).
470	

1.14 Functional characterization of adaptive alleles through differential gene expression 472 and QTL analysis from previous studies

1.14.1 Differential gene expression

Additionally, we looked for overlap between genes associated with our set of adaptive alleles
and genes differentially expressed between the two specialists in whole embryos at two early
developmental stages (2 and 8 days post-fertilization (dpf)) reported in previous studies (48, 49).
Tables with significantly differentially expressed genes at 2 and 8 dpf from these studies are
provided in Data S4 and S5.

480

481 *1.14.2 QTL analysis for jaw size*

We also investigated our set of adaptive alleles for effects on craniofacial morphology by 482 overlapping scaffolds with a previously published linkage map and QTL analysis of an F2 483 intercross between specialist species (47). We overlapped markers from this study that spanned 484 the 95% Bayesian credible interval for a significant QTL for lower jaw length (LG15; taken from 485 Fig S2 in (47)). The fasta sequences for these two markers bookending the QTL region on a 486 single scaffold were then blasted against the Cyprinodon brontotheriodes genome using the 487 blastn function in BLAST+ (50) and we selected the result with the highest percent identity and 488 lowest e-value (Table S8). We then looked at all the genic regions within the interval between 489 490 these two markers to investigate overlap between the QTL region and the alleles in this current study. The top hits for overlap between the sequences of two markers that spanned the LG15 491 492 QTL region and the *Cyprinodon brontotheroides* reference genome showed that this QTL 493 corresponds to an 18 Mb region on scaffold c_bro_v1_0_ scaf8 (Table S8). However, this large region contained only a few adaptive alleles associated with the genes map2k6 (3 alleles), galr2 494 (2 alleles), and *grid2ip* (4 alleles). 495

496

500

<u>1.15 Timing of divergence for adaptive alleles</u>

If adaptive diversification in this radiation of pupfishes occurred in temporal stages as proposed 501 502 in other systems (e.g. 'behavior-first evolution'; (51-53)), we predicted that there would be an ordering of divergence times among sweeps containing genes annotated for traits related to 503 different trait axes in this system (Table S6-S7). In order to determine if there have been stages 504 of adaptation in this adaptive radiation of pupfishes, we first estimated divergence times between 505 506 molluscivores and scale-eaters for each adaptive allele. Many methods for estimating divergence times and allele ages rely on the pattern of variation in the haplotype background surrounding the 507 allele of interest. Heuristic approaches, particularly those that use point estimates of the number 508 509 of derived mutations within a chosen distance of the site are accessible, quick ways to approximate divergence times among regions and allele ages without extensive haplotype data 510 (54, 55). We estimated sequence divergence in regions surrounding alleles using D_{xy} , an absolute 511 measure of genetic divergence. We calculated D_{xy} in 50-kb windows between the genomes for 512 the SSI specialists (scale-eater vs. snail-eater) using the python script popGenWindows.py 513 available from <u>https://github.com/simonhmartin/genomics_general</u> (23). 514

515 To get a heuristic estimate of divergence time between specialists at these adaptive alleles, we used this D_{xy} count of the number of alleles that have accumulated between specialists 516 517 and the approximation that the observed genetic differences between two lineages should be equal to $2\mu t$: t, the time since their divergence and μ , the mutation rate (56). Using the per 518 generation mutation rate estimated above (1.56×10^{-8}) , we calculated the time since divergence 519 520 for adaptive alleles and compared that time to the estimated 6-19 kya age of the radiation (based on estimates of the last period of drying of hypersaline lake basins on SSI (57, 58) and the last 521 glacial maximum (59)). 522

523	To look for stages of diversification along different trait axes using these divergence time
524	estimates, we matched adaptive alleles to potential phenotypes in two ways: 1) from our GO
525	enrichment analyses for genes relevant to the major axes of adaptive radiation in this system (e.g.
526	craniofacial morphology and behavior), and 2) regions strongly associated with either lower jaw
527	size, nasal protrusion distance, or caudal fin pigmentation in the GWAS for SSI pupfish species.
528	We found 31 regions containing adaptive alleles in or near genes with relevant GO terms and 24
529	regions containing adaptive alleles significantly associated with traits in the GWAS (Fig 4).
530	Six significantly enriched GO terms from the GO enrichment analysis of all the adaptive
531	alleles reflect major axes of trait diversification in the radiation: divergent behavior or feeding
532	behavior (GO terms: behavior and feeding behavior) and divergent craniofacial morphology (GO
533	terms: eye, muscle tissue, skeletal and mouth development). There is strong morphological
534	divergence in oral jaw size, eye orbit diameter, and adductor muscle mass among the SSI
535	species. We therefore focused our comparison of divergence time estimates on alleles associated
536	with genes annotated for these traits and 6 GO terms in downstream analyses of stages of
537	adaptation across different trait axes. Melanin pigmentation is another divergent trait in this
538	system, but it was not a significantly enriched GO term in our analyses. We include descriptions
539	of alleles potentially relevant to pigmentation in the main text.
540	We then plotted the divergence time estimates for all adaptive alleles based on their
541	spatial origins (de novo on SSI, introgression, or standing genetic variation). We also plotted all
542	neutral regions that contained a fixed or nearly fixed allele, but no signature of a hard selective
543	sweep (Fig 4, S11 and S12). We pruned alleles by randomly selecting one from the group of
544	alleles that fell within the same 50-kb window so that each plotted point was independent. Some

545 windows had multiple alleles with different spatial distributions (e.g. de novo vs. standing

genetic variation), so we made an alternative plot for alternative spatial distributions of alleles
that occurred within a single 50-kb window (the smaller vs larger spatial distribution; Fig. 4 and
Fig. S12). This applied to several adaptive alleles that were characterized as either introgressed
or standing genetic variation in two regions containing genes with relevant adaptive annotations
(*galr2* and *kcnk2*). In Figure 4 we plotted these alleles in the introgression and de novo columns.
In Figure S12 we plotted these alleles in the standing genetic variation column.

We also explored the impact that the choice of pairwise species used in D_{xy} calculations 552 had on the estimates of divergence times and relative ordering of those times among adaptive 553 alleles. We measured D_{xy} between each of the specialists and C. artifrons, the outgroup used in 554 the f_d statistic to estimate divergence times. The ordering of divergence times among genes and 555 across phenotypic axes in this new calculation was similar to the ordering found for divergence 556 times estimated with D_{xy} between the specialists (Fig 4, Fig S12). This indicates that the older 557 divergence times among some regions is probably not due to 3 in mutation rate between the 558 559 specialists on SSI that isn't observed in other outgroup generalist populations.

- 560
- 561 562

1.16 Timing of selective sweeps on adaptive alleles

563 *1.16.1 Estimating posterior distribution of sweep ages for adaptive alleles*

We also looked for evidence that adaptation occurred in stages by estimating the ages of selective sweeps of adaptive alleles. We used a coalescent-based approach implemented in the R package starTMRCA (v0.6.1; (60)) to get sweep age estimates for adaptive alleles. Estimating sweep ages for all 1,477 molluscivore adaptive alleles and 3,258 scale-eater adaptive alleles was computationally infeasible using this Bayesian approach, so we chose to estimate sweep ages for two subsets of these adaptive alleles (Table S17-18). For the first subset, we estimated sweep

570	ages for all alleles in or near (within 20-kb of) genes annotated for significantly enriched GO
571	terms from our GO enrichment analysis that were relevant to behavior and trophic morphology.
572	This subset included all 12 genes assigned to the behavior GO term, all 10 genes assigned to eye
573	development GO term, all 12 genes assigned to the muscle tissue development GO terms, and all
574	4 genes assigned to the mouth development GO term (Table S5-S7). Several genes were
575	annotated for multiple GO terms, so we ended up estimating sweep ages for a set of adaptive
576	alleles associated with 25 different genes with relevant GO terms for the scale-eater and 6 for the
577	molluscivore. For the second subset of adaptive alleles, we estimated sweep ages for all de novo
578	and introgressed alleles regardless of annotation. This left a large pool of adaptive alleles
579	distributed as standing genetic variation (illustrated in Fig. 4) that we could not estimate selective
580	sweeps for. Therefore in a third subset of alleles, we selected all alleles with equivalently old and
581	young divergence age estimates to our adaptive alleles from the first subset (those annotated for
582	focal GO terms). In these alleles, we investigated what the genes they were in or near are
583	annotated for to determine if they had any relevance to behavior or trophic morphology we may
584	have missed. If the regions surrounding the adaptive alleles were unannotated, we aligned the
585	100-kb region surrounding the allele to the references genomes of C. variegatus, zebrafish and
586	medaka available on Ensembl 96 (61) using the same protocol in Section 1.14.2 to look for
587	potentially relevant gene annotations we may have missed in annotating the C. bronotheriodes
588	reference genome in this study.
589	For each candidate adaptive allele from the two subsets mentioned above, a 1-Mb

window surrounding the variant was extracted into a separate vcf for both specialist populations and the SSI generalists. We removed 2 generalist and 1 molluscivore individuals from this analysis that had with more than 10% missing data because starTMRCA requires complete

593	genotype data. For all remaining individuals, we then used the LD KKNI command in Tassel5
594	(62) to infer missing sites based on LD if possible. After this imputation step, we then removed
595	the small number of sites with any missing data across individuals within each population.

596 We then input this dataset with no missing allele information into starTMRCA. We used the mutation rate estimate of 1.56×10^{-8} substitutions per base pair estimated in this study and a 597 recombination rate of 3.11×10^{-8} (from genome-wide recombination rate estimate for 598 599 stickleback; (63)) in order to estimate the age of selective sweeps for adaptive alleles. For the cases in which we had more than one adaptive allele in a selective sweep region, the variant with 600 the highest F_{st} was chosen as the location of the beneficial allele for the sweep age estimate. We 601 602 thus estimated sweep ages for 86 sets of adaptive alleles across scale-eater and molluscivores. We calculated posterior distributions of sweep age estimates using three independent runs of 603 10,000 steps. All runs were checked for convergence of age estimates between and within runs. 604

605 We then ran permutation tests to determine how likely the ordering of selective sweep ages by trait axes (i.e. feeding behavior, trophic morphology) was to occur by chance alone. To do this 606 607 we randomly reassigned the ordering of the ages we estimated across the 22 sets of adaptive alleles 10,000 times without replacement. Then we estimated the probability of seeing the 608 609 observed number of times the oldest sweep ages were all associated with a particular trait axes by counting the number of random permutations which matched or exceeded the observe pattern. 610 611 For example, 5 out of these 22 adaptive allele sets were associated with feeding behavior. We 612 then counted how many random permutations had an ordering in which the first three (the observed pattern), four, or five oldest sweeps were associated with feeding behavior to calculate 613 614 an empirical P-value.

616 *1.16.2 The robustness of sweep age estimates across genealogical assumptions*

Additionally, we explored how robust these sweep age estimates were to the assumption made 617 by starTMRCA that the sweep left a star-shaped genealogy pattern. This pattern is expected for 618 sweeps that arose from a single copy of an allele in which many alleles in one generation 619 coalesce back to a single ancestor in the previous generation. We wanted to explore how robust 620 our age estimates were particularly because we are comparing alleles with very different spatial 621 distributions (de novo, introgressed, and standing). If the underlying allelic genealogy does not 622 follow the star-shaped pattern of coalescence expected by selective sweeps from a single allele 623 624 copy and instead swept from multiple copies in a soft sweep, using different subsets of 625 individuals from a population or species could result in vastly different sweep age estimates (60) and indicate that they do not fit the star-shaped pattern assumed by starTMRCA. 626

Therefore, we re-estimated our sweep ages solely using the Osprey lake populations of scale-eaters and molluscivores and compared these age estimates to those from the entire population of scale-eaters on SSI. The age estimates for Osprey Lake were very similar to the entire SSI population and the relative ordering of age estimates across adaptive alleles was nearly identical (Fig. S14). This indicates that the sweep ages estimates, particularly their relative ordering, were robust to differences in spatial distribution and potential differences in genealogical patterns among alleles.

634

635 1.16.3 The robustness of sweep age estimates across different methods

636	We also explored the robustness of selective sweep ages estimated by starTMRCA by
637	additionally estimating sweep ages using an independent R package called McSwan (v1.1.1;;
638	https://github.com/sunyatin/McSwan; (64)). McSwan detects hard selective sweeps by
639	comparing local site frequency spectra (SFS) simulated under neutral and selective demographic
640	models, which it uses to assign selective sweeps to regions of the genome and predict the age of
641	selection events (64). By using information from the SFS, McSwan is advantageous for
642	estimating selective sweep ages in non-model organisms because it does not require high quality
643	haplotype data to detect sweeps and predict their ages. However, this flexibility comes at the cost
644	of not jointly estimating the selection coefficient of a particular sweep, so it assumes the strength
645	of selection is equal across all sweeps (64). With a mutation rate estimate, neutral demographic
646	model (effective population size changes and divergence events), and variant file, McSwan
647	generates simulated and observed SFSs and a prior of sweep ages, whose upper bound is
648	determined by the divergence time estimate specified in the demographic model (in our case:
649	10,000 years). McSwan uses these simulated selective and neutral SFSs to scan the input variant
650	file for selective sweep regions and produce a posterior distribution of sweep ages for each
651	sweep region it detects.

To simulate the SFSs required by McSwan to estimate sweep ages, we used our estimated mutation rate (1.56×10^{-8}) , the same demographic models of changes in effective population sizes used in our SweeD runs for the generalists and scale-eater populations (Table S10), and a divergence time estimate between SSI generalist and scale-eater of 10,000 years. We first simulated neutral and selection SFSs that were each comprised of 2,000 simulations (default recommendation) across sequences 50-kb in length. To look for selective sweeps in the specialists, we then generated empirical SFSs from scans across the 500-kb region surrounding

659	each of the 22 sets of adaptive alleles highlighted in Figure 4. To precisely determine the
660	boundaries of hard selective sweeps, McSwan iterates its genomic scans over adjacent windows
661	of various lengths and offsets and compares the empirical SFS to the simulated SFS under
662	selection to assign regions as selective sweeps. We set up the iterative scans across these 500-kb
663	regions in sliding windows that ranged from 1000 bp to 200-kb in length and a minimum of 50
664	alleles required per window. Each sliding scan of the 500-kb region used 100 overlapping steps
665	(default setting). We then looked for overlap between the regions detected as hard selective
666	sweeps by McSwan with adaptive allelles previously detected with SweeD and F_{st} (Table S2-
667	S3).

For these 11 regions, we filtered the distribution of sweep ages for estimates that had a 668 stability value (a parameter that represents the strength of support for a selective sweep model 669 over a neutral model) in the 95th percentile. To get a likely range of selective sweep age 670 estimates for each region, we calculated the 95% high posterior density (HPD) region with the R 671 package HDIntervals (v0.2; https://cran.r-project.org/web/packages/HDInterval/index.html) from 672 their respective posterior distributions. We repeated this process for the 6 sets of adaptive alleles 673 found in the molluscivore, only three of which were also detected as being under a selective 674 sweep in McSwan. The 95% HPD of these age estimates for the scale-eater and molluscivore 675 676 populations are presented in Figure 4C, S15 and Table S19 and the full posteriors are shown in Figure S16 and S17. We then assessed the probability of observing the same ordering of sweep 677 ages across alleles from different trait axes (i.e. feeding behavior and trophic morphology) using 678 679 the same permutation approach described in Section 1.13.1.

680

681 **2. Supplementary Results and Discussion**

683

2.1 Spatiotemporal stages of adaption based on timing of divergence among adaptive alleles

684 2.2.1 Evidence of stages of adaptation across different axes of trait diversification from 685 divergence time estimates

Based on relevant GO terms, we found that several adaptive alleles in or near genes annotated
for feeding behavior exhibited the oldest divergence times (Fig 4A and S12) while adaptive
alleles in or near genes annotated for craniofacial morphology and pigmentation showed younger
divergence times (Fig 4A and S12). Similarly, we found younger divergence times among
regions with genes annotated for traits related to trophic morphology based on GWAS
annotations (Fig 4B).

When we compare divergence estimates from across all adaptive alleles and not just 692 those with relevant GO annotations, there are three sets of alleles with similarly old divergence 693 694 time estimates to our oldest feeding behavior candidates (*prlh* and *cfap20*; Fig 4A) in the scaleeater and six sets of alleles with similarly old divergence time estimates to our oldest eye 695 696 morphology candidate in the molluscivores (zhx2; Fig 4B). We investigated the genomic regions 697 surrounding these adaptive alleles for any annotations relevant to behavior or craniofacial 698 morphology that we may have missed from the GO enrichment analysis. If the regions were unannotated in our C. brontotheroides genome, we blasted the regions to the C. variegatus and 699 model organism medaka and zebrafish references genomes on Ensembl (96;(61)) to check for 700 701 additional gene annotations.

From this additional search, we found three sets of adaptive alleles with similar
divergence times to the oldest feeding behavior alleles (*prlh* and *cfap20*; Fig 4A) but the single

704	gene (gpr20) these alleles were near did not appear to have any relevant annotations for behavior
705	or craniofacial morphology and the additional two unannotated regions were also unannotated in
706	the other reference genomes (Cyprinodon variegatus, medaka, and zebrafish). Similarly in
707	molluscivores, two sets of adaptive alleles (shisa2 and gga1) with older divergence estimates
708	(Fig 4B) were not near any genes annotated for feeding behavior or craniofacial traits and the
709	four unannotated regions were unannotated in other reference genomes as well. We also searched
710	all adaptive alleles comparable in age to the youngest adaptive alleles from our stages of
711	adaptation analysis (twist1 and slc16a1). The genes associated with these two sets of alleles
712	(tstd1 and slc35e1) with younger ages than the twist1 allele similarly did not have relevant
713	annotations for feeding behavior or craniofacial morphology.
714	
715	2.1.3 The ordering of divergence times among adaptive alleles not driven by variation in
716	mutation rate among regions of the genome
717	Differences in mutation rate across the genome could confound our estimates of
718	divergence times. For example, regions with the oldest divergence time estimates might only
719	appear old because they are located in regions with higher mutation rates than other regions in
720	the genome. To explore this possibility, we found that the scaffolds containing feeding behavior
721	genes do not appear to have higher counts of de novo mutations in our controlled laboratory
722	crosses (Fig S13A-C) nor more called variants than other scaffolds in the larger genomic dataset
723	
	of wild individuals from across the Caribbean. Thus, we did not find any evidence of elevated
724	of wild individuals from across the Caribbean. Thus, we did not find any evidence of elevated mutation rates on the three scaffolds containing the oldest divergence times for feeding behavior
724 725	

2.2 Spatiotemporal stages of adaption based on timing of selection on adaptive alleles

2.2.1 Evidence of stages of adaptation across different axes of trait diversification from
 starTMRCA

Although we ran starTMRCA on all scale-eater and molluscivores adaptive alleles that were in or near all genes annotated for behavior or craniofacial morphology from our GO enrichment analysis, we were unable to get estimates for twelve sets of adaptive alleles due to poor convergence within 10,000 steps across the 3 independent runs in starTMRCA. These alleles were discarded from sweep age comparisons. The lack of power to estimate sweep ages with certainty for these alleles may be due to weaker selection on these adaptive alleles or greater variability in the strength of selection across populations in different lakes.

Therefore, our downstream analyses included sweep age estimates from 26 of the 31 sets 737 of sweep age estimates from alleles associated with genes that have behavior or craniofacial 738 morphology GO term annotations (22 of 25 for scale-eater, and 4 of 6 in molluscivores; Fig 4E-739 F). For the molluscivore, we are missing sweep age estimates for the adaptive alleles near the 740 gene *atp8a2* (annotated for eye development and feeding behavior) and *tiparp* (annotated for 741 craniofacial morphology). For the scale-eater, we are missing sweep ages for adaptive alleles in 742 or near two genes annotated for eye development (gnat2, zhx2) and one annotated for muscle 743 tissue development (med1). However, we did have sweep age estimates for all adaptive alleles in 744 745 or near genes relevant to behavior and mouth morphology for the scale-eater. We therefore believe that the 'behavior-first' stage of adaptation we see is fairly robust in comparison to a 746 second stage of adaptive divergence in trophic morphology. 747

748	We observed a notably 'behavior-first' stage of adaptive diversification, largely driven by
749	the fact that the three oldest selective sweeps occurred in adaptive alleles in or near genes
750	annotated for feeding behavior among the scale-eater alleles. We further investigated the
751	probability that this 'behavior first' pattern could occur by chance using a permutation test. The
752	probability that the first three or more of the oldest selective sweeps would all be associated with
753	feeding behavior by chance alone is small (permutation test, P -value =0.01).

754

2.2.2 Evidence of stages of adaptation across different axes of trait diversification from McSwan 755

756	For the scale-eater population, only 8 of the 25 sets of alleles detected as hard selective sweeps
757	using SweeD were also detected as hard selective sweeps using McSwan and given age
758	estimates. In Tournebize et al. (64), they noted low power to detect selective sweeps when
759	selection was relatively weak (s ≤ 0.05) and recent (Supplemental information Section 2 of (64)).
760	In one case, the alleles surrounding the adjacent genes <i>cenpf</i> and <i>kcnk2</i> were detected within the
761	same large selective sweep in McSwan and thus have the same age estimates (Fig. S15B).
762	However, the twelve additional adaptive alleles undetected by McSwan may be under weaker
763	selection or more recent. Due to the very recent timing of selection in this system and the much
764	larger set of sweep age estimates obtained from starTMRCA, we present only the starTMRCA
765	sweep ages in the main text.

We also found a similar 'behavior-first' stage of adaptive diversification with this 766 smaller subset of sweep age estimates from McSwan. The two oldest sweeps in the scale-eater 767

769

were both associated with feeding behavior (*prlh* and *cfap20*). The probability of observing this pattern by chance alone is small (permutation test; *P*-value = 0.033).

2.2.3 Spatiotemporal stages of adaptive introgression from different source populations

We estimated selective sweep ages across all de novo and introgressed variants in the scale-eater 771 and molluscivores regardless of gene annotations as well. We find evidence that introgressed 772 adaptive alleles swept before any de novo adaptive alleles (Fig S5) and selection on introgressed 773 variation occurred throughout the process of radiation. Introgressed alleles sweeping before de 774 novo alleles further supports a role for hybridization being necessary for radiation in this system. 775 We also assessed whether there were significant differences in the timing of selection 776 across de novo and introgressed alleles coming from different source populations using 777 778 ANOVA. We found that alleles originating in North Carolina swept significantly earlier than introgressed alleles from New Providence Island and the Dominican Republic (P-value =0.03 779 780 and P-value=0.02 respectively; Fig 4G-H). Sweeps of adaptive alleles introgressed from North Carolina also trended older than sweeps of de novo adaptive alleles, although this was not a 781 782 significant difference (*P*-value=0.06). Sweeps of de novo adaptive alleles occurred concurrently 783 with sweeps of introgressed alleles from New Providence Island and the Dominican Republic (P-784 value=0.61).

785

787

786 **References**

- A. A. Echelle, E. W. Carson, A. F. Echelle, D. Bussche, T. E. Dowling, Historical Biogeography of the New-World Pupfish Genus Cyprinodon (Teleostei: Cyprinodontidae). *Copeia*. 2005, 320–339 (2005).
- 2. A. Valdés González, L. Martínez Estévez, M. E. Ángeles Villeda, G. Ceballos, The
| 792 | | extinction of the Catarina pupfish Megupsilon aporus and the implications for the |
|------------|-----|---|
| 793 | | conservation of freshwater fish in Mexico. <i>Oryx.</i> 54 , 154–160 (2020). |
| 794 | 3. | E. J. Richards, C. H. Martin, Adaptive introgression from distant Caribbean islands |
| 795 | | contributed to the diversification of a microendemic adaptive radiation of trophic |
| 796 | | specialist pupfishes. PLoS Genet. 13, 1–35 (2017). |
| 797 | 4. | C. H. Martin, P. C. Wainwright, A remarkable species flock of Cyprinodon pupfishes |
| 798 | | endemic to San Salvador Island, Bahamas. Bull. Peabody Museum Nat. Hist. 54, 231–241 |
| 799 | | (2013). |
| 800 | 5. | M. R. Green, J. Sambrook, Isolation of high-molecular-weight DNA using organic |
| 801 | | solvents. Cold Spring Harb. Protoc. 2017, 356–359 (2017). |
| 802 | 6. | N. I. Weisenfeld, V. Kumar, P. Shah, D. M. Church, D. B. Jaffe, Corrigendum: Direct |
| 803 | | determination of diploid genome sequences. Genome Res. 28, 757-767 (2018). |
| 804 | 7. | J. R. Wang, J. Holt, L. McMillan, C. D. Jones, FMLRC: Hybrid long read error correction |
| 805 | | using an FM-index. BMC Bioinformatics. 19, 1–11 (2018). |
| 806 | 8. | R. L. Warren, C. Yang, B. P. Vandervalk, B. Behsaz, A. Lagman, S. J. M. Jones, I. Birol, |
| 807 | | LINKS: Scalable, alignment-free scaffolding of draft genomes with long reads. |
| 808 | | Gigascience. 4 (2015), doi:10.1186/s13742-015-0076-3. |
| 809 | 9. | N. C. Durand, M. S. Shamim, I. Machol, S. S. P. Rao, M. H. Huntley, E. S. Lander, E. L. |
| 810 | | Aiden, Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C |
| 811 | | Experiments. Cell Syst. 3, 95–98 (2016). |
| 812 | 10. | O. Dudchenko, S. S. Batra, A. D. Omer, S. K. Nyquist, M. Hoeger, N. C. Durand, M. S. |
| 813 | | Shamim, I. Machol, E. S. Lander, A. P. Aiden, E. L. Aiden, Science (80)., in press, |
| 814 | | doi:10.1126/science.aal3327. |
| 815 | 11. | R. Vaser, I. Sovic, N. Nagarajan, Š. Mile, Fast and accurate de novo genome assembly |
| 816 | 10 | from long uncorrected reads. <i>Genome Res.</i> , 1–10 (2017). |
| 817 | 12. | F. A. Simão, R. M. Waterhouse, P. Ioannidis, E. V Kriventseva, E. M. Zdobnov, BUSCO: |
| 818 | | assessing genome assembly and annotation completeness with single-copy orthologs.
$P_{i} = (1 - 21) (2015)$ |
| 819 | 12 | Bioinformatics. 31, 3210–3212 (2015). |
| 820 | 13. | B. L. Cantarel, I. Korf, S. M. C. Robb, G. Parra, E. Ross, B. Moore, C. Holt, A. S. |
| 821
822 | | Alvarado, M. Yandell, MAKER: An easy-to-use annotation pipeline designed for |
| 822
823 | 14. | emerging model organism genomes. <i>Genome Res.</i> 18 , 188–196 (2008).
E. S. Lencer, W. C. Warren, R. Harrison, A. R. McCune, The Cyprinodon variegatus |
| 823
824 | 14. | genome reveals gene expression changes underlying differences in skull morphology |
| 824
825 | | among closely related species. <i>BMC Genomics</i> . 18 , 424 (2017). |
| 825
826 | 15. | A. Bateman, UniProt: A worldwide hub of protein knowledge. <i>Nucleic Acids Res.</i> 47, |
| 820 | 15. | D506–D515 (2019). |
| 828 | 16. | H. Li, R. Durbin, Inference of human population history from individual whole-genome |
| 829 | 10. | sequences. <i>Nature</i> . 475 , 493–496 (2011). |
| 830 | 17. | M. A. DePristo, E. Banks, R. Poplin, K. V Garimella, J. R. Maguire, C. Hartl, A. A. |
| 831 | | Philippakis, G. del Angel, M. A. Rivas, M. Hanna, A. McKenna, T. J. Fennell, A. M. |
| 832 | | Kernytsky, A. Y. Sivachenko, K. Cibulskis, S. B. Gabriel, D. Altshuler, M. J. Daly, A |
| 833 | | framework for variation discovery and genotyping using next-generation DNA sequencing |
| 834 | | data. Nat. Genet. 43, 491–8 (2011). |
| 835 | 18. | C. D. Marsden, Y. Lee, K. Kreppel, A. Weakley, A. Cornel, H. M. Ferguson, E. Eskin, G. |
| 836 | | C. Lanzaro, Diversity, differentiation, and linkage disequilibrium: prospects for |
| 837 | | association mapping in the malaria vector Anopheles arabiensis. G3 (Bethesda). 4, 121–31 |
| | | |

(2014). 838 19. P. Danecek, A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo, R. E. 839 Handsaker, G. Lunter, G. T. Marth, S. T. Sherry, G. McVean, R. Durbin, 1000 Genomes 840 Project Analysis Group, The variant call format and VCFtools. *Bioinformatics*. 27, 2156– 841 2158 (2011). 842 20. S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M. A. R. Ferreira, D. Bender, J. Maller, 843 P. Sklar, P. I. W. de Bakker, M. J. Daly, P. C. Sham, PLINK: A Tool Set for Whole-844 Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 81, 845 559-575 (2007). 846 21. D. H. Alexander, J. Novembre, K. Lange, Fast model-based estimation of ancestry in 847 unrelated individuals. Genome Res. 19, 1655–1664 (2009). 848 G. Evanno, S. Regnaut, J. Goudet, Detecting the number of clusters of individuals using 22. 849 the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005). 850 23. S. H. Martin, J. W. Davey, C. D. Jiggins, Evaluating the use of ABBA-BABA statistics to 851 locate introgressed loci. Mol. Biol. Evol. 32, 244-257 (2015). 852 24. C. Feng, M. Pettersson, S. Lamichhaney, C. J. Rubin, N. Rafati, M. Casini, A. Folkvord, 853 L. Andersson, Moderate nucleotide diversity in the Atlantic herring is associated with a 854 low mutation rate. *Elife*. 6, 1–14 (2017). 855 25. F. L. Wu, M. Przeworski, P. Moorjani, M. Przeworski, A. I. Strand, L. A. Cox, L. A. Cox, 856 C. Ober, J. D. Wall, A. I. Strand, P. Moorjani, A comparison of humans and baboons 857 suggests germline mutation rates do not track cell divisions (2020; 858 http://dx.doi.org/10.1371/journal.pbio.3000838), vol. 18. 859 26. M. Malinsky, H. Svardal, A. M. Tyers, E. A. Miska, M. J. Genner, G. F. Turner, R. 860 Durbin, Whole-genome sequences of Malawi cichlids reveal multiple radiations 861 interconnected by gene flow. Nat. Ecol. Evol. 2, 1940–1955 (2018). 862 27. A. F. Kautt, G. Machado-Schiaffino, A. Meyer, Multispecies Outcomes of Sympatric 863 Speciation after Admixture with the Source Population in Two Radiations of Nicaraguan 864 Crater Lake Cichlids. PLoS Genet. 12, 1–33 (2016). 865 28. B. Guo, F. J. J. Chain, E. Bornberg-Bauer, E. H. Leder, J. Merilä, Genomic divergence 866 between nine- and three-spined sticklebacks. BMC Genomics. 14, 756 (2013). 867 29. C. H. Martin, J. E. Crawford, B. J. Turner, L. H. Simons, Diabolical survival in Death 868 Valley: recent pupfish colonization, gene flow and genetic assimilation in the smallest 869 870 species range on earth. Proc. R. Soc. B Biol. Sci. 283, 20152334 (2016). 30. C. H. Martin, K. Gould, C. Bocklage, Surprising spatiotemporal stability and frequency-871 independence across multiple fitness peaks driving adaptive radiation in the wild (2019). 872 S. Schiffels, R. Durbin, Inferring human population size and separation history from 873 31. multiple genome sequences. Nat. Genet. 46, 919 (2014). 874 32. K. Nadachowska-Brzyska, R. Burri, L. Smeds, H. Ellegren, PSMC analysis of effective 875 876 population sizes in molecular ecology and its application to black-and-white Ficedula flycatchers. Mol. Ecol. 25, 1058–1072 (2016). 877 33. J. K. Pickrell, J. K. Pritchard, Inference of Population Splits and Mixtures from Genome-878 879 Wide Allele Frequency Data. PLoS Genet. 8, e1002967 (2012). 34. D. Garrigan, A. Geneva, msmove: A modified version of Hudson's coalescent simulator 880 ms allowing for finer control and tracking of migrant genealogies (2014), 881 doi:10.6084/m9.figshare.1060474. 882

883 35. P. Pavlidis, D. Živković, A. Stamatakis, N. Alachiotis, SweeD: Likelihood-based

884		detection of selective sweeps in thousands of genomes. <i>Mol. Biol. Evol.</i> 30 , 2224–2234 (2012)
885 886	36.	(2013). N. Alachiotis, A. Stamatakis, P. Pavlidis, OmegaPlus: a scalable tool for rapid detection of
887	50.	selective sweeps in whole-genome datasets. <i>Bioinformatics</i> . 28 , 2274–2275 (2012).
888	37.	Y. Kim, R. Neilsen, Linkage disequilibrium as a signature of selective sweeps. <i>Genetics</i> .
889	57.	167 , 1513–1524 (2004).
890	38.	P. Pavlidis, N. Alachiotis, A survey of methods and tools to detect recent and strong
891	50.	positive selection. J. Biol. Res. 24, 7 (2017).
892	39.	J. D. Jensen, On the unfounded enthusiasm for soft selective sweeps. <i>Nat. Commun.</i> 5,
893		5281 (2014).
894	40.	S. X. Ge, D. Jung, ShinyGO: a graphical enrichment tool for animals and plants. <i>bioRxiv</i> ,
895		2 (2018).
896	41.	E. Balsa-Canto, D. Henriques, A. Gabor, J. R. Banga, AMIGO2, a toolbox for dynamic
897		modeling, optimization and control in systems biology. <i>Bioinformatics</i> . 32 , 1–2 (2016).
898	42.	M. E. Anderson, J. Runesson, I. Saar, Ü. Langel, J. K. Robinson, Galanin, through GalR1
899		but not GalR2 receptors, decreases motivation at times of high appetitive behavior. Behav.
900		Brain Res. 239, 90–93 (2013).
901	43.	S. Wang, L. Ghibaudi, T. Hashemi, C. He, C. Strader, M. Bayne, H. Davis, J. J. Hwa, The
902		GalR2 galanin receptor mediates galanin-induced jejunal contraction, but not feeding
903		behavior, in the rat: Differentiation of central and peripheral effects of receptor subtype
904		activation. FEBS Lett. 434, 277–282 (1998).
905	44.	C. H. Martin, S. Johnsen, A field test of the Hamilton-Zuk hypothesis in the Trinidadian
906		guppy (Poecilia reticulata). Behav. Ecol. Sociobiol. 61, 1897–1909 (2007).
907	45.	X. Zhou, P. Carbonetto, M. Stephens, Polygenic modeling with bayesian sparse linear
908		mixed models. PLoS Genet. 9, e1003264 (2013).
909	46.	J. A. McGirr, C. H. Martin, Novel candidate genes underlying extreme trophic
910		specialization in Caribbean pupfishes. Mol. Biol. Evol. 34, 873–888 (2016).
911	47.	C. H. Martin, P. A. Erickson, C. T. Miller, The genetic architecture of novel trophic
912		specialists: higher effect sizes are associated with exceptional oral jaw diversification in a
913	10	pupfish adaptive radiation. <i>Mol. Ecol.</i> 26 , 624–638 (2017).
914	48.	J. A. Mcgirr, C. H. Martin, Parallel evolution of gene expression between trophic
915	40	specialists despite divergent genotypes and morphologies. <i>Evol. Lett.</i> 2 , 62–75 (2018).
916	49.	J. A. McGirr, C. H. Martin, Ecological divergence in sympatry causes gene misexpression
917	50	in hybrids. Mol. Ecol. 29, 2707–2721 (2020).
918	50.	C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, T. L.
919 020	51	Madden, BLAST+: Architecture and applications. <i>BMC Bioinformatics</i> . 10 , 1–9 (2009).
920 021	51. 52.	E. Mayr, <i>Animal species and evolution</i> (Belknap, Cambridge, MA, 1963).R. B. Huey, P. E. Hertz, B. Sinervo, Behavioral drive versus behavioral inertia in
921 922	52.	evolution: A null model approach. <i>Am. Nat.</i> 161 , 357–366 (2003).
922 923	53.	J. B. Losos, T. W. Schoener, D. A. Spiller, Predator-induced behaviour shifts and natural
923 924	55.	selection in field-experimental lizard populations. <i>Nature</i> . 432 , 505–508 (2004).
92 4 925	54.	R. R. Hudson, The Variance of Coalescent Time Estimates from DNA Sequences. J. Mol.
925 926	J.T.	<i>Evol.</i> 64 , 702–705 (2007).
927	55.	G. Coop, K. Bullaughey, F. Luca, M. Przeworski, The Timing of Selection at the Human
928		FOXP2 Gene. <i>Mol. Biol. Evol.</i> 25 , 1257–1259 (2008).
929	56.	N. Masatoshi, Genetic distance between populations. <i>Am. Nat.</i> 106 , 283–292 (1972).
	200	,

- 57. F. M. Hagey, J. . Mylroie, Pleistocene lake and lagoon deposits, San Salvador Island,
 Bahamas. *Geol. Soc. Am.* 30, 77–90 (1995).
- 93258.B. J. Turner, D. D. Duvernell, T. M. Bunt, M. G. Barton, Reproductive isolation among933endemic pupfishes (Cyprinodon) on San Salvador Island, Bahamas: Microsatellite934evidence. *Biol. J. Linn. Soc.* **95**, 566–582 (2008).
- 935 59. P. U. Clark, A. S. Dyke, J. D. Shakun, A. E. Carlson, J. Clark, B. Wohlfarth, J. X.
 936 Mitrovica, S. W. Hostetler, A. M. McCabe, The Last Glacial Maximum. *Science (80-.).*937 **325**, 710–714 (2009).
- J. Smith, G. Coop, M. Stephens, J. Novembre, Estimating Time to the Common Ancestor
 for a Beneficial Allele. *Mol. Biol. Evol.* 35, 1003–1017 (2018).
- 940 61. A. D. Yates, P. Achuthan, W. Akanni, J. Allen, J. Allen, J. Alvarez-Jarreta, M. R. Amode, I. M. Armean, A. G. Azov, R. Bennett, J. Bhai, K. Billis, S. Boddu, J. C. Marugán, C. 941 Cummins, C. Davidson, K. Dodiya, R. Fatima, A. Gall, C. G. Giron, L. Gil, T. Grego, L. 942 Haggerty, E. Haskell, T. Hourlier, O. G. Izuogu, S. H. Janacek, T. Juettemann, M. Kay, I. 943 Lavidas, T. Le, D. Lemos, J. G. Martinez, T. Maurel, M. McDowall, A. McMahon, S. 944 Mohanan, B. Moore, M. Nuhn, D. N. Oheh, A. Parker, A. Parton, M. Patricio, M. P. 945 Sakthivel, A. I. Abdul Salam, B. M. Schmitt, H. Schuilenburg, D. Sheppard, M. Sycheva, 946 M. Szuba, K. Taylor, A. Thormann, G. Threadgold, A. Vullo, B. Walts, A. Winterbottom, 947 A. Zadissa, M. Chakiachvili, B. Flint, A. Frankish, S. E. Hunt, G. Iisley, M. Kostadima, 948 N. Langridge, J. E. Loveland, F. J. Martin, J. Morales, J. M. Mudge, M. Muffato, E. Perry, 949
- M. Langridge, J. E. Loveland, F. J. Martin, J. Morales, J. M. Mudge, M. Mullato, E. Perry,
 M. Ruffier, S. J. Trevanion, F. Cunningham, K. L. Howe, D. R. Zerbino, P. Flicek,
 Ensembl 2020. *Nucleic Acids Res.* 48, D682–D688 (2020).
- 952 62. P. J. Bradbury, Z. Zhang, D. E. Kroon, T. M. Casstevens, Y. Ramdoss, E. S. Buckler, 74 TASSEL: Software for association mapping of complex traits in diverse samples. 854 *Bioinformatics*. 23, 2633–2635 (2007).
- M. Roesti, D. Moser, D. Berner, Recombination in the threespine stickleback genome Patterns and consequences. *Mol. Ecol.* 22, 3014–3027 (2013).
- R. Tournebize, V. Poncet, M. Jakobsson, Y. Vigouroux, S. Manel, McSwan: A joint site
 frequency spectrum method to detect and date selective sweeps across multiple population
 genomes. *Mol. Ecol. Resour.* 19, 283–295 (2019).
- M. M. Stevenson, Karyomorphology of Several Species of Cyprinodon. *Copeia*, 494–498 (1981).
- 962 66. Y. Ofran, B. Rost, ISIS: Interaction sites identified from sequence. *Bioinformatics*. 23, 13–16 (2007).
- 67. E. V. Davydov, D. L. Goode, M. Sirota, G. M. Cooper, A. Sidow, S. Batzoglou,
 Identifying a high fraction of the human genome to be under selective constraint using
 GERP++. *PLoS Comput. Biol.* 6 (2010), doi:10.1371/journal.pcbi.1001025.
- 967 68. M. Nei, W. H. Li, *Proc. Natl. Acad. Sci.*, in press, doi:10.1073/pnas.76.10.5269.
- 69. A. C. McDonald, J. A. Schuijers, A. L. Gundlach, B. L. Grills, Galanin treatment offsets
 69. A. C. McDonald, J. A. Schuijers, A. L. Gundlach, B. L. Grills, Galanin treatment offsets
 69. the inhibition of bone formation and downregulates the increase in mouse calvarial
 69. expression of TNFα and GalR2 mRNA induced by chronic daily injections of an injurious
 69. vehicle. *Bone.* 40, 895–903 (2007).
- 70. T. M. Maia, D. Gogendeau, C. Pennetier, C. Janke, R. Basto, Bug22 influences cilium
 morphology and the posttranslational modification of ciliary microtubules. *Biol. Open.* 3, 138–151 (2014).
- 71. M. Taye, J. Kim, S. H. Yoon, W. Lee, O. Hanotte, T. Dessie, S. Kemp, O. A. Mwai, K.

Caetano-Anolles, S. Cho, S. J. Oh, H. K. Lee, H. Kim, Whole genome scan reveals the 976 genetic signature of African Ankole cattle breed and potential for higher quality beef. 977 BMC Genet. 18, 1–14 (2017). 978 979 72. A. Suwa, M. Yoshino, C. Yamazaki, M. Naitou, R. Fujikawa, RMI1 deficiency in mice protects from diet and genetic-induced obesity. 277, 677–686 (2010). 980 73. L. Qiao, M. Du, X. Liang, Y. Hao, X. He, F. Si, T. Mei, B. Chen, Tyrosine Hydroxylase is 981 crucial for maintaining pupal tanning and immunity in Anopheles sinensis. Sci. Rep. 6, 1-982 11 (2016). 983 74. L. K. Marles, E. M. Peters, D. J. Tobin, N. A. Hibberts, K. U. Schallreuter, Tyrosine 984 hydroxylase isoenzyme I is present in human melanosomes: a possible novel function in 985 pigmentation. Exp. Dermatol. 12, 61-70 (2003). 986 T. S. Hnasko, M. S. Szczypka, W. A. Alaynick, M. J. During, R. D. Palmiter, A role for 75. 987 dopamine in feeding responses produced by orexigenic agents. 1023, 309-318 (2004). 988 76. K. LaMonica, H. Ding, K. B. Artinger, prdm1a functions upstream of itga5 in zebrafish 989 craniofacial development. Genesis. 53, 270-277 (2015). 990 77. J. G. Crump, M. E. Swartz, C. B. Kimmel, An Integrin-Dependent Role of Pouch 991 Endoderm in Hyoid Cartilage Development. 2 (2004), doi:10.1371/journal.pbio.0020244. 992 S. Brewer, W. Feng, J. Huang, S. Sullivan, T. Williams, Wnt1-Cre-mediated deletion of 78. 993 AP-2α causes multiple neural crest-related defects. Dev. Biol. 267, 135–152 (2004). 994 995 79. R. M. Green, W. Feng, T. Phang, J. L. Fish, H. Li, R. A. Spritz, R. S. Marcucio, J. Hooper, H. Jamniczky, B. Hallgrímsson, T. Williams, Tfap2a-dependent changes in 996 mouse facial morphology result in clefting that can be ameliorated by a reduction in Fgf8 997 gene dosage. DMM Dis. Model. Mech. 8, 31-43 (2015). 998 80. H. E. Seberg, E. Van Otterloo, S. K. Loftus, H. Liu, G. Bonde, R. Sompallae, D. E. 999 Gildea, J. F. Santana, J. R. Manak, J. Pavan, T. Williams, R. A. Cornell, TFAP2 paralogs 1000 regulate melanocyte differentiation in parallel with MITF (2017). 1001 81. Y. Horiuchi, M. Ishikawa, N. Kaito, Y. Iijima, Y. Tanabe, H. Ishiguro, T. Arinami, 1002 Experimental Evidence for the Involvement of PDLIM5 in Mood Disorders in Hetero 1003 Knockout Mice. PLoS One. 8, 1–10 (2013). 1004 82. J. Lee, B.-K. Lee, J. M. Gross, Bcl6a function is required during optic cup formation to 1005 prevent p53-dependent apoptosis and colobomata. Hum. Mol. Genet. 22, 3568-3582 1006 1007 (2013).1008 83. C. S. Teng, M. C. Ting, D. T. Farmer, M. Brockop, R. E. Maxson, J. G. Crump, Altered bone growth dynamics prefigure craniosynostosis in a zebrafish model of Saethre-Chotzen 1009 syndrome. *Elife*. 7, 1–23 (2018). 1010 84. A. Das, J. G. Crump, Bmps and Id2a act upstream of twist1 to restrict ectomesenchyme 1011 potential of the cranial neural crest. PLoS Genet. 8 (2012), 1012 doi:10.1371/journal.pgen.1002710. 1013 1014 85. Y. Takayanagi, H. Matsumoto, M. Nakata, T. Mera, S. Fukusumi, S. Hinuma, Y. Ueta, T. Yada, G. Leng, T. Onaka, Endogenous prolactin-releasing peptide regulates food intake in 1015 rodents. J. Clin. Invest. 118, 4014-4024 (2008). 1016 X. Zhao, T. Brade, T. J. Cunningham, G. Duester, Retinoic acid controls expression of 1017 86. 1018 tissue remodeling genes Hmgn1 and Fgf18 at the digit–interdigit junction. Dev. Dyn. 239, 665-671 (2010). 1019 1020 87. K. Laue, M. Jänicke, N. Plaster, C. Sonntag, M. Hammerschmidt, Restriction of retinoic acid activity by Cyp26b1 is required for proper timing and patterning of osteogenesis 1021

1022		during zebrafish development. 3787 , 3775–3787 (2008).
1023	88.	K. M. Spoorendonk, J. Peterson-maduro, J. Renn, T. Trowe, S. Kranenbarg, C. Winkler,
1024		S. Schulte-merker, Retinoic acid and Cyp26b1 are critical regulators of osteogenesis in the
1025		axial skeleton. 3774 , 3765–3774 (2008).
1026	89.	C. Mccormick, Y. Leduc, D. Martindale, K. Mattison, L. E. Esford, A. P. Dyer, F. Tufaro,
1027		The putative tumour suppressor EXT1 alters the expression of cell-surface heparan
1028		sulfate. 19 , 158–161 (1998).
1029	90.	K. R. Fitch, K. A. McGowan, C. D. Van Raamsdonk, H. Fuchs, D. Lee, A. Puech, Y.
1030		Hérault, D. W. Threadgill, M. H. De Angelis, G. S. Barsh, Genetics of dark skin in mice.
1031		Genes Dev. 17, 214–228 (2003).
1032	91.	M. D. Shirley, H. Tang, C. J. Gallione, J. D. Baugher, L. P. Frelin, B. Cohen, P. E. North,
1033		D. A. Marchuk, A. M. Comi, J. Pevsner, Sturge–Weber Syndrome and Port-Wine Stains
1034		Caused by Somatic Mutation in GNAQ. N. Engl. J. Med. 368, 1971–1979 (2013).
1035	92.	H. J. McMillan, A. Telegrafi, A. Singleton, M. T. Cho, D. Lelli, F. C. Lynn, J. Griffin, A.
1036		Asamoah, T. Rinne, C. E. Erasmus, D. A. Koolen, C. A. Haaxma, B. Keren, D. Doummar,
1037		C. Mignot, I. Thompson, L. Velsher, M. Dehghani, M. Y. Vahidi Mehrjardi, R.
1038		Maroofian, M. Tchan, C. Simons, J. Christodoulou, E. Martín-Hernández, M. J. Guillen
1039		Sacoto, L. B. Henderson, H. McLaughlin, L. L. Molday, R. S. Molday, G. Yoon,
1040		Recessive mutations in ATP8A2 cause severe hypotonia, cognitive impairment,
1041		hyperkinetic movement disorders and progressive optic atrophy. Orphanet J. Rare Dis.
1042		13 , 1–10 (2018).
1043		

1046Fig. S1. Similar genome-wide level genetic diversity across Caribbean pupfish populations.1047Within population (π) nucleotide diversity in 50-kb sliding windows across the genomes of1048the SSI (SSI) species and generalist species on Rum Cay (RC), New Providence Island1049(NPI), Dominican Republic (DR), North Carolina (NC) and Venezuela (VZ). π values are1050averaged across 100 random samples of 10 individuals from each population in order to1051down-sample from populations with larger sample sizes and compare π across populations.

1055	Fig. S2. Genetic divergence among SSI species. Manhattan plot of F_{st} in 50-kb windows across
1056	the genome for the three SSI species on the largest 24 scaffolds in the molluscivore (C .
1057	brontotheroides) genome corresponding to the 24 chromosomes in Cyprinodon (65). Solid
1058	red line represents the average F_{st} values for each comparison (generalist vs. molluscivore;
1059	0.07; generalist vs. scale-eater: 0.11; molluscivore vs. scale-eater: 0.15).
1060	

1063	Fig. S3. Selective sweeps in SSI population shared with other Caribbean populations. The
1064	proportion of hard selective sweeps in the SSI species that are also found sweeping in other
1065	Caribbean populations. Regions under hard selective sweep were identified as those with a
1066	SweeD CLR estimate greater than those calculated from demographic simulations of a similar
1067	sized population evolving neutrally (e.g. SweeD CLR $>$ 5.28 for scale-eaters and SweeD CLR $>$
1068	4.43 for molluscivores, see Table S8 for threshold values for all populations). Note that 42% of
1069	hard selective sweeps in the molluscivore population also showed signs of a sweep in the scale-
1070	eater population.

1073 Fig. S4. Sequence conservation among fishes around candidate gene *twist1*.

1074 A) Amino acid sequence of *twist1* protein for SSI generalists and scale-eaters. The nonsynonymous substitution that is nearly fixed between the two species changes the amino acid 1075 from a proline to histidine (highlighted in black). B) This amino acid substitution alters a protein 1076 binding site (highlighted in red box) predicted and visualized with Predict Protein Open 1077 (https://open.predictprotein.org) using the machine-learning prediction method PPsites2 (66). C) 1078 1079 GERP scores for the 500 base pair region surrounding the non-synonymous coding substitution in twist1 (red arrow) found only on SSI. Conservation scores were obtained from aligning scale-1080 eater genomes to the 60 fish EPO low coverage genome alignment on Ensembl (release 98). A 1081 1082 conservation score above 2 is considered highly conserved (67).

1083

1086 Fig. S5. Selective sweep ages across spatial source of genetic variation.

95% HPD interval of the posterior distribution for selective sweep ages estimates calculated 1087 from starTMRCA for all introgressed and de novo of the specialists adaptive alleles, as well as 1088 all adaptive alleles in or near (within 20-kb) of genes annotated for behavior and craniofacial GO 1089 terms in our GO enrichment analysis (Fig 4). Selective sweep ages in the scale-eaters (A) and 1090 molluscivores (B) are colored by spatial distribution of the adaptive genetic variation (standing, 1091 1092 introgressed or de novo alleles). Adaptive alleles are labeled by the gene region they are associated with. Alleles that are in unannotated regions are labeled by the scaffold they are found 1093 on. The exact position of the variant on that scaffold is listed in Table S16). 1094

Distance between variants (kb)

1096 1097	Fig. S6. Linkage disequilibrium decay along the genome. LD decay over pairwise
1098	combinations of alleles within 100 kb of each other on the longest scaffold in the genome
1099	(49,059,223 bp), with $r^2=0.1$ marked for reference. From this pattern of decay, we chose a
1100	window size of 50-kb for sliding windows analyses used in this study.

1129 1130	Fig S8. Example image of nasal protrusion distance measurement for GWAS. The purple
1131	line represents the nasal protrusion distance on a C. brontotheroides specimen. The yellow line
1132	represents a baseline tangent line from the dorsal surface of the neurocranium to the tip of the
1133	premaxilla used for reference. Photo by Tony Terceira.

Fig. S9. Standardized craniofacial trait measurements in SSI species. Log-transformed A)

lower oral jaw length (mm) and B) nasal protrusion distance (mm) standardized by log-

1137 transformed standard length (mm) for SSI generalist (red), molluscivore (green), and scale-eater

1138 (blue).

1139

Fig. S10. Posterior density distributions for hyper-parameters describing the proportion of variance in phenotypes for the three focal traits. The variance in lower jaw size, nasal protrusion distance, and caudal fin pigmentation explained by A-C) every SNP (proportion of phenotype variance explained [PVE]), D-F) SNPs of large effect (proportion of genetic variance explained by sparse effects [PGE]), and G-H) the number of large effect SNPS required to explain PGE. Individual lines represent 10 independent MCMC runs of GEMMA's Bayesian sparse linear mixed model.

Fig. S11. The spatiotemporal landscape of adaptive radiation based on divergence time 1152 from an outgroup generalist population. Time to most recent common ancestor (TMRCA) of 1153 1154 adaptive alleles based on D_{xy} in their 50-kb window. TMRCA estimates based on genetic divergence (D_{xy}) between outgroup C. artifrons and A) scale-eaters or B) molluscivores. Each 1155 column separates adaptive alleles by their spatial distribution: de novo (SSI only), adaptive 1156 introgression from one of three outgroup populations (DR: Dominican Republic, NP: New 1157 Providence, NC: North Carolina), and standing genetic variation. Gray bars highlight the 1158 approximate origins of the microendemic radiation on SSI at approximately 6-19 kya (based on 1159 range of geological age estimates for filling of hypersaline lakes on SSI (57, 58) since the last 1160 glacial maximum (59)). All adaptive alleles associated with genes for behavior (red) or 1161 1162 craniofacial morphology (blue) are illustrated by a colored point. Black points show adaptive alleles for non-focal GO terms or unannotated; gray points show all nearly fixed alleles between 1163 specialists ($F_{st} \ge 0.95$) with no signal of a hard selective sweep. 1164

- 1167
- 1168

unannotated; gray points show all nearly fixed alleles between specialists ($F_{st} \ge 0.95$) with no signal of a hard selective sweep.

1190	Time to most recent common ancestor (TMRCA) of the region surrounding candidate adaptive
1191	alleles (LD-pruned so that each point is independent) based on relative genetic divergence metric
1192	Dxy (68) which captures only the amount divergence that has accumulated since the two
1193	populations diverged for A) scale-eaters and B) molluscivores. Each column separates adaptive
1194	alleles by their spatial distribution: de novo (SSI only), adaptive introgression from one of three
1195	outgroup populations (DR: Dominican Republic, NP: New Providence, NC: North Carolina), and
1196	standing genetic variation. Gray bars highlight the approximate origins of the microendemic
1197	radiation on SSI: from the last glacial maximum (approximately 6-19 kya; ranging from to the
1198	youngest age estimate for filling of hypersaline lakes on SSI (59)) to the last glacial maximum
1199	before which lakes on SSI were completely dry (58)). Alleles are colored by evidence of hard
1200	selective sweeps: black for fixed or nearly fixed ($F_{st} \ge 0.95$) adaptive alleles annotated for non-
1201	focal GO terms or unannotated; gray for fixed or nearly fixed alleles between specialists with no
1202	signal of hard selective sweep; and triangles represent alleles additionally associated with
1203	pigmentation. All alleles annotated for the GO categories of behavior (red shades) and
1204	craniofacial morphology (blue shades) are included. Genes highlighted in the text are labeled by
1205	their associated variant. Yellow shade indicates genes annotated for feeding behavior and eye
1206	development. Triangle shape indicates gens also annotated for pigmentation.

- 1211 1212

Fig. S13. Raw counts of alleles found across scaffolds. The count of de novo mutations in genome of A-B) two hybrids from molluscivores x generalist cross and C) single hybrid from scale-eater x generalist sequenced to high coverage (15-69x) that were used to estimate average mutations rate for pupfish. D) The relative number of alleles per scaffold (absolute count divided by number of base pairs in the scaffold) that candidate adaptive alleles were found on. Scaffolds highlighted in red are three scaffolds that contain the feeding behavior genes with the oldest divergence time and selective sweep age estimates.

Fig. S14. Allele age estimates from single population of specialists compared to estimates from all individuals. A) 95% HPD interval from the posterior distribution of allele age estimates calculated with starTMRCA on all scale-eater individuals (*N*=26) compared to just individuals from the Osprey Lake population (*N*=11). B) 95% HPD interval from the posterior distribution of allele age estimates calculated with starTMRCA on all molluscivore individuals (*N*=43) compared to just individuals from the Osprey Lake population (*N*=10).

95% HPD interval for selective sweep ages for overlapping set of adaptive alleles across
starTMRCA for scale-eaters (A) and molluscivores (B) compared to the 95% HPD interval
estimate from McSwan for scale-eaters (C) and molluscivores (D). Selective sweep ages are
colored by GO annotations relevant to two major stages of adaptation: behavior (behavior and
feeding behavior), trophic morphology (craniofacial, muscle development) and both.

Fig. S16. Full posterior distributions for scale-eater sweeps. The posterior distributions of

1241sweep ages estimated from focal adaptive alleles (Table S13) calculated from McSwan. These1242nine regions contained fixed or nearly fixed variants ($F_{st} \ge 0.95$) between specialists that were1243estimated to be hard selective sweeps using both SweeD and McSwan. Sweep ages are colored1244based on GO and GWAS annotations relevant to the stages proposed in the stages of adaptation:1245feeding behavior (red), trophic morphology (craniofacial and muscle: blue-violet), and sexual1246communication (pigmentation: orange).

based on GO and GWAS annotations relevant to the stages proposed in the stages of adaptive

1256 radiation hypothesis: trophic morphology (craniofacial and muscle: blue-violet).

Table S1. Summary of Caribbean pupfish sampling. The sampling localities of individuals
 resequenced from San Salvador Island radiation (SSI), other *Cyprinodon* across the
 Caribbean, Mexico, and United States, and two outgroups. Full details including sample
 codes, collectors, and GPS coordinates are included in Data S1 table.

Group	Species	Lake/Site	Island/Nation	Sample size
SSI generalist	Cyprinodon variegatus	Clear Pond	SSI, Bahamas	1
SSI generalist	Cyprinodon variegatus	Crescent Pond	SSI, Bahamas	4
SSI generalist	Cyprinodon variegatus	Granny Lake	SSI, Bahamas	1
SSI generalist	Cyprinodon variegatus	Great Lake	SSI, Bahamas	2
SSI generalist	Cyprinodon variegatus	Little Lake	SSI, Bahamas	1
SSI generalist	Cyprinodon variegatus	Stout's Pond	SSI, Bahamas	2
SSI generalist	Cyprinodon variegatus	Mermaid Pond	SSI, Bahamas	1
SSI generalist	Cyprinodon variegatus	Moon Rock Pond	SSI, Bahamas	1
SSI generalist	Cyprinodon variegatus	North Little Lake	SSI, Bahamas	1
SSI generalist	Cyprinodon variegatus	Osprey Lake	SSI, Bahamas	12
SSI generalist	Cyprinodon variegatus	Oyster Lake	SSI, Bahamas	2
SSI generalist	Cyprinodon variegatus	Oyster Lake	SSI, Bahamas	1
SSI generalist	Cyprinodon variegatus	Pain Pond	SSI, Bahamas	1
SSI generalist	Cyprinodon variegatus	Reckley Hill Pond	SSI, Bahamas	1
SSI generalist	Cyprinodon variegatus	Six Pack Pond	SSI, Bahamas	1
SSI generalist	Cyprinodon variegatus	Wild Dilly Pond	SSI, Bahamas	1
SSI molluscivore	Cyprinodon brontotheroides	Crescent Pond	SSI, Bahamas	12
SSI molluscivore	Cyprinodon brontotheroides	Little Lake	SSI, Bahamas	5
SSI molluscivore	Cyprinodon brontotheroides	Moon Rock Pond	SSI, Bahamas	6
SSI molluscivore	Cyprinodon brontotheroides	Osprey Lake	SSI, Bahamas	12
SSI molluscivore	Cyprinodon brontotheroides	Oyster Pond	SSI, Bahamas	8
SSI scale-eater	Cyprinodon desquamator	Crescent Pond	SSI, Bahamas	10

SSI scale-eater	Cyprinodon desquamator	Little Lake	SSI, Bahamas	5
SSI scale-eater	Cyprinodon desquamator	Osprey Lake	SSI, Bahamas	10
SSI scale-eater	Cyprinodon desquamator	Oyster Lake	SSI, Bahamas	1
Dominican Republic	Cyprinodon higuey	Laguna Bavaro	Dominican Republic	10
New Providence Island	Cyprinodon laciniatus	Lake Cunningham	New Providence Island, Bahamas	16
Rum Cay	Cyprinodon variegatus	Lake George - main lake	Rum Cay, Bahamas	17
North Carolina	Cyprinodon variegatus	Fort Fisher estuary	NC, USA	11
Venezuela	Cyprinodon dearborni	Isla Margarita	Venezuela	11
Caribbean outgroup generalist	Cyprinodon artifrons	Cancun	Mexico	2
Caribbean outgroup generalist	Cyprinodon variegatus	North Salt Pond	Acklins Island, Bahamas	1
Caribbean outgroup generalist	Cyprinodon dearborni		Bonaire	1
Caribbean outgroup generalist	Cyprinodon variegatus		Caicos Island	1
Caribbean outgroup generalist	Cyprinodon variegatus	Great Lake	Cat Island, Bahamas	1
Caribbean outgroup generalist	Cyprinodon dearborni		Curacao	2
North American outgroup generalist	Cyprinodon albivelis	Rio Yaqui basin	Mexico	1
North American outgroup generalist	Cyprinodon eremus	Quitobaquito Spring	AZ, USA	1
North American outgroup generalist	Cyprinodon eximius	Rio Conchos basin	Mexico	1
North American outgroup generalist	Cyprinodon fontinalis	Ojo de Carbonera Spring	Mexico	1
North American outgroup generalist	Cyprinodon longidorsalis	Charco Palma	Mexico	1
North American outgroup generalist	Cyprinodon macularius	Coachella	CA, USA	1
North American outgroup generalist	Cyprinodon macrolepis	Ojo de Hacienda Delores	Mexico	1
North American outgroup generalist	Cyprinodon radiosus	Owens Valley	CA, USA	1
Caribbean outgroup generalist	Cyprinodon veronicae	Ojo de Agua Charco Azul	Mexico	1
North American outgroup generalist	Cyprinodon variegatus	Salt pond near Dean's blue hole	Long Island, Bahamas	1
Caribbean outgroup generalist	Cyprinodon variegatus	Unnamed lake 'near Rokers Point'	Exumas, Bahamas	2
Caribbean outgroup generalist	Cyprinodon variegatus	Unnamed lake 'Ephemeral'	Exumas, Bahamas	1
Caribbean outgroup generalist	Cyprinodon bondi	Etang Saumautre	Dominican Republic	1

Caribbean outgroup generalist	Cyprinodon variegatus	Unnamed lake	Mayaguana	1
Caribbean outgroup generalist	Cyprinodon variegatus	Sarasota estuary	Florida, United States	1
Caribbean outgroup generalist	Cyprinodon variegatus	Lake Kilarney	New Providence Island, Bahamas	1
Caribbean outgroup generalist	Cyprinodon variegatus	Great Lake in the south	Long Island, Bahamas	1
Caribbean outgroup generalist	Cyprinodon ovinus	Falmouth River	Massachusetts, USA	1
Caribbean outgroup generalist	Cyprinodon variegatus	New Bight	Cat Island, Bahamas	1
Caribbean outgroup generalist	Cyprinodon variegatus	Pirate's Well Lake	Mayaguana, Bahamas	1
Caribbean outgroup generalist	Cyprinodon variegatus	Salt Pond	Exumas, Bahamas	1
Caribbean outgroup generalist	Cyprinodon variegatus	Scully Lake	Mayaguana, Bahamas	1
Lake Chichancab pupfish radiation outgroup	Cyprinodon maya	Laguna Chichancanab	Quintana Roo, Mexico	1
Lake Chichancab pupfish radiation outgroup	Cyprinodon simus	Laguna Chichancanab	Quintana Roo, Mexico	1
Cualac outgroup	Cualac tessellatus	Media Luna	Mexico	1
Megupsilon outgroup	Megupsilon aporus	El Potosi	Mexico	1

1295	Table S2. The number of selective sweeps found in specialist genomes. The number of
1296	selective sweeps detected in total across the specialist genomes using and SFS-based approach
1297	SweeD and LD-based approach OmegaPlus. Hard selective sweeps were determined based on
1298	demographic simulation-based thresholds (SweeD CLR > 5.28; OmegaPlus ω > 3.31 for scale-
1299	eaters and SweeD CLR > 4.47; OmegaPlus ω > 4.23 for molluscivores). The alleles that
1300	overlapped with nearly fixed ($F_{st} \ge 0.95$) SNP(s) between the specialists with hard selective
1301	sweeps detecting jointly in both sweep programs were then used the total number of candidate
1302	adaptive alleles in this study.

			Molluscivore		Scale-eater	
		SweeD		OmegaPlus	SweeD	OmegaPlus
	Number of selective sweeps detected		8269	12060	14729	18387
	Number of windows tested		52744	49822	52696	51561
	Number of alleles that overlap with sweep		1490	3917	3463	3766
	Number of alleles with uniquely detected selective					
	sweep		13	2427	230	303
	Number of alleles with jointly detected selective					
	sweep		1477		3	233
1304 1305						

1306 1307

1309 1310

1312

1330

Table S3. Candidate adaptive alleles for the San Salvador Island (SSI) scale-eater.

1325 Location of the genic regions that contained signatures of a strong selective sweep in the scale-

eater (above demographic simulation based thresholds SweeD CLR > 5.28;OmegaPlus ω > 3.31)

and at least one divergent variant between the specialists ($F_{st} \ge 0.95$). Full list of alleles,

including unannotated candidate regions provided in Data S2. Adaptive alleles highlighted in

1329 Figure 4 are listed in bold.

Gene	Scaffold	Gene Start	Gene End	Number of Alleles
coq7	c_bro_v1_0_scaf1	28974409	28979038	3
gpr83	c_bro_v1_0_scaf1	38351481	38355816	2
klf1	c_bro_v1_0_scaf1	29239984	29242454	13
notum2	c_bro_v1_0_scaf1	28950946	28957848	1
rbm20	c_bro_v1_0_scaf1	15024176	15044016	1
rps15a	c_bro_v1_0_scaf1	28942599	28947456	2
ube2k	c_bro_v1_0_scaf1	41168936	41171561	2
atp8a2	c_bro_v1_0_scaf11	13000335	13035561	92
cd226	c_bro_v1_0_scaf11	10936603	10941232	7
cdk8	c_bro_v1_0_scaf11	13057400	13067971	1
cmbl	c_bro_v1_0_scaf11	9934853	9938096	11
crispld1	c_bro_v1_0_scaf11	11066268	11081938	7
dok6	c_bro_v1_0_scaf11	10963193	10972277	50
fbxl7	c_bro_v1_0_scaf11	21351783	21356510	6
hnf4g	c_bro_v1_0_scaf11	8350195	8354295	1
med1	c_bro_v1_0_scaf11	21393330	21400087	26
mtrr	c_bro_v1_0_scaf11	9943625	9954042	2
ncoa2	c_bro_v1_0_scaf11	11949666	11977882	4
prlh	c_bro_v1_0_scaf11	9494231	9495565	18
rnf6	c_bro_v1_0_scaf11	13047328	13052736	4
shisa2	c_bro_v1_0_scaf11	12945178	12953040	38
slc51a	c_bro_v1_0_scaf11	9862250	9873650	29
spice1	c_bro_v1_0_scaf11	12934206	12942196	2
zfhx4	c_bro_v1_0_scaf11	8078834	8095610	1
zbed1	c_bro_v1_0_scaf14	23383635	23383982	9
abhd8	c_bro_v1_0_scaf16	13452740	13457468	24
b3gnt3	c_bro_v1_0_scaf16	10003286	10004410	15

bmb	c_bro_v1_0_scaf16	10649637	10654441	38
brinp3	c_bro_v1_0_scaf16	11738302	11756508	33
crocc	c_bro_v1_0_scaf16	32985892	33009791	1
dda1	c_bro_v1_0_scaf16	13466708	13470377	2
eef1d	c_bro_v1_0_scaf16	10028318	10042958	30
ptprs	c_bro_v1_0_scaf16	8205473	8246024	56
pycr3	c_bro_v1_0_scaf16	10045452	10047013	8
rfc4	c_bro_v1_0_scaf16	35817866	35832867	38
serpinb1	c_bro_v1_0_scaf16	10634868	10638000	14
tdrd5	c_bro_v1_0_scaf16	12808042	12822317	47
tjp3	c_bro_v1_0_scaf16	35777675	35795399	21
tsta3	c_bro_v1_0_scaf16	10641946	10647463	23
zfp2	c_bro_v1_0_scaf16	35859060	35860865	8
zfp26	c_bro_v1_0_scaf16	35907423	35909825	2
znf271	c_bro_v1_0_scaf16	35840463	35842592	7
znf45	c_bro_v1_0_scaf16	35879283	35880581	7
anks1a	c_bro_v1_0_scaf18	18164811	18167681	1
gnat2	c_bro_v1_0_scaf18	13731762	13735798	2
itga5	c_bro_v1_0_scaf18	28908235	28944244	2
mybph	c_bro_v1_0_scaf18	26461834	26474649	15
nfasc	c_bro_v1_0_scaf18	17031686	17047770	1
sarg	c_bro_v1_0_scaf18	18185730	18187828	2
slc16a1	c_bro_v1_0_scaf18	29586755	29599009	1
nap1l4	c_bro_v1_0_scaf19	7836170	7842620	1
smap	c_bro_v1_0_scaf19	2027249	2028419	2
th	c_bro_v1_0_scaf19	7787018	7794685	1
trim44	c_bro_v1_0_scaf19	6431393	6435783	13
aasdhppt	c_bro_v1_0_scaf21	26911467	26919394	1
b3gat1	c_bro_v1_0_scaf21	29988110	29992848	1
cntn5	c_bro_v1_0_scaf21	10012673	10063457	1
col26a1	c_bro_v1_0_scaf21	20284619	20287102	12
emid1	c_bro_v1_0_scaf21	20254093	20266161	2
ifi44	c_bro_v1_0_scaf21	32843968	32848322	9
irf8	c_bro_v1_0_scaf21	41216201	41218789	1
mrm3	c_bro_v1_0_scaf21	15198156	15201994	1
nipsnap2	c_bro_v1_0_scaf21	24482700	24491999	33
nxn	c_bro_v1_0_scaf21	15204991	15221395	8
pde4d	c_bro_v1_0_scaf21	32298408	32320844	1
slc35e1	c_bro_v1_0_scaf21	31978195	31986378	1
tiparp	c_bro_v1_0_scaf21	33709833	33728566	1
· · · · · · ·			22.20000	-

trarg1	c_bro_v1_0_scaf21	25190856	25191383	1
atad2	c_bro_v1_0_scaf22	7942666	7961336	3
cyp26b1	c_bro_v1_0_scaf24	20457960	20473004	8
dysf	c_bro_v1_0_scaf24	20196578	20211497	1
ext1	c_bro_v1_0_scaf26	271389	272345	8
ext1b	c_bro_v1_0_scaf26	241224	252635	1
ppp1r3a	c_bro_v1_0_scaf26	8473965	8479904	4
soga3	c_bro_v1_0_scaf26	428526	434421	23
washc5	c_bro_v1_0_scaf26	301047	314009	1
zdhhc14	c_bro_v1_0_scaf2748	17727	21969	1
bri3bp	c_bro_v1_0_scaf33	12638129	12642531	28
gnaq	c_bro_v1_0_scaf33	12884125	12889121	9
pip5k1b	c_bro_v1_0_scaf33	2845282	2870905	6
wdr31	c_bro_v1_0_scaf33	12650071	12652945	20
cadps	c_bro_v1_0_scaf34	25394387	25411387	3
eya2	c_bro_v1_0_scaf34	32387513	32410375	2
srgap3	c_bro_v1_0_scaf34	26044753	26082456	2
st7l	c_bro_v1_0_scaf34	31252675	31262720	1
tfap2a	c_bro_v1_0_scaf34	32260190	32264933	6
znf362	c_bro_v1_0_scaf34	27775403	27792854	1
arhgap29	c_bro_v1_0_scaf37	30354970	30373446	1
atp5if1a	c_bro_v1_0_scaf37	3215186	3217688	1
cfap20	c_bro_v1_0_scaf37	5089635	5093234	24
chrna7	c_bro_v1_0_scaf37	3585852	3605137	8
dgat1	c_bro_v1_0_scaf37	5067735	5086382	37
dlx6a	c_bro_v1_0_scaf37	12742190	12744024	1
gpr20	c_bro_v1_0_scaf37	5101678	5107779	6
kcnn3	c_bro_v1_0_scaf37	3554189	3565883	4
mylipa	c_bro_v1_0_scaf37	8279827	8292615	1
slc45a4	c_bro_v1_0_scaf37	5115894	5125512	11
tbc1d20	c_bro_v1_0_scaf37	5047715	5065680	25
trim46	c_bro_v1_0_scaf37	3671825	3693120	1
trps1	c_bro_v1_0_scaf37	5649512	5665892	2
rmi1	c_bro_v1_0_scaf39	4258986	4266819	1
smyd1	c_bro_v1_0_scaf39	1675166	1684412	7
ubox5	c_bro_v1_0_scaf39	1621625	1630916	7
c1d	c_bro_v1_0_scaf43	30356623	30357420	6
dst	c_bro_v1_0_scaf43	16259900	16336750	2
ppp3r1	c_bro_v1_0_scaf43	30309740	30313100	4
sertad2	c_bro_v1_0_scaf43	10397273	10398532	4

				_
sptlc3	c_bro_v1_0_scaf43	12316311	12350292	3
tmem26	c_bro_v1_0_scaf43	26556107	26570766	5
znf451	c_bro_v1_0_scaf43	16192481	16198948	15
atp8a1	c_bro_v1_0_scaf44	14934291	14999736	19
cenpf,kcnk2	c_bro_v1_0_scaf44	12548021	12569724	16
gрт6a	c_bro_v1_0_scaf44	24566260	24570802	9
kcnk2	c_bro_v1_0_scaf44	12526223	12538276	23
tsc22d3	c_bro_v1_0_scaf44	11339700	11340952	3
tstd1	c_bro_v1_0_scaf44	12012710	12013203	1
card8	c_bro_v1_0_scaf46	1328324	1329460	10
ccdc178	c_bro_v1_0_scaf46	15536795	15561009	1
xrn1	c_bro_v1_0_scaf46	25988805	26007498	39
dnm1	c_bro_v1_0_scaf47	21986865	22007761	1
map1b	c_bro_v1_0_scaf47	16222149	16245672	9
pdlim5	c_bro_v1_0_scaf47	24141068	24152322	1
ptger4	c_bro_v1_0_scaf47	16158956	16164333	4
aldh1a2	c_bro_v1_0_scaf5	27683247	27700000	1
esrp2	c_bro_v1_0_scaf5	34229725	34252121	1
gse1	c_bro_v1_0_scaf5	28378694	28397287	1
tcf12	c_bro_v1_0_scaf5	27885956	27895543	15
bcor	c_bro_v1_0_scaf52	5564938	5578475	2
chpf	c_bro_v1_0_scaf52	21895691	21907353	1
nr4a2	c_bro_v1_0_scaf52	13846770	13849514	4
st6gal2	c_bro_v1_0_scaf52	6730438	6731400	2
vgll3	c_bro_v1_0_scaf52	23953279	23956671	1
сохбb1	c_bro_v1_0_scaf53	24790612	24793003	8
cyp21a2	c_bro_v1_0_scaf53	18529622	18536111	2
eva1b	c_bro_v1_0_scaf53	29794772	29795353	2
fhod3	c_bro_v1_0_scaf53	18622119	18644926	2
galnt1	c_bro_v1_0_scaf53	20852048	20872629	17
glipr2	c_bro_v1_0_scaf53	20433230	20435503	3
hdac9b	c_bro_v1_0_scaf53	19008287	19034268	1
mag	c_bro_v1_0_scaf53	17408478	17413240	2
map7d1	c_bro_v1_0_scaf53	29904810	29922183	25
mindy3	c_bro_v1_0_scaf53	20097197	20106215	8
nacad	c_bro_v1_0_scaf53	20437309	20451974	2
pxn1	c_bro_v1_0_scaf53	20366555	20367417	1
rasip1	c_bro_v1_0_scaf53	24769523	24786366	13
slc2a3	c_bro_v1_0_scaf53	24809669	24817209	15
steap4	c_bro_v1_0_scaf53	20313856	20325260	26
sicup i	c_010_+1_0_500155	20313030	20323200	20

tbrg4	c_bro_v1_0_scaf53	20454806	20462512	2
them4	c_bro_v1_0_scaf53	21823050	21830844	5
tnc	c_bro_v1_0_scaf53	18536783	18542213	1
twist1	c_bro_v1_0_scaf53	18968733	18969242	1
zhx2	c_bro_v1_0_scaf53	11078442	11084544	6
znf628	c_bro_v1_0_scaf53	24721275	24732863	6
trim25	c_bro_v1_0_scaf60	1610217	1614325	2
znf214	c_bro_v1_0_scaf60	1787099	1793538	1
foxo3	c_bro_v1_0_scaf7	12823341	12824321	3
myct1	c_bro_v1_0_scaf7	13100090	13100656	1
otof	c_bro_v1_0_scaf7	12616933	12629352	3
otof	c_bro_v1_0_scaf7	12642391	12658039	5
smek1	c_bro_v1_0_scaf7	12319537	12332574	1
43530	c_bro_v1_0_scaf752	1258	12292	29
nat1	c_bro_v1_0_scaf752	13172	14020	7
zdhhc20	c_bro_v1_0_scaf752	16935	24566	7
galr2	c_bro_v1_0_scaf8	19974117	19979248	2
grid2ip	c_bro_v1_0_scaf8	21581872	21603752	4
map2k6	c_bro_v1_0_scaf8	19746299	19760895	3
dcun1d2	c_bro_v1_0_scaf9	28311034	28313774	7
fhl2	c_bro_v1_0_scaf9	25288775	25292382	1
fut9	c_bro_v1_0_scaf9	25262573	25263652	16

Table S4. Adaptive alleles for the San Salvador Island (SSI) molluscivore.

Location of the genic regions that contained signatures of a strong selective sweep in the molluscivore (SweeD CLR ≥ 4.47 ; OmegaPlus $\omega > 4.23$) and at least one divergent variant between the specialists ($F_{st} \geq 0.95$). Full list of alleles, including one unannotated candidate regions provided in Data S3. Adaptive alleles highlighted in Figure S5 are listed in bold.

T	5	5	9	

	G 40.11	a a i	a a	
Gene	Scaffold	Gene Start	Gene Stop	Number of Alleles
alox15b	c_bro_v1_0_scaf1	34682742	34695090	1
coq7	c_bro_v1_0_scaf1	28974409	28979038	3
gga1	c_bro_v1_0_scaf1	29195804	29209213	5
gpr83	c_bro_v1_0_scaf1	38351481	38355816	2
klf1	c_bro_v1_0_scaf1	29239984	29242454	13
notum2	c_bro_v1_0_scaf1	28950946	28957848	1
rbm20	c_bro_v1_0_scaf1	15024176	15044016	1
rps15a	c_bro_v1_0_scaf1	28942599	28947456	2
atp8a2	c_bro_v1_0_scaf11	13000335	13035561	92
cd226	c_bro_v1_0_scaf11	10936603	10941232	б
ncoa2	c_bro_v1_0_scaf11	11949666	11977882	7
shisa2	c_bro_v1_0_scaf11	12945178	12953040	18
spice1	c_bro_v1_0_scaf11	12934206	12942196	4
ube2w	c_bro_v1_0_scaf11	11253461	11259709	48
abhd8	c_bro_v1_0_scaf16	13452740	13457468	17
b3gnt3	c_bro_v1_0_scaf16	10003286	10004410	15
b3gnt3	c_bro_v1_0_scaf16	10019232	10020410	1
eef1d	c_bro_v1_0_scaf16	10028318	10042958	64
ptprs	c_bro_v1_0_scaf16	8205473	8246024	20
pycr3	c_bro_v1_0_scaf16	10045452	10047013	8
rfc4	c_bro_v1_0_scaf16	35817866	35832867	31
anks1a	c_bro_v1_0_scaf18	18164811	18167681	1
mybph	c_bro_v1_0_scaf18	26461834	26474649	7
nfasc	c_bro_v1_0_scaf18	17031686	17047770	1
sarg	c_bro_v1_0_scaf18	18185730	18187828	2
trim44	c_bro_v1_0_scaf19	6431393	6435783	14
b3gat1	c_bro_v1_0_scaf21	29988110	29992848	1
cntn5	c_bro_v1_0_scaf21	10012673	10063457	1

tiparp	c_bro_v1_0_scaf21	33709833	33728566	1
trarg1	c_bro_v1_0_scaf21	25190856	25191383	1
atad2	c_bro_v1_0_scaf22	7942666	7961336	3
cyp26b1	c_bro_v1_0_scaf24	20457960	20473004	8
ext1	c_bro_v1_0_scaf26	271389	272345	8
ext1b	c_bro_v1_0_scaf26	241224	252635	1
sox9	c_bro_v1_0_scaf27	22135691	22136918	2
bri3bp	c_bro_v1_0_scaf33	12638129	12642531	26
gnaq	c_bro_v1_0_scaf33	12884125	12889121	9
wdr31	c_bro_v1_0_scaf33	12650071	12652945	20
cadps	c_bro_v1_0_scaf34	25394387	25411387	2
znf362	c_bro_v1_0_scaf34	27775403	27792854	1
dlx6a	c_bro_v1_0_scaf37	12742190	12744024	1
mylipa	c_bro_v1_0_scaf37	8279827	8292615	1
trps1	c_bro_v1_0_scaf37	5649512	5665892	2
vps9d1	c_bro_v1_0_scaf4	15227575	15257418	1
slc29a3	c_bro_v1_0_scaf43	13679707	13685975	2
ttc33	c_bro_v1_0_scaf47	16128909	16148227	7
esrp2	c_bro_v1_0_scaf5	34229725	34252121	1
fn1	c_bro_v1_0_scaf52	19355212	19387175	1
st6gal2	c_bro_v1_0_scaf52	6730438	6731400	2
vgll3	c_bro_v1_0_scaf52	23953279	23956671	1
cox6b1	c_bro_v1_0_scaf53	24790612	24793003	8
map7d1	c_bro_v1_0_scaf53	29904810	29922183	25
rasip1	c_bro_v1_0_scaf53	24769523	24786366	13
slc2a3	c_bro_v1_0_scaf53	24809669	24817209	15
zhx2	c_bro_v1_0_scaf53	11078442	11084544	5
znf628	c_bro_v1_0_scaf53	24721275	24732863	5
foxo3	c_bro_v1_0_scaf7	12823341	12824321	3
otof	c_bro_v1_0_scaf7	12616933	12629352	11
otof	c_bro_v1_0_scaf7	12642391	12658039	5
smek1	HiC_scaffold_7	12319537	12332574	1

1351 Table S5. Full list of functional terms associated with genes in adaptive alleles for the scale-

eaters that were significantly enriched (FDR < 0.05) in a GO analysis.

- 1353 Focal functional terms related to key axes of diversification in this system: habitat preference
- 1354 (scale-eating/snail-eating niches), trophic morphology, and/or pigmentation.

Functional Category	Enrichment FDR	Genes in list	Total genes	Genes
Neuron differentiation	0.00608452	25	1400	map1b,atp8a2,tcf12,gpm6a,nr4a2,brinp3,tnc,ptprs,mag,f oxo3,med1,rnf6,aldh1a2,gnat2,pdlim5,trim46,nfasc,wash c5,zhx2,th,ext1,galr2,anks1a,chrna7,dok6
Camera-type eye morphogenesis	0.00608452	7	114	tbc1d20,atp8a2,gnat2,zhx2,th,tfap2a,twist1
Generation of neurons	0.00608452	26	1553	map1b,atp8a2,tcf12,gpm6a,nr4a2,brinp3,tnc,ptprs,mag,f oxo3,twist1,med1,rnf6,aldh1a2,gnat2,pdlim5,trim46,nfas c,washc5,zhx2,th,ext1,galr2,anks1a,chrna7,dok6
Muscle tissue development	0.00608452	12	400	cyp26b1,eya2,kcnk2,smyd1,fhl2,cenpf,twist1,med1,aldh1 a2,fhod3,pdlim5,tiparp
Regulation of biological quality	0.00608452	50	4146	kcnk2,klf1,dnm1,foxo3,atp8a1,abhd8,atp8a2,gnaq,ptger4 ,chrna7,gpr20,pde4d,xrn1,cyp26b1,cfap20,ube2k,rasip1,tr im44,crocc,eya2,prlh,ptprs,mag,map2k6,otof,med1,rnf6,s teap4,aldh1a2,map1b,gnat2,fhod3,dysf,slc16a1,tsc22d3,p dlim5,cadps,tiparp,nxn,rmi1,th,galr2,dgat1,grid2ip,tbc1d2 0,tbrg4,them4,trim46,rfc4,cyp21a2
Cell development	0.00708671	32	2196	map1b,atp8a2,tcf12,gpm6a,brinp3,tnc,ptprs,mag,fhl2,fox o3,twist1,med1,tbc1d20,rnf6,aldh1a2,gnat2,fhod3,dysf,nr 4a2,tdrd5,pdlim5,trim46,nfasc,washc5,zhx2,th,ext1,galr2, anks1a,pde4d,chrna7,dok6
Neural retina development	0.00819009	5	64	atp8a2,gnat2,gpm6a,zhx2,tfap2a
Feeding behavior	0.00819009	6	102	cfap20,prlh,atp8a2,rmi1,th,galr2
Striated muscle tissue development	0.00819009	11	385	cyp26b1,eya2,kcnk2,smyd1,fhl2,cenpf,twist1,med1,aldh1 a2,fhod3,pdlim5
Neurogenesis	0.00819009	26	1663	map1b,atp8a2,tcf12,gpm6a,nr4a2,brinp3,tnc,ptprs,mag,f oxo3,twist1,med1,rnf6,aldh1a2,gnat2,pdlim5,trim46,nfas c,washc5,zhx2,th,ext1,galr2,anks1a,chrna7,dok6
Response to lipid	0.00819009	19	997	rnf6,brinp3,ptger4,card8,med1,cyp26b1,tnc,pde4d,xrn1,fo xo3,trim25,gpr83,aldh1a2,ncoa2,irf8,nr4a2,hnf4g,th,fhl2
Eating behavior	0.00819009	4	33	prlh,atp8a2,rmi1,th
Camera-type eye development	0.00819009	10	317	med1,tbc1d20,aldh1a2,atp8a2,gnat2,gpm6a,zhx2,th,tfap 2a,twist1
Developmental growth	0.00819009	15	651	tnc,prlh,kcnk2,ptprs,mag,pde4d,foxo3,med1,rnf6,map1b, atp8a2,dysf,pdlim5,rmi1,trim46
Eye morphogenesis	0.0084973	7	152	tbc1d20,atp8a2,gnat2,zhx2,th,tfap2a,twist1
Embryonic camera- type eye development	0.01187832	4	39	aldh1a2,th,twist1,tfap2a
Regulation of phospholipid translocation	0.01187832	2	3	atp8a1,atp8a2
--	------------	----	------	---
Positive regulation of phospholipid translocation	0.01187832	2	3	atp8a1,atp8a2
Negative regulation of axon extension	0.01370935	4	41	ptprs,mag,rnf6,trim46
Eye development	0.01408643	10	365	med1,tbc1d20,aldh1a2,atp8a2,gnat2,gpm6a,zhx2,th,tfap 2a,twist1
Growth	0.01408643	18	1018	sertad2,st7l,tnc,prlh,kcnk2,ptprs,mag,pde4d,foxo3,med1,r nf6,map1b,atp8a2,dysf,irf8,pdlim5,rmi1,trim46
Cellular response to lipid	0.01408643	14	671	rnf6,brinp3,ptger4,card8,med1,cyp26b1,tnc,pde4d,foxo3, aldh1a2,irf8,nr4a2,hnf4g,fhl2
Visual system development	0.01408643	10	366	med1,tbc1d20,aldh1a2,atp8a2,gnat2,gpm6a,zhx2,th,tfap 2a,twist1
Anatomical structure morphogenesis	0.01669332	34	2702	map1b,tfap2a,cyp26b1,tnc,esrp2,ptprs,rasip1,mag,fhl2,fo xo3,twist1,med1,tbc1d20,rnf6,aldh1a2,atp8a2,gnat2,fhod 3,dysf,gpm6a,nr4a2,itga5,pdlim5,trim46,nfasc,tiparp,zhx2 ,th,ext1,crispld1,chrna7,bcor,eya2,dok6
Neuron development	0.01669332	19	1140	map1b,atp8a2,gpm6a,tnc,ptprs,mag,rnf6,gnat2,nr4a2,pd lim5,trim46,nfasc,washc5,th,ext1,galr2,anks1a,chrna7,do k6
Sensory system development	0.01669332	10	377	med1,tbc1d20,aldh1a2,atp8a2,gnat2,gpm6a,zhx2,th,tfap 2a,twist1
Cell differentiation	0.01725075	48	4372	tnc,klf1,map1b,atp8a2,tcf12,gpm6a,nr4a2,brinp3,smyd1,f oxo3,glipr2,med1,tfap2a,cyp26b1,prlh,ptprs,rasip1,mag,f hl2,cenpf,twist1,tbc1d20,rnf6,steap4,aldh1a2,gnat2,fhod 3,dysf,irf8,tdrd5,pdlim5,trim46,nfasc,tiparp,washc5,nxn,p tger4,zhx2,th,ext1,galr2,itga5,anks1a,trps1,pde4d,chrna7, eya2,dok6
Behavior	0.01791936	13	619	cfap20,prlh,kcnk2,atp8a1,atp8a2,ncoa2,nr4a2,slc16a1,itg a5,rmi1,th,chrna7,galr2
Intracellular receptor signaling pathway	0.02008492	9	323	rnf6,med1,cyp26b1,twist1,aldh1a2,nr4a2,hnf4g,fhl2,map 2k6
Reduction of food intake in response to dietary excess	0.02011061	2	5	prlh,rmi1
Nervous system development	0.02011061	31	2439	cox6b1,map1b,atp8a2,tcf12,gpm6a,nr4a2,brinp3,tnc,prlh, ptprs,mag,foxo3,twist1,med1,rnf6,aldh1a2,gnat2,pdlim5, trim46,nfasc,washc5,fut9,zhx2,th,ext1,galr2,cenpf,anks1a ,tfap2a,chrna7,dok6
Sensory organ development	0.02011061	12	561	cyp26b1,kcnk2,med1,tbc1d20,aldh1a2,atp8a2,gnat2,gpm 6a,zhx2,th,tfap2a,twist1
Regulation of axon extension	0.02011061	5	94	ptprs,mag,rnf6,map1b,trim46
Response to vitamin	0.02011061	5	92	cyp26b1,tnc,trim25,med1,aldh1a2
Cellular hormone metabolic process	0.02011061	6	142	cyp26b1,aldh1a2,tiparp,dgat1,med1,cyp21a2

Negative regulation of growth	0.02011061	8	267	sertad2,st7l,kcnk2,ptprs,mag,rnf6,irf8,trim46
Retina morphogenesis in camera-type eye	0.02011061	4	53	atp8a2,gnat2,zhx2,tfap2a
Sensory organ morphogenesis	0.02011061	8	267	cyp26b1,tbc1d20,atp8a2,gnat2,zhx2,th,tfap2a,twist1
Negative regulation of chromosome organization	0.02019114	6	147	atad2,xrn1,twist1,znf451,bcor,cenpf
Regulation of neuron differentiation	0.02113374	13	656	tcf12,brinp3,ptprs,mag,foxo3,med1,rnf6,map1b,atp8a2,p dlim5,washc5,zhx2,trim46
Retina development in camera-type eye	0.02113374	6	149	med1,atp8a2,gnat2,gpm6a,zhx2,tfap2a
Neuron projection morphogenesis	0.02244972	13	662	map1b,ptprs,mag,rnf6,atp8a2,gpm6a,nr4a2,pdlim5,trim4 6,nfasc,ext1,chrna7,dok6
Response to hormone	0.02411051	17	1031	foxo3,med1,rnf6,ncoa2,nr4a2,ptger4,chrna7,tnc,prlh,xrn1 ,gpr83,aldh1a2,hnf4g,th,trarg1,fhl2,gnaq
Negative regulation of developmental growth	0.02447961	5	105	kcnk2,ptprs,mag,rnf6,trim46
Cell morphogenesis involved in neuron differentiation	0.02447961	12	591	map1b,ptprs,mag,rnf6,atp8a2,nr4a2,pdlim5,trim46,nfasc, ext1,chrna7,dok6
Cell projection morphogenesis	0.02447961	13	678	map1b,ptprs,mag,rnf6,atp8a2,gpm6a,nr4a2,pdlim5,trim4 6,nfasc,ext1,chrna7,dok6
Axon development	0.02447961	11	510	map1b,tnc,ptprs,mag,rnf6,atp8a2,nr4a2,trim46,nfasc,ext 1,dok6
Plasma membrane bounded cell projection morphogenesis	0.02447961	13	676	map1b,ptprs,mag,rnf6,atp8a2,gpm6a,nr4a2,pdlim5,trim4 6,nfasc,ext1,chrna7,dok6
Response to organic cyclic compound	0.02545138	16	962	rnf6,med1,tiparp,tnc,pde4d,xrn1,foxo3,trim25,gpr83,aldh 1a2,ncoa2,nr4a2,slc16a1,hnf4g,th,fhl2
Negative regulation of neuron differentiation	0.02545138	7	224	ptprs,mag,foxo3,med1,rnf6,zhx2,trim46
Embryonic camera- type eye morphogenesis	0.02545138	3	28	th,twist1,tfap2a
Regulation of extent of cell growth	0.02545138	5	109	ptprs,mag,rnf6,map1b,trim46
Protein K48-linked ubiquitination	0.02545138	4	62	ube2k,march6,trim44,rnf6

Negative regulation of chromatin organization	0.02545138	4	63	atad2,twist1,znf451,bcor
Cellular developmental process	0.02579863	48	4587	tnc,klf1,map1b,atp8a2,tcf12,gpm6a,nr4a2,brinp3,smyd1,f oxo3,glipr2,med1,tfap2a,cyp26b1,prlh,ptprs,rasip1,mag,f hl2,cenpf,twist1,tbc1d20,rnf6,steap4,aldh1a2,gnat2,fhod 3,dysf,irf8,tdrd5,pdlim5,trim46,nfasc,tiparp,washc5,nxn,p tger4,zhx2,th,ext1,galr2,itga5,anks1a,trps1,pde4d,chrna7, eya2,dok6
Circulatory system development	0.02618802	17	1064	th,kcnk2,rasip1,smyd1,fhl2,twist1,med1,aldh1a2,fhod3,dy sf,itga5,pdlim5,tiparp,nxn,rbm20,chrna7,bcor
Cell part morphogenesis	0.0264455	13	697	map1b,ptprs,mag,rnf6,atp8a2,gpm6a,nr4a2,pdlim5,trim4 6,nfasc,ext1,chrna7,dok6
Anatomical structure maturation	0.0264455	6	167	foxo3,aldh1a2,nr4a2,nfasc,washc5,anks1a
Response to extracellular stimulus	0.02777357	11	532	nr4a2,cyp26b1,tnc,prlh,foxo3,trim25,med1,aldh1a2,slc16 a1,rmi1,th
Response to oxygen-containing compound	0.0281392	23	1689	foxo3,nr4a2,brinp3,ptger4,th,card8,chrna7,cyp26b1,tnc,p rlh,klf1,dnm1,map2k6,pde4d,xrn1,trim25,med1,aldh1a2,n coa2,irf8,rmi1,trarg1,gnaq
Cellular response to oxygen- containing compound	0.02824704	18	1178	foxo3,nr4a2,brinp3,ptger4,card8,cyp26b1,tnc,klf1,map2k 6,pde4d,xrn1,med1,aldh1a2,irf8,th,trarg1,gnaq,chrna7
Response to axon injury	0.02862969	4	69	tnc,kcnk2,ptprs,mag
Negative regulation of axonogenesis	0.02862969	4	69	ptprs,mag,rnf6,trim46
Developmental growth involved in morphogenesis	0.02862969	7	237	tnc,ptprs,mag,med1,rnf6,map1b,trim46
Negative regulation of protein polyubiquitination	0.02862969	2	8	trim44,dysf
Regulation of phospholipid transport	0.02862969	2	8	atp8a1,atp8a2
Positive regulation of phospholipid transport	0.02862969	2	8	atp8a1,atp8a2
Neuron projection development	0.02913429	16	997	map1b,gpm6a,tnc,ptprs,mag,rnf6,atp8a2,nr4a2,pdlim5,tr im46,nfasc,washc5,ext1,galr2,chrna7,dok6
Cell maturation	0.03039891	6	178	foxo3,nr4a2,tdrd5,nfasc,washc5,anks1a
Axon extension	0.03039891	5	120	ptprs,mag,rnf6,map1b,trim46
Heart development	0.03089855	11	552	th,kcnk2,smyd1,fhl2,twist1,med1,aldh1a2,fhod3,pdlim5,r bm20,bcor

Cellular response to chemical stimulus	0.03089855	38	3443	foxo3,med1,rnf6,ncoa2,nr4a2,brinp3,ptger4,shisa2,cyp26 b1,card8,tfap2a,irf8,tiparp,trim44,tnc,kcnk2,klf1,map2k6, pde4d,xrn1,trim25,twist1,aldh1a2,dysf,slc16a1,hnf4g,nxn, th,trarg1,ube2k,znf451,gnaq,chrna7,fhl2,esrp2,itga5,cmbl ,nat1
Axonogenesis	0.0310125	10	471	map1b,ptprs,mag,rnf6,atp8a2,nr4a2,trim46,nfasc,ext1,do k6
Embryonic forelimb morphogenesis	0.03241747	3	34	twist1,aldh1a2,tfap2a
Cellular response to retinoic acid	0.03315736	4	74	brinp3,cyp26b1,tnc,aldh1a2
Homeostatic process	0.03339051	25	1962	klf1,foxo3,abhd8,ptger4,gpr20,xrn1,ube2k,cyp26b1,crocc, prlh,map2k6,pde4d,med1,steap4,gnat2,slc16a1,tsc22d3,n xn,rmi1,th,galr2,dgat1,tbc1d20,chrna7,rfc4
Negative regulation of cellular component organization	0.03339051	13	739	atad2,xrn1,ptger4,ptprs,mag,twist1,rnf6,fhod3,dysf,znf45 1,bcor,trim46,cenpf
Response to vitamin D	0.03347122	3	35	tnc,trim25,med1
Animal organ morphogenesis	0.03351451	16	1027	tfap2a,cyp26b1,tnc,esrp2,fhl2,foxo3,twist1,med1,tbc1d20 ,aldh1a2,atp8a2,gnat2,tiparp,zhx2,th,bcor
System development	0.03351451	50	4976	cox6b1,klf1,map1b,atp8a2,tcf12,gpm6a,nr4a2,brinp3,th,f oxo3,glipr2,tfap2a,cyp26b1,tnc,prlh,kcnk2,esrp2,ptprs,rasi p1,mag,smyd1,fhl2,cenpf,twist1,med1,tbc1d20,rnf6,aldh1 a2,gnat2,fhod3,dysf,irf8,itga5,pdlim5,trim46,nfasc,tiparp, washc5,nxn,ptger4,fut9,zhx2,ext1,galr2,rbm20,chrna7,bc or,anks1a,trps1,dok6
Embryonic eye morphogenesis	0.03498708	3	36	th,twist1,tfap2a
Cell morphogenesis involved in differentiation	0.03535026	13	751	map1b,ptprs,mag,tbc1d20,rnf6,atp8a2,nr4a2,pdlim5,trim 46,nfasc,ext1,chrna7,dok6
Negative regulation of cell growth	0.03535026	6	191	sertad2,st7l,ptprs,mag,rnf6,trim46
Embryonic limb morphogenesis	0.03535026	5	130	cyp26b1,twist1,med1,aldh1a2,tfap2a
Embryonic appendage morphogenesis	0.03535026	5	130	cyp26b1,twist1,med1,aldh1a2,tfap2a
Protein localization to axon	0.03535026	2	10	trim46,nfasc
Regulation of developmental growth	0.03607979	8	333	prlh,kcnk2,ptprs,mag,rnf6,map1b,atp8a2,trim46
Cellular response to organic cyclic compound	0.03631117	11	579	rnf6,med1,tiparp,tnc,pde4d,xrn1,foxo3,nr4a2,slc16a1,hnf 4g,fhl2
Response to nutrient levels	0.03921368	10	500	cyp26b1,tnc,prlh,foxo3,trim25,med1,aldh1a2,slc16a1,rmi 1,th

Response to steroid hormone	0.03921368	9	418	rnf6,med1,foxo3,gpr83,ncoa2,nr4a2,hnf4g,th,fhl2
Regulation of tooth mineralization	0.04037623	2	11	tfap2a,bcor
Oxidation- reduction process	0.04038443	16	1061	cyp26b1,steap4,coq7,prlh,tsta3,pycr3,mtrr,cox6b1,aldh1a 2,ppp1r3a,nxn,th,cyp21a2,twist1,tbrg4,tstd1
Response to endogenous stimulus	0.04173373	22	1692	foxo3,med1,rnf6,ncoa2,nr4a2,ptger4,shisa2,chrna7,tnc,pr lh,klf1,pde4d,xrn1,gpr83,aldh1a2,hnf4g,th,trarg1,znf451,f hl2,gnaq,esrp2
Vitamin metabolic process	0.04365266	5	140	cyp26b1,mtrr,aldh1a2,slc2a3,aasdhppt
Positive regulation of transcription, DNA-templated	0.04365266	21	1593	zfhx4,klf1,foxo3,tcf12,ncoa2,atad2,coq7,twist1,med1,tfap 2a,irf8,hnf4g,trim44,galr2,zbed1,ppp3r1,rnf6,nr4a2,serta d2,fhl2,cdk8
Response to ketone	0.04397175	6	204	ptger4,tnc,xrn1,foxo3,ncoa2,th
Negative regulation of transcription by RNA polymerase II	0.04451995	14	896	zfhx4,foxo3,coq7,zhx2,trps1,fhl2,tfap2a,irf8,twist1,med1, ncoa2,bcor,znf451,nr4a2
Protein polyubiquitination	0.04451995	7	277	ubox5,ube2k,rnf6,march6,trim44,dysf,fbxl7
Response to external stimulus	0.04451995	29	2525	card8,rps15a,nr4a2,trim44,ptger4,cyp26b1,tnc,prlh,kcnk2 ,ptprs,mag,pde4d,foxo3,trim25,med1,aldh1a2,atp8a2,gn at2,dysf,ifi44,irf8,gpm6a,slc16a1,nfasc,rmi1,th,ext1,gnaq, dok6
Response to organic substance	0.04451995	37	3461	foxo3,med1,rnf6,ncoa2,march6,nr4a2,brinp3,ptger4,th,sh isa2,card8,aldh1a2,irf8,tiparp,trim44,chrna7,cyp26b1,tnc, prlh,klf1,dnm1,map2k6,pde4d,xrn1,trim25,twist1,gpr83,sl c16a1,hnf4g,rmi1,trarg1,ube2k,znf451,fhl2,gnaq,esrp2,itg a5
Negative regulation of macromolecule metabolic process	0.04451995	32	2872	serpinb1,zfhx4,foxo3,atad2,coq7,zhx2,xrn1,trps1,card8,fhl 2,cenpf,twist1,tfap2a,irf8,trim44,bcor,kcnk2,pde4d,smyd1 ,med1,dysf,ncoa2,nxn,c1d,chrna7,rasip1,znf451,tbrg4,nr4 a2,gnaq,tiparp,rps15a
Positive regulation of gene expression	0.04451995	25	2046	zfhx4,klf1,foxo3,tcf12,ncoa2,atad2,coq7,twist1,med1,tfap 2a,irf8,hnf4g,trim44,galr2,zbed1,ppp3r1,cyp26b1,tnc,rnf6 ,aldh1a2,nr4a2,sertad2,rbm20,fhl2,cdk8
Negative regulation of gene expression	0.04451995	24	1952	zfhx4,foxo3,atad2,coq7,zhx2,trps1,card8,fhl2,cenpf,twist1 ,tfap2a,irf8,bcor,xrn1,smyd1,med1,dysf,ncoa2,c1d,znf451, tbrg4,nr4a2,tiparp,rps15a
Developmental maturation	0.04451995	7	282	foxo3,aldh1a2,nr4a2,tdrd5,nfasc,washc5,anks1a
Negative regulation of histone modification	0.04451995	3	44	twist1,znf451,bcor
Protein modification by small protein conjugation	0.04451995	14	891	dcun1d2,ubox5,ube2k,znf451,rnf6,march6,trim44,bcor,tri m25,med1,dysf,nxn,fbxl7,zbed1
Regulation of integrin activation	0.04451995	2	13	ptger4,rasip1

Forelimb morphogenesis	0.04451995	3	42	twist1,aldh1a2,tfap2a
Dopamine biosynthetic process	0.04451995	2	12	th,nr4a2
Negative regulation of transcription, DNA- templated	0.04451995	18	1298	zfhx4,foxo3,atad2,coq7,zhx2,trps1,fhl2,cenpf,twist1,tfap2 a,irf8,bcor,smyd1,med1,ncoa2,c1d,znf451,nr4a2
Embryonic camera- type eye formation	0.04451995	2	12	twist1,tfap2a
Eyelid development in camera-type eye	0.04451995	2	13	twist1,tfap2a
Cellular response to organic substance	0.04451995	32	2872	foxo3,med1,rnf6,ncoa2,nr4a2,brinp3,ptger4,shisa2,card8, irf8,tiparp,trim44,cyp26b1,tnc,klf1,map2k6,pde4d,xrn1,tri m25,twist1,aldh1a2,slc16a1,hnf4g,th,trarg1,ube2k,znf451 ,gnaq,chrna7,fhl2,esrp2,itga5
Cellular response to alcohol	0.04451995	4	90	ptger4,tnc,xrn1,foxo3
Response to amyloid-beta	0.04451995	3	43	dnm1,foxo3,chrna7
Negative regulation of cellular macromolecule biosynthetic process	0.04451995	20	1509	zfhx4,foxo3,atad2,coq7,zhx2,xrn1,trps1,fhl2,cenpf,twist1,t fap2a,irf8,bcor,kcnk2,smyd1,med1,ncoa2,c1d,znf451,nr4a 2
Cardiac muscle tissue development	0.04461977	6	213	kcnk2,fhl2,med1,aldh1a2,fhod3,pdlim5
Axon regeneration	0.04525881	3	45	tnc,ptprs,mag
Neuron maturation	0.04525881	3	45	nr4a2,nfasc,anks1a
Regulation of nucleobase- containing compound metabolic process	0.04595578	44	4374	eya2,zfhx4,klf1,foxo3,tfap2a,tcf12,ncoa2,atad2,coq7,zhx2 ,xrn1,esrp2,trps1,fhl2,cenpf,twist1,med1,irf8,rfc4,hnf4g,tri m44,galr2,bcor,zbed1,ppp3r1,kcnk2,smyd1,znf45,rnf6,znf 214,nr4a2,tsc22d3,znf362,sertad2,c1d,znf628,zfp2,rbm20 ,vgll3,card8,znf451,trim25,tbrg4,cdk8
Tissue development	0.04604795	25	2079	glipr2,tfap2a,cyp26b1,tnc,eya2,kcnk2,esrp2,ptprs,rasip1,s myd1,fhl2,cenpf,twist1,med1,tbc1d20,aldh1a2,fhod3,dysf ,pdlim5,tiparp,ext1,itga5,bcor,trps1,pde4d
DNA-templated transcription, initiation	0.04769373	7	293	twist1,med1,znf451,znf45,cdk8,nr4a2,hnf4g
Transcription initiation from RNA polymerase II promoter	0.04769373	6	221	med1,znf451,znf45,cdk8,nr4a2,hnf4g
Response to xenobiotic stimulus	0.04769373	7	292	cyp26b1,foxo3,nr4a2,tiparp,th,cmbl,nat1
Appendage morphogenesis	0.04769373	5	154	cyp26b1,twist1,med1,aldh1a2,tfap2a

Limb morphogenesis	0.04769373	5	154	cyp26b1,twist1,med1,aldh1a2,tfap2a
Positive regulation of nucleobase- containing compound metabolic process	0.04769373	24	1978	eya2,zfhx4,klf1,foxo3,tcf12,ncoa2,atad2,coq7,twist1,med 1,tfap2a,irf8,rfc4,hnf4g,trim44,galr2,zbed1,ppp3r1,rnf6,nr 4a2,sertad2,rbm20,fhl2,cdk8
Negative regulation of neurogenesis	0.04769373	7	292	ptprs,mag,foxo3,med1,rnf6,zhx2,trim46
Negative regulation of nitrogen compound metabolic process	0.04769373	29	2551	serpinb1,zfhx4,foxo3,atad2,coq7,zhx2,xrn1,trps1,card8,fhl 2,cenpf,twist1,tfap2a,irf8,trim44,bcor,kcnk2,pde4d,smyd1 ,med1,dysf,ncoa2,nxn,c1d,chrna7,rasip1,znf451,nr4a2,gn aq
Roof of mouth development	0.04769373	4	94	twist1,tiparp,tfap2a,bcor
Cellular response to endogenous stimulus	0.04769373	19	1431	foxo3,med1,rnf6,ncoa2,nr4a2,ptger4,shisa2,tnc,klf1,pde4 d,xrn1,hnf4g,th,trarg1,znf451,gnaq,chrna7,fhl2,esrp2
Response to nutrient	0.04807838	6	222	cyp26b1,tnc,trim25,med1,aldh1a2,slc16a1
Regulation of gene expression	0.04807838	47	4798	zfhx4,klf1,znf451,foxo3,tfap2a,tcf12,ncoa2,atad2,coq7,zh x2,esrp2,trps1,card8,fhl2,cenpf,twist1,med1,irf8,hnf4g,tri m44,galr2,bcor,zbed1,ppp3r1,cyp26b1,tnc,xrn1,smyd1,znf 45,rnf6,aldh1a2,dysf,znf214,nr4a2,tsc22d3,znf362,sertad 2,c1d,znf628,zfp2,rbm20,vgll3,trim25,tbrg4,tiparp,cdk8,rp s15a
Developmental cell growth	0.04807838	6	223	ptprs,mag,rnf6,map1b,pdlim5,trim46
Oocyte development	0.04807838	3	48	foxo3,tdrd5,washc5
Regulation of neurogenesis	0.04807838	13	824	tcf12,brinp3,ptprs,mag,foxo3,med1,rnf6,map1b,atp8a2,p dlim5,washc5,zhx2,trim46

1365 **Table S6. Scale-eater adaptive alleles used for assessing stages of adaptation.**

- 1366 We estimated ages for all adaptive alleles that were in or near (within 20-kb) of a gene associated with a GO term for behavior or
- 1367 craniofacial traits on the Ensemble 96 annotation database and were significantly enriched in our GO enrichment analysis (Table S5).
- 1368 Sweep ages, stage category assignment, any additional annotations we found for genes and their references are provided. Also
- included is a partial list of other significantly enriched GO terms for each gene. For visual clarity in the table, the broader GO terms
- 1370 (terms that > 1000 genes listed in database) are not included. See Table S5 for full list. Sweep ages are listed as the 95% HPD range
- 1371 (X indicates missing age estimates because estimates across starTMRCA runs did not converge for that sweep).
- 1372

Gene	Sweep Age	Stages Category	GO enrichment annotations	GWAS annotations	Other annotations	References for other annotations	Other GO enrichment annotations (Partial list)
galr2	696-1008	craniofacial	behavior; feeding behavior	oral jaw size	bone tissue development	(42, 43, 69)	Behavior, Feeding behavior
cfap20	974-1215	feeding behavior	behavior; feeding behavior			(70)	Behavior, Feeding behavior
atp8a1	118-1419	behavior	behavior			(71)	Regulation of phospholipid transport, Positive regulation of phospholipid transport, Regulation of phospholipid translocation, Positive regulation of phospholipid translocation
rmi1	652-952	feeding behavior	behavior; feeding behavior			(72)	Developmental growth, Response to extracellular stimulus, Response to nutrient levels, Eating behavior, Reduction of food intake in response to dietary excess
th	746-958	feeding behavior/ craniofacial	eye development; behavior; feeding			(73, 74)	Camera-type eye development, Response to xenobiotic stimulus, Sensory organ morphogenesis, Response to ketone, Eye

			behavior				morphogenesis, Camera-type eye morphogenesis, Embryonic camera- type eye development, Embryonic eye morphogenesis, Eating behavior, Embryonic camera-type eye morphogenesis, Dopamine biosynthetic process
ncoa2	622-902	behavior	behavior				Response to steroid hormone, Response to ketone
nr4a2	762-942	behavior	behavior				Cell morphogenesis involved in neuron differentiation, Cellular response to organic cyclic compound, Response to extracellular stimulus, Axon development, Axonogenesis, Response to steroid hormone, Intracellular receptor signaling pathway, DNA- templated transcription, Response to xenobiotic stimulus, Developmental maturation, Transcription initiation from RNA polymerase II promoter, Cell maturation, Anatomical structure maturation, Neuron maturation, Dopamine biosynthetic process
kcnk2	452-618	craniofacial	Muscle tissue development; behavior	oral jaw size			Developmental growth, Behavior, Sensory organ development, Heart development, Striated muscle tissue development, Regulation of developmental growth, Negative regulation of growth, Cardiac muscle tissue development, Negative regulation of developmental growth, Response to axon injury
slc16a1	459-661	behavior	Behavior		feeding behavior	(75)	Response to organic cyclic compound,Cellular response to organic cyclic compound, Response to extracellular stimulus, Response to nutrient levels, Response to nutrient
itga5	639-932	craniofacial	behavior		eye development; pharengeal arch development	(76, 77)	Anatomical structure morphogenesis, Tissue development, Circulatory system development

chma7864-1111behaviorbehaviorNeuron projection development, Cell morphogenesis, Cell projection morphogenesis, Development regulation of neuron differentiation, Cell morphogenesis, Development agrowth involved in morphogenesis, Development agrowth involved in morphogenesis, Development, Cell morphogenesis, Response to vitamin camera-type eye, Cellar horono metalolic program morphogenesis, Response to vitamin <b< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></b<>							
development; muscle tissue development developmentissue sevelopmentissue sevelopmentpathway, Camera-type eye development, "DNA-templated transcription, DQGItve regulation of neurogenesis, Developmental growth involved in morphogenesis, Negative regulation of neuron differentiation, Response to nutrient, Transcription initiation from RNA polymerase II promoter, Cardia muscle tissue development, "DNA-templated transcription, DQGItore eye, Cellular homorphogenesis, Limb morphogenesis, Restina development, Appendage morphogenesis, Embryonic limb morphogenesis, Response to vitamin, Dgnal2Xcraniofacial eye developmentCamera-type eye morphogenesis, Response to vitamin, Response to vitamin, Response to vitamin, Dgnal2Xcraniofacialeye developmentCamera-type eye morphogenesis, Response to vitamin, Dgnal2292-1295musclemuscle tissueStriated muscle tissue development in camera-type eye, Camera-type eye morphogenesis, Neural retina development, Response to vitamin, R	chrna7			behavior			morphogenesis involved in differentiation, Cell part morphogenesis, Cell projection morphogenesis, Plasma membrane bounded cell projection morphogenesis, Neuron projection morphogenesis , Cell morphogenesis involved in neuron differentiation, Response to amyloid- beta
eya2962-1295musclemuscle tissue developmentStriated muscle tissue developmenttfap2a292-431craniofacialeye devolopment;pigmentation; embryonic cranial(78-80)Camera-type eye development, Sensory organ morphogenesis, Appendage	med1	X	craniofacial	development; muscle tissue			pathway, Camera-type eye development, "DNA-templated transcription,Negative regulation of neurogenesis, Developmental growth involved in morphogenesis, Negative regulation of neuron differentiation, Response to nutrient, Transcription initiation from RNA polymerase II promoter, Cardiac muscle tissue development, Appendage morphogenesis, Limb morphogenesis, Retina development in camera-type eye, Cellular hormone metabolic process, Embryonic limb morphogenesis, Response to vitamin,
<i>tfap2a</i> 292-431 craniofacial eye pigmentation; (78–80) Camera-type eye development, Sensory devolopment; embryonic cranial organ morphogenesis, Appendage	gnat2	Х	craniofacial	eye development			organ morphogenesis, Eye morphogenesis, Retina development in camera-type eye, Camera-type eye morphogenesis, Neural retina development, Retina morphogenesis in
devolopment; embryonic cranial organ morphogenesis, Appendage	eya2	962-1295	muscle		 		
	tfap2a	292-431	craniofacial	eye		(78–80)	organ morphogenesis, Appendage

			mouth development		skeleton morphogenesis		Eye morphogenesis, Retina development in camera-type eye, Embryonic limb morphogenesis, Embryonic appendage morphogenesis, Camera-type eye morphogenesis, Roof of mouth development, Neural retina development, Retina morphogenesis in camera-type eye, Forelimb morphogenesis, Embryonic camera- type eye development, Embryonic eye morphogenesis, Embryonic forelimb morphogenesis, Embryonic camera- type eye morphogenesis, Eyelid development in camera-type eye, Embryonic camera-type eye, Embryonic camera-type eye formation, Regulation of tooth mineralization
tbc1d20	854-1103	craniofacial	eye development				Cell morphogenesis involved in differentiation, Sensory organ development, Sensory system development, Visual system development, Eye development, Camera-type eye development, Sensory organ morphogenesis, Eye morphogenesis, Camera-type eye morphogenesis
smyd1	662-934	muscle	muscle tissue development				Circulatory system development, Heart development, Striated muscle tissue development
cenpf	452-618	muscle	muscle tissue development	oral jaw size			Negative regulation of cellular component organization, Striated muscle tissue development, Negative regulation of chromosome organization
pdlim5	550-736	muscle	muscle tissue development	oral jaw size	behavior	(81)	Neuron projection development, Regulation of neurogenesis, Cell morphogenesis involved in differentiation, Cell part morphogenesis, Cell projection morphogenesis, Plasma membrane bounded cell projection morphogenesis, Neuron projection morphogenesis,

							Regulation of neuron differentiation, Developmental growth, Cell morphogenesis involved in neuron differentiation, Heart development, Striated muscle tissue development, Developmental cell growth, Cardiac muscle tissue development
bcor	505-727	craniofacial	mouth development		retina development	(82)	Negative regulation of transcription by RNA polymerase II, Protein modification by small protein conjugation, Negative regulation of cellular component organization, Heart development, Negative regulation of chromosome organization, Negative regulation of chromatin organization, Negative regulation of histone modification, Regulation of tooth mineralization
fhod3	767-999	muscle	muscle tissue development		ear development	IMPC: https://www. mousephenot ype.org/data/ genes/MGI:1 925847#phen otypesTab	Circulatory system development, Negative regulation of cellular component organization, Heart development, Striated muscle tissue development, Cardiac muscle tissue development
twist1	300-434	craniofacial	muscle tissue development;eye development	oral jaw size	mandibular arch skeleton	(83, 84)	Camera-type eye development, DNA- templated transcription,Sensory organ morphogenesis, Appendage morphogenesis, Limb morphogenesis, Eye morphogenesis, Negative regulation of chromosome organization, Embryonic limb morphogenesis, Embryonic appendage morphogenesis, Camera-type eye morphogenesis, , Negative regulation of chromatin organization, Negative regulation of histone modification, Forelimb morphogenesis, Embryonic camera- type eye development, Embryonic eye morphogenesis, Embryonic forelimb

						Embryonic camera-type eye formation
zhx2	X	craniofacial	eye development	 		Camera-type eye development, Negative regulation of neurogenesis, Sensory organ morphogenesis, Negative regulation of neuron differentiation, Eye morphogenesis, Retina development in camera-type eye, Camera-type eye morphogenesis, Neural retina development, Retina morphogenesis in camera-type eye
fhl2	890-1169	craniofacial	muscle tissue development	 		Response to lipid, Response to organic cyclic compound, Negative regulation of transcription by RNA polymerase II, Cellular response to lipid, Cellular response to organic cyclic compound, Heart development, Response to steroic hormone, Striated muscle tissue development, Intracellular receptor signaling pathway, Cardiac muscle tissue development
prlh	1123-1466	feeding behavior	behavior; feeding behavior	 	(85)	Developmental growth, Response to extracellular stimulus, Response to nutrient levels, Regulation of developmental growth, Eating behavior, Reduction of food intake in response to dietary excess
ald1ha2	878-1279	craniofacial	muscle tissue development, eye development	 limb morphogenesis	(86)	Camera-type eye development, Developmental maturation, Response to nutrient, Cardiac muscle tissue development, Anatomical structure maturation, Appendage morphogenesis. Limb morphogenesis, Cellular hormone metabolic process, Vitamin metabolic process, Embryonic limb morphogenesis, Embryonic appendage morphogenesis, Response to vitamin, Cellular response to retinoic acid,

morphogenesis, Embryonic cameratype eye morphogenesis, Eyelid development in camera-type eye, ic camera-type eye formation ype eye development, regulation of neurogenesis, organ morphogenesis, regulation of neuron ation, Eye morphogenesis, velopment in camera-type era-type eye morphogenesis, tina development, Retina enesis in camera-type eye to lipid, Response to organic npound, Negative regulation iption by RNA polymerase II, esponse to lipid, Cellular to organic cyclic compound, elopment, Response to steroid Striated muscle tissue ent, Intracellular receptor pathway, Cardiac muscle elopment nental growth, Response to lar stimulus, Response to evels, Regulation of ental growth, Eating Reduction of food intake in to dietary excess ype eye development, nental maturation, Response to Cardiac muscle tissue ent, Anatomical structure n, Appendage morphogenesis, rphogenesis, Cellular hormone process, Vitamin metabolic Embryonic limb enesis, Embryonic appendage

	Forelimb morphogenesis, Embryonic
	camera-type eye development,
	Embryonic forelimb morphogenesis
373	
374	

1378	Table S7. Molluscivore adaptive alleles used for assessing stages of adaptation. We estimated ages for all adaptive alleles that
1379	were in or near (within 20-kb) of a gene associated with a GO term for behavior or craniofacial traits on the Ensemble 96 annotation
1380	database and were significantly enriched in our GO enrichment analysis (Table S5). Sweep ages, stage category assignment, any
1381	additional annotations we found for genes and their references are provided. Also included is a partial list of other significantly
1382	enriched GO terms for each gene. For visual clarity in the table, the broader GO terms (terms that > 1000 genes listed in database) are
1383	not included. See Table S5 for full list. Sweep ages are listed as the 95% HPD range (X indicates missing age estimates because
1384	estimates across starTMRCA runs did not converge for that sweep).

Gene	Sweep Age	Stages Category	GO enrichment annotations	GWAS annotations	Other researched relevant annotations	References for other annotations	Other GO enrichment annotations
cyp26b1	214-582	craniofacial	muscle tissue development		craniofacial development	(87, 88)	Striated muscle tissue development, Intracellular receptor signaling pathway, Response to xenobiotic stimulus, Sensory organ morphogenesis, Response to nutrient, Appendage morphogenesis, Limb morphogenesis, Cellular hormone metabolic process, Vitamin metabolic process, Embryonic limb morphogenesis, Embryonic appendage morphogenesis, Response to vitamin, Cellular response to retinoic acid
ext1	405-687	craniofacial	cranial skeletal system development	nose height		(89)	Neuron projection development, Cell morphogenesis involved in differentiation,Cell part morphogenesis,Cell projection morphogenesis, Plasma membrane bounded cell projection morphogenesis, Neuron projection morphogenesis, Cell morphogenesis involved in neuron differentiation, Axon development, Axonogenesis

gnaq	180-737	craniofacial	skeletal system development	 pigmentation; jaw size	(90, 91)	Regulation of biological quality, Response to organic substance, Cellular response to chemical stimulus, Negative regulation of macromolecule metabolic process, Cellular response to organic substance, Negative regulation of nitrogen compound metabolic process, Response to external stimulus, Response to endogenous stimulus, Response to oxygen-containing compound, Cellular response to endogenous stimulus, Cellular response to oxygen-containing compound, Response to hormone
zhx2	1147- 1793	craniofacial	eye development	 		Regulation of neurogenesis, Regulation of neuron differentiation, Sensory organ development, Sensory system development, Visual system development, Eye development, Camera-type eye development, Negative regulation of neurogenesis, Sensory organ morphogenesis, Negative regulation of neuron differentiation, Eye morphogenesis, Retina development in camera-type eye, Camera- type eye morphogenesis, Neural retina development, Retina morphogenesis in camera-type eye
tiparp	х	craniofacial	mouth development; muscle tissue development			Response to organic cyclic compound, Cellular response to organic cyclic compound, Response to xenobiotic stimulus, Cellular hormone metabolic process, Roof of mouth development
atp8a2	X	feeding behavior	behavior; feeding behavior		(92)	Developmental growth, Response to extracellular stimulus, Response to nutrient levels, Eating behavior, Reduction of food intake in response to dietary excess

7 Table S8. Top 5 BLAST hits for LG15 QTL. Bolded values indicate the top hit that was used

- to determine the region the significant oral jaw size QTL aligned to an 18-Mb region on scaffold
- 1391 c_bro_v1_0_scaf8 (8840660-27314762) in the *C. brontotheroides* reference genome that
- 1392 contained 3 genes (*map2k6*, *galr2*, and *grid2ip*).
- 1393

LG15 marker	Scaffold	% identity	Length (bp)	Mismatch	Start	End	E-value	Bitscore
10999	c_bro_v1_0_scaf8	97.917	96	2	8840660	8840755	1.95E-42	174
10999	c_bro_v1_0_scaf8	100	17	0	17544438	17544422	4.6	34.2
10999	c_bro_v1_0_scaf36	100	20	0	201747	201728	0.074	40.1
10999	c_bro_v1_0_scaf7	100	19	0	13795738	13795756	0.29	38.2
10999	c_bro_v1_0_scaf52	100	18	0	23185857	23185840	1.2	36.2
10999	c_bro_v1_0_scaf38	100	18	0	1880370	1880387	1.2	36.2
33382	c_bro_v1_0_scaf8	100	93	0	27314670	27314762	1.97E-45	184
33382	c_bro_v1_0_scaf8	93.617	47	3	26627380	26627426	8.05E-11	69.9
33382	c_bro_v1_0_scaf8	93.617	47	3	27916662	27916616	8.05E-11	69.9
33382	c_bro_v1_0_scaf8	95.238	42	2	1464518	1464477	3.18E-10	67.9
33382	c_bro_v1_0_scaf8	95.238	42	2	11224060	11224019	3.18E-10	67.9

1396	Table S9. Per generation mutation rate estimation from high coverage sequencing of
1397	parents and F1 from two crosses of San Salvador Island (SSI) species. Details about the
1398	average coverage of genome sequences in three offspring across two crosses, the number of de
1399	novo variants at steps in the filtering pipeline, and the specific filter thresholds used for each
1400	individual to filter down to high quality de novo variants in each (shared alleles).

Cross	C. varie C. bronto	C. variegatus x C. desquamator	
Offspring	F1.A	F1.B	F1.A
Avg. coverage	67.5X	45.1X	32.7X
Known heterozygous sites genotype quality (GQ)	X>99	X>99	X>99
Known heterozygous sites base quality rank sum (BaseQRankSum)	1.4 <x<2.6< td=""><td>1.4<x<2.6< td=""><td>1.4<x<2.7< td=""></x<2.7<></td></x<2.6<></td></x<2.6<>	1.4 <x<2.6< td=""><td>1.4<x<2.7< td=""></x<2.7<></td></x<2.6<>	1.4 <x<2.7< td=""></x<2.7<>
Known heterozygous sites mapping quality (MQ)	x>54	x>54	x>54
Known heterozygous sites mapping quality rank sum (MQRankSum)	1.6 <x<1.9< td=""><td>1.6<x<1.9< td=""><td>1.4<x<2< td=""></x<2<></td></x<1.9<></td></x<1.9<>	1.6 <x<1.9< td=""><td>1.4<x<2< td=""></x<2<></td></x<1.9<>	1.4 <x<2< td=""></x<2<>
Known heterozygous sites quality by depth (QD)	24 <x<36< td=""><td>24<x<36< td=""><td>24<x<36< td=""></x<36<></td></x<36<></td></x<36<>	24 <x<36< td=""><td>24<x<36< td=""></x<36<></td></x<36<>	24 <x<36< td=""></x<36<>
Known heterozygous sites depth (DP)	27 <x<77< td=""><td>15 < x < 54</td><td>12< x < 39</td></x<77<>	15 < x < 54	12< x < 39
Known heterozygous sites allele depth (AD)	10 <x<42< td=""><td>5<x<30< td=""><td>4 < x < 21</td></x<30<></td></x<42<>	5 <x<30< td=""><td>4 < x < 21</td></x<30<>	4 < x < 21
Known heterozygous sites read position rank sum (ReadPosRankSum)	-1.8 <x<2.3< td=""><td>1.8<x<2.3< td=""><td>1.4<x<2.34< td=""></x<2.34<></td></x<2.3<></td></x<2.3<>	1.8 <x<2.3< td=""><td>1.4<x<2.34< td=""></x<2.34<></td></x<2.3<>	1.4 <x<2.34< td=""></x<2.34<>
Known heterozygous sites StrandOddsRatio (SOR)	0.17 <x<1.4< td=""><td>0.14<x<1.4< td=""><td>0.19<x<1.3< td=""></x<1.3<></td></x<1.4<></td></x<1.4<>	0.14 <x<1.4< td=""><td>0.19<x<1.3< td=""></x<1.3<></td></x<1.4<>	0.19 <x<1.3< td=""></x<1.3<>
Known heterozygous sites FisherStrand (FS)	4.6 <x<7.5< td=""><td>4.6<x<7.3< td=""><td>45<x<7.5< td=""></x<7.5<></td></x<7.3<></td></x<7.5<>	4.6 <x<7.3< td=""><td>45<x<7.5< td=""></x<7.5<></td></x<7.3<>	45 <x<7.5< td=""></x<7.5<>
GATK new mutation sites (bp)	9114	8936	331
mpileup new mutation sites (bp)	14772	14182	7206
Shared alleles (bp)	20	37	9
Accessible genome (bp)	698887016	712364816	695995433
Mutation rate estimate	1.43x10 ⁻⁸	2.59x10 ⁻⁸	6.46x10 ⁻⁹

Table S10. Parameters for selective sweep analyses in SweeD.

- 1405 The average coverage, composite likelihood ratio threshold based on neutral simulations, and the
- 1406 population size change parameters and individual used for each species.

	Average	CLR	
Species	Coverage	threshold	SweeD Commands
SSI generalist	28.87X	4.89	-folded -strictPolymorphic -G 0.4068 -eN 5.45 181.8 -s 64
SSI molluscivore	17.37X	4.47	-folded -strictPolymorphic -G 0.389 -eN 5.88 196 -s 88
SSI scale-eater	18.21X	5.28	-folded -strictPolymorphic -G 0.218 -eN 8.11 270 -s 52
RC	21.04X	4.41	-folded -strictPolymorphic -G 0.23 -eN 11.15 269.1 -s 34
NP	22.67X	2.28	-folded -strictPolymorphic -G 0.198 -eN 13.35 445.07 -s 30
DR	NA	5.37	-folded -strictPolymorphic -G 0.236 -eN 10.83 362.8 -s 20
NCC	27.62X	5.09	-folded -strictPolymorphic -G 0.29 -eN 8.01 374.4 -s 24
VEN	17.21X	18.05	-folded -strictPolymorphic -G 8.87 -eN 0.086 0.345 -eN 1.077 38.78 -s 22

1410	Table S11. The number of introgression regions in the SSI specialists. We determined
1411	introgressed regions of the genome as a region with a f_d statistic (ranges from 0 to 1) value above
1412	the threshold found in neutral simulations with no gene flow. These introgressed regions from
1413	each donor population were then overlapped with regions of the genome with strong genetic
1414	divergence (alleles with $F_{st} \ge 0.95$) and signatures of a hard selective sweep (above demographic
1415	simulation based thresholds SweeD CLR > 5.28; OmegaPlus ω > 3.31 for scale-eaters and
1416	SweeD CLR > 4.47; OmegaPlus ω > 4.23 for molluscivores) to determine the number of
1417	adaptive introgression regions. These adaptive introgression regions range in size from 50-kb to
1418	110-kb in length. For each introgression test, C. artifrons was used as the outgroup population
1419	(e.g. O) while the other specialist was used as the sister species (e.g. P1).

Donor population (P3) <i>f</i> _d threshold		Number of candidate introgression regions	Number of candidate adaptive introgression regions
	Ini	trogression with Molluscivore	
Rum Cay	0.81	536	5
New Providence	0.72	660	7
Dominican Republic	0.81	375	8
North Carolina	0.69	138	0
Venezuela	0.69	54	0
	Ir	trogression with Scale-eater	
Rum Cay	0.81	385	5
New Providence	0.72	645	9
Dominican Republic	0.81	426	11
North Carolina	0.71	163	3
Venezuela	0.69	15	0

1430	Table S12. Caribbean pupfish populations used to detect signatures of introgression in San
1431	Salvador Island (SSI) specialists and generalist lineages on other islands. The f_d statistic was
1432	used to detect introgression between combinations of P2 and P3 populations, given the tree
1433	(((P1,P2),P3),O). For this series of tests we used C. artifrons as the outgroup in which limited
1434	gene flow is expected to have occurred with the others.

_	Sister group (P1)	Introgression into (P2)	Introgression from (P3)	Adaptive introgression regions
	-	Focal introgression region	ons in scale-eater	
<u>A.</u>	C. brontotheroides	C. desquamator	C. laciniatus NP	11
	C. brontotheroides	C. desquamator	C. higuey DR	8
	C. brontotheroides	C. desquamator	C. variegatus NC	4
	C. brontotheroides	C. desquamator	C. dearborni VZ	0
<u>B.</u>	C. variegatus SSI	C. higuey DR	C. laciniatus NP	2
	C. variegatus SSI	C. higuey DR	C. variegatus NC	3
	C. variegatus RC	C. higuey DR	C. laciniatus NP	0
	C. variegatus RC	C. higuey DR	C. variegatus NC	0
	C. variegatus SSI	C. laciniatus NP	C. variegatus NC	4
	C. variegatus RC	C. laciniatus NP	C. variegatus NC	1
	C. variegatus RC	C. laciniatus NP	C. variegatus NC	2
	C. variegatus SSI	C. variegatus RC	C. higuey DR	3
	C. variegatus SSI	C. variegatus RC	C. laciniatus NP	4
	C. variegatus SSI	C. variegatus RC	C. variegatus NC	4
		Focal introgression region	as in molluscivore	
<u>C.</u>	C. desquamator	C. brontotheroides	C. laciniatus NP	5
_	C. desquamator	C. brontotheroides	C. higuey DR	6
_	C. desquamator	C. brontotheroides	C. variegatus NC	2
_	C. desquamator	C. brontotheroides	C. dearborni VZ	0
<u>D.</u>	C. variegatus SSI	C. higuey DR	C. laciniatus NP	0
_	C. variegatus SSI	C. higuey DR	C. variegatus NC	1
_	C. variegatus RC	C. higuey DR	C. laciniatus NP	0
_	C. variegatus RC	C. higuey DR	C. variegatus NC	0
_	C. variegatus SSI	C. laciniatus NP	C. variegatus NC	1
_	C. variegatus RC	C. laciniatus NP	C. variegatus NC	0
-	C. variegatus RC	C. laciniatus NP	C. variegatus NC	0
_	C. variegatus SSI	C. variegatus RC	C. higuey DR	2

-	C. variegatus SSI	C. variegatus RC	C. laciniatus NP	1
_	C. variegatus SSI	C. variegatus RC	C. variegatus NC	3

1438	Table S13. Candidate adaptive introgression regions from Rum Cay generalists (C.
1439	variegatus) and San Salvador Island (SSI) specialists. We determined introgressed regions of
1440	the genome as regions with a f_d statistic (ranges from 0 to 1) value above the threshold found in
1441	neutral simulations with no gene flow. These introgressed regions from Rum Cay were then
1442	overlapped with regions of the genome with strong genetic divergence (alleles with $F_{st} \ge 0.95$)
1443	and signatures of a hard selective sweep (above demographic simulation-based thresholds
1444	SweeD CLR > 5.28; OmegaPlus ω > 3.31 for scale-eaters and SweeD CLR > 4.47; OmegaPlus
1445	$\omega > 4.23$ for molluscivores) to determine the number of adaptive introgression regions. For each
1446	introgression test, C. artifrons was used as the outgroup population (e.g. O) while the other
1447	specialist was used as the sister species (e.g. P1).

Scaffold	Variant Position	Start	End	Gene	
Introgression with Molluscivore					
c_bro_v1_0_scaf11	12962909	12965001	13010000	shisa2, atp8a2	
c_bro_v1_0_scaf16	35813565	35765001	35875000	rfc4	
c_bro_v1_0_scaf18	18167642	18150001	18215000	anks1a	
c_bro_v1_0_scaf18	18177499	18150001	18225000	sarg	
c_bro_v1_0_scaf52	19358574	19345001	19395000	fn1	
	Introgre	ession with Scale	e-eater		
c_bro_v1_0_scaf1	15017907	14995001	15065000	rbm20	
c_bro_v1_0_scaf5	28411973	28365001	28455000	gsel	
c_bro_v1_0_scaf37	3586373	3585001	3650000	chrna7	
c_bro_v1_0_scaf43	30358142	30355001	30405000	c1d	
c_bro_v1_0_scaf53	11080970	11080001	11130000	zhx2	

1452	Table S14. Candidate adaptive introgression regions from Dominican Republic generalists
1453	(C. higuey) and San Salvador Island (SSI) specialists. We determined introgressed regions of
1454	the genome as regions with a f_d statistic (ranges from 0 to 1) value above the threshold found in
1455	neutral simulations with no gene flow. These introgressed regions from Dominican Republic
1456	population were then overlapped with regions of the genome with strong genetic divergence
1457	(alleles with $F_{st} \ge 0.95$) and signatures of a hard selective sweep (above demographic simulation
1458	based thresholds SweeD CLR $>$ 5.28;OmegaPlus $\omega >$ 3.31 for scale-eaters and SweeD CLR $>$
1459	4.47; OmegaPlus $\omega > 4.23$ for molluscivores) to determine the number of adaptive introgression
1460	regions. For each introgression test, C. artifrons was used as the outgroup population (e.g. O)
1461	while the other specialist was used as the sister species (e.g. P1).

Scaffold	Variant Position	Start	End	Gene	
Introgression with Molluscivore					
c_bro_v1_0_scaf1	28938769	28935001	28985000	rps15a	
c_bro_v1_0_scaf1	28962108	28935001	28995000	notum2	
c_bro_v1_0_scaf1	28969771	28935001	28995000	coq7	
c_bro_v1_0_scaf7	12326193	12305001	12375000	smek1	
c_bro_v1_0_scaf7	12606143	12605001	12685000	otof	
c_bro_v1_0_scaf11	11256440	11210001	11295000	ube2w	
c_bro_v1_0_scaf18	18167642	18135001	18225000	anks1a,sarg	
c_bro_v1_0_scaf19	6430544	6410001	6465000	trim44	
	Introgres	ssion with Scale	-eater		
c_bro_v1_0_scaf5	28411973	28385001	28450000	gsel	
c_bro_v1_0_scaf8	19759133	19735001	19790000	map2k6	
c_bro_v1_0_scaf18	28961523	28915001	29010000	itga5	
c_bro_v1_0_scaf19	7822448	7815001	7870000	nap1l4	
c_bro_v1_0_scaf34	25414453	25400001	25460000	cadps	
c_bro_v1_0_scaf34	26069290	26020001	26115000	srgap3	
c_bro_v1_0_scaf37	3700741	3685001	3750000	trim46	
c_bro_v1_0_scaf44	12541185	12540001	12620000	kcnk2, cenpf	
c_bro_v1_0_scaf44	24564920	24540001	24620000	gpm6a	

c_bro_v1_0_scaf53	18998120	18990001	19045000	hdac9b	
c_bro_v1_0_scaf53	20294941	20245001	20330000	steap4	

1466	Table S15. Candidate adaptive introgression regions from New Providence Island
1467	generalists (C. laciniatus) and San Salvador Island (SSI) specialists. We determined
1468	introgressed regions of the genome as regions with a f_d statistic (ranges from 0 to 1) value above
1469	the threshold found in neutral simulations with no gene flow. These introgressed regions from
1470	New Providence Island population were then overlapped with regions of the genome with strong
1471	genetic divergence (alleles with $F_{st} \ge 0.95$) and signatures of a hard selective sweep (above
1472	demographic simulation based thresholds SweeD CLR > 5.28;OmegaPlus ω > 3.31 for scale-
1473	eaters and SweeD CLR > 4.47; OmegaPlus ω > 4.23 for molluscivores) to determine the number
1474	of adaptive introgression regions. For each introgression test, C. artifrons was used as the
1475	outgroup population (e.g. O) while the other specialist was used as the sister species (e.g. P1).

1476

Scaffold	Variant Position	Start	End	Gene	
Introgression with Molluscivore					
c_bro_v1_0_scaf1	29209555	29160001	29250000	gga1	
c_bro_v1_0_scaf1	29241942	29195001	29250000	klf1	
c_bro_v1_0_scaf7	12326193	12300001	12375000	smek1	
c_bro_v1_0_scaf7	12628199	12610001	12670000	otof	
c_bro_v1_0_scaf24	20486354	20470001	20540000	cyp26b1	
c_bro_v1_0_scaf33	12634285	12590001	12655000	bri3bp, wdr31	
c_bro_v1_0_scaf47	16145704	16110001	16195000	ttc33	
	Introgressio	n with Scale-e	ater		
c_bro_v1_0_scaf5	27882801	27845001	27900000	tcf12	
c_bro_v1_0_scaf7	12604722	12555001	12620000	otof	
c_bro_v1_0_scaf11	9503186	9500001	9550000	prlh	
c_bro_v1_0_scaf11	11975348	11930001	12010000	ncoa2	
c_bro_v1_0_scaf16	32982520	32950001	33030000	crocc	
c_bro_v1_0_scaf18	28961523	28915001	28970000	itga5	
c_bro_v1_0_scaf37	8265887	8220001	8315000	mylipa	
c_bro_v1_0_scaf43	30297117	30250001	30325000	ppp3r1	
c_bro_v1_0_scaf53	20832687	20830001	20880000	galnt1	

1479	Table S16. Candidate	adantive introgressio	n regions from	North Carolina Coast
17/2			III CLIVING II VIII	

1480 generalists (*C. variegatus*) and San Salvador Island (SSI) specialists.

We determined introgressed regions of the genome as regions with a f_d statistic (ranges from 0 to 1481 1) value above the threshold found in neutral simulations with no gene flow. These introgressed 1482 regions from North Carolina population were then overlapped with regions of the genome with 1483 1484 strong genetic divergence (alleles with $F_{st} \ge 0.95$) and signatures of a hard selective sweep (above demographic simulation based thresholds SweeD CLR > 5.28; OmegaPlus ω > 3.31 for scale-1485 eaters and SweeD CLR > 4.47; OmegaPlus ω > 4.23 for molluscivores) to determine the number 1486 of adaptive introgression regions. For each introgression test, C. artifrons was used as the 1487 outgroup population (e.g. O) while the other specialist was used as the sister species (e.g. P1). 1488

1489

1490

Scaffold	Variant Position	Start	End	Gene	
Introgression with Scale-eater					
c_bro_v1_0_scaf1	28962108	28945001	28995000	notum2,coq7	
c_bro_v1_0_scaf1	38350857	38330001	38400000	gpr83	
c_bro_v1_0_scaf34	32388612	32380001	32440000	eya2	

- Table S17. Selective sweep ages on San Salvador Island using coalescent-based
 starTMRCA approach. The 95% high posterior density region of the posterior distribution of
 sweep ages for all denovo and introgressed adaptive alleles in scale-eater estimated using
 starTMRCA. A selection of standing variants that were calculated for the stages of adaptation
 analyses (GO terms related to behavior and craniofacial morphology) included as well.
 Introgressed adaptive alleles are labeled by the population introgressed from: New Providence
 Island (INTRO.NP), Dominican Republic (INTRO.DR), and North Carolina (INTRO.NC).

Gene	Spatial Distribution	Scaffold	Position	Mean Age	95 % HPD Lower	95% HPD Upper
scaf34.NA	INTRO.NC	c_bro_v1_0_scaf34	17475008	2583	2277	2871
card8	SGV	c_bro_v1_0_scaf46	1311093	2095	1728	2488
scaf46.NA	SGV	c_bro_v1_0_scaf46	13200234	1867	1637	2088
scaf11.NA	de novo	c_bro_v1_0_scaf11	21634014	1585	1388	1799
scaf52.NA	INTRO.NC	c_bro_v1_0_scaf52	4987013	1463	1219	1709
cmbl	de novo	c_bro_v1_0_scaf11	9924142	1375	1199	1566
galnt1	INTRO.NP	c_bro_v1_0_scaf53	20864827	1365	1227	1513
prlh	INTRO.NP	c_bro_v1_0_scaf11	9496004	1289	1124	1466
scaf37.NA	INTRO.NC	c_bro_v1_0_scaf37	14881950	1284	1099	1492
atp8a1	SGV	c_bro_v1_0_scaf44	14973114	1277	1119	1419
trim46	INTRO.DR	c_bro_v1_0_scaf37	3700741	1268	1098	1423
scaf44.NA	INTRO.NC	c_bro_v1_0_scaf44	28137436	1268	1147	1393
scaf6.NA	de novo	c_bro_v1_0_scaf6	923414	1259	1070	1462
scaf53.NA	SGV	c_bro_v1_0_scaf53	4776006	1222	1082	1380
gpr83	INTRO.NC	c_bro_v1_0_scaf1	38363517	1203	1079	1337
scaf8.NA	INTRO	c_bro_v1_0_scaf8	16314185	1193	978	1425
scaf43.NA	INTRO.NC	c_bro_v1_0_scaf43	27190362	1185	1070	1295
scaf6.NA	INTRO	c_bro_v1_0_scaf6	955941	1174	1045	1318
scaf24.NA	DENOVO	c_bro_v1_0_scaf24	20383519	1159	956	1361
eya2	SGV	c_bro_v1_0_scaf34	32255078	1131	962	1296
scaf53.NA.NC	INTRO.NC	c_bro_v1_0_scaf53	10409675	1096	926	1318
cfap20	SGV	c_bro_v1_0_scaf37	5095975	1093	974	1216
aldh1a2	SGV	c_bro_v1_0_scaf5	27704112	1063	878	1279
aasdhppt	SGV	c_bro_v1_0_scaf21	26917283	1046	916	1175
fhl2	SGV	c_bro_v1_0_scaf9	25305758	1020	891	1170

cadps	INTRO.DR	c_bro_v1_0_scaf34	25417185	1012	917	1115
grid2ip	SGV	c_bro_v1_0_scaf8	21601776	998	877	1127
chrna7	SGV	c_bro_v1_0_scaf37	3593615	986	864	1111
scaf34.NA.DR	INTRO.DR	c_bro_v1_0_scaf34	22649365	984	773	1171
st7l	de novo	c_bro_v1_0_scaf34	31258254	940	757	1163
scaf43.NA	INTRO.NC	c_bro_v1_0_scaf43	18320970	936	805	1079
fhod3	SGV	c_bro_v1_0_scaf53	18640776	888	768	999
crocc	INTRO.NP	c_bro_v1_0_scaf16	32982520	888	740	1060
galr2	de novo	c_bro_v1_0_scaf8	19961303	861	696	1008
nr4a2	SGV	c_bro_v1_0_scaf52	13841760	853	762	942
ppp3r1	INTRO.NP	c_bro_v1_0_scaf26	30297160	851	725	968
pde4d	DENOVO	c_bro_v1_0_scaf21	32304491	847	747	958
th/nap1l4	SGV	c_bro_v1_0_scaf19	7822448	847	747	958
dysf	SGV	c_bro_v1_0_scaf24	20221166	830	683	978
gsel	INTRO.DR	c_bro_v1_0_scaf5	28411973	829	700	947
mag	SGV	c_bro_v1_0_scaf53	17420175	824	615	1042
scaf53.NA.NP	INTRO.NP	c_bro_v1_0_scaf53	12368389	821	700	940
smyd1	SGV	c_bro_v1_0_scaf39	1662237	802	662	935
itga5	SGV	c_bro_v1_0_scaf18	28962001	792	639	932
rmi1	SGV	c_bro_v1_0_scaf39	4281152	789	652	952
ptprs	de novo	c_bro_v1_0_scaf16	8251751	789	555	1043
scaf44.NA	de novo	c_bro_v1_0_scaf44	10558794	782	676	898
chpf	de novo	c_bro_v1_0_scaf52	21897888	776	659	897
scaff44.NA.2	de novo	c_bro_v1_0_scaf44	16942340	763	626	890
ncoa2	INTRO.NP	c_bro_v1_0_scaf11	11975827	760	622	903
scaf19.NA	INTRO.NP	c_bro_v1_0_scaf19	6605756	756	641	862
tcf12	INTRO.NP	c_bro_v1_0_scaf5	27887771	729	606	862
abhd8	SGV	c_bro_v1_0_scaf16	13454820	729	624	821
serpinb1	SGV	c_bro_v1_0_scaf16	10637011	729	624	821
tdrd5	SGV	c_bro_v1_0_scaf16	12833025	720	618	822
zfhx4	de novo	c_bro_v1_0_scaf11	8072317	694	595	809
scaf53.NA.4	INTRO.DR	c_bro_v1_0_scaf53	32457769	675	573	783
scaf5.NA	INTRO.NP	c_bro_v1_0_scaf5	28307404	675	558	798
pdlim5	SGV	c_bro_v1_0_scaf47	24141970	645	550	737
bcor	SGV	c_bro_v1_0_scaf52	5558993	613	506	727
slc16a1	SGV	c_bro_v1_0_scaf18	29613954	556	460	662
tmem26	de novo	c_bro_v1_0_scaf43	26585181	546	473	617
cenpf/kcnk2	INTRO.DR	c_bro_v1_0_scaf44	12538313	533	452	619
hdac9b	INTRO.DR	c_bro_v1_0_scaf53	18998120	445	367	538
scaf52.NA.2	INTRO.DR	c_bro_v1_0_scaf52	13758756	424	333	521

mindy3	SGV	c_bro_v1_0_scaf53	20112997	420	334	501
znf628	SGV	c_bro_v1_0_scaf53	24744443	420	334	501
olfm1	de novo	c_bro_v1_0_scaf47	14782939	398	294	507
otof	INTRO.NP	c_bro_v1_0_scaf7	12603683	371	227	525
twist1	de novo	c_bro_v1_0_scaf53	18968932	367	300	435
tfap2a	SGV	c_bro_v1_0_scaf34	32255078	359	293	431
mylipa	INTRO.NP	c_bro_v1_0_scaf37	8265887	206	95	326

1503	Table S18Selective sweep ages on San Salvador Island using coalescent-based
1504	starTMRCA approach. The 95% high posterior density region of the posterior distribution of
1505	sweep ages for all introgressed candidate alelles in molluscivore estimated using starTMRCA. A
1506	selection of standing variants (SGV) that were calculated for the stages of adaptation analyses
1507	(GO terms related to behavior and craniofacial morphology) included as well. Introgressed
1508	adaptive alleles are labeled by the population introgressed from: New Providence Island
1509	(INTRO.NP), Dominican Republic (INTRO.DR), and North Carolina (INTRO.NC).

Gene	Spatial Distribution	Scaffold	Position	Mean Age	95 HPD Lower	95 HPD Upper
abhd8	SGV	c_bro_v1_0_scaf16	13455352	471	294	649
сохбb1	SGV	c_bro_v1_0_scaf53	24790621	402	236	577
cyp26b1	INTRO.NP	c_bro_v1_0_scaf24	20486531	396	215	582
ext1	SGV	c_bro_v1_0_scaf26	264812	546	405	687
ggal	SGV	c_bro_v1_0_scaf1	29209563	914	831	997
gnaq	SGV	c_bro_v1_0_scaf33	12883992	439	181	737
zhx2	SGV	c_bro_v1_0_scaf53	11080970	1490	1148	1793
znf628	SGV	c_bro_v1_0_scaf53	24744443	325	169	486
18.NA	INTRO.NP	c_bro_v1_0_scaf18	2258923	763	550	965
19.NA	INTRO.NC	c_bro_v1_0_scaf19	7642081	3560	3021	4080
4.NA	INTRO.NP	c_bro_v1_0_scaf4	16217615	369	227	532
43.NA.NCC	INTRO.NC	c_bro_v1_0_scaf43	27435224	408	249	576
5.NA	INTRO.DR	c_bro_v1_0_scaf5	27117941	726	469	997
52.NA	INTRO.DR	c_bro_v1_0_scaf52	4982714	820	599	1032
53.NA	INTRO.DR	c_bro_v1_0_scaf53	10434469	903	569	1339
53.NA.NCC	INTRO.NC	c_bro_v1_0_scaf53	10904586	3131	2428	3604
bri3bp.wdr31	INTRO.NP	c_bro_v1_0_scaf33	12644789	376	162	594
klf1	INTRO.DR	c_bro_v1_0_scaf1	29253566	1603	1504	1694
otof	INTRO.DR	c_bro_v1_0_scaf7	12606143	444	367	510
trim44	INTRO.DR	c_bro_v1_0_scaf19	6441342	15922	14639	17127
ttc33	INTRO.NP	c_bro_v1_0_scaf47	16146578	262	127	393
ube2w	INTRO.DR	c_bro_v1_0_scaf11	11268935	1022	903	1144

1513 Table S19. Selective sweep ages on San Salvador Island (SSI) using coalescent-based

McSwan approach. 95% high posterior density region of the posterior distribution of sweep

- ages of adaptive alleles in scale-eater and molluscivore genomes estimated using McSwan (64).

						95%	95%
a	T	G 49.11	Position	Position	Region	HPD	HPD
Gene	Trait	Scaffold	Start	Stop	Size	Lower	Upper
			Scale-eater				
cfap20	habitat preference	c_bro_v1_0_scaf37	5000841	5017240	16399	6747.04	8490.23
prlh	habitat preference	c_bro_v1_0_scaf11	9200146	9276987	76841	6594.56	9210.36
card8	pigmentation	c_bro_v1_0_scaf46	1451011	1663431	212420	973.64	5097.36
kcnk2, cenpf	trophic morphology	c_bro_v1_0_scaf44	12227155	12305895	78740	2936.44	3966.91
smyd1	trophic morphology	c_bro_v1_0_scaf39	1643098	1647708	4610	3054.91	6030.54
tcf12	trophic morphology	c_bro_v1_0_scaf5	27975725	28016276	40551	1607.22	5119.88
twist1	trophic morphology	c_bro_v1_0_scaf53	18953132	19092361	139229	1636.34	3413.14
itga5	trophic morphology	c_bro_v1_0_scaf18	28040450	28049258	8808	1697.39	2357.06
Molluscivore							
ext1	trophic morphology	c_bro_v1_0_scaf26	162903	230930	68027	814.01	1060.49
tiparp	trophic morphology	c_bro_v1_0_scaf21	33602383	33606685	4302	3353.84	5003.16
cyp26b1	trophic morphology	c_bro_v1_0_scaf24	20527588	20602663	75075	1447.58	4567.30

1518	Data S1.
1519	<i>Cyprinodon</i> pupfish sampling information. The pond/lake names, localities, island, country, and species names, and individual codes of the pupfish individuals used in this study.
1520	and species names, and individual codes of the pupilish individuals used in this study.
1521 1522	Data S2.
1522	San Salvador Island scale-eater candidate adaptive alleles. The scale-eater adaptive alleles
1525	that were nearly-fixed ($F_{st} \ge 0.95$) and in a region with a signature of a hard selective sweep
1524	(SweeD CLR> 5.28;OmegaPlus > 3.31) and the genes within 20-kb of those alleles.
1525	(Sweed CLK > 5.26 , Onegai ius > 5.51) and the genes within 20-kb of those ancies.
1520	Data S3.
1527	San Salvador Island molluscivore candidate adaptive alleles. The candidate molluscivore
1528	alleles that were nearly-fixed ($F_{st} \ge 0.95$) and in a region with a signature of a hard selective
1529	sweep (SweeD CLR> 4.47; OmegaPlus > 4.27) and the genes within 20-kb of those alleles.
1530	sweep (bweed eliks 4.47,011egur lus > 4.27) and the genes within 20 kb of those aneles.
1532	
1532	Data S4.
1535	Differentially expressed genes between specialists at 2 dpf. The gene names and <i>P</i> -values of
1535	genes that were found to be significantly differential expressed (FDR> 0.05) between scale-
1536	eaters and mollsucivores at the 2 days post-fertilization larval stage in a previous study (48).
1537	
1538	
1539	Data S5.
1540	Differentially expressed genes between specialists at 8 dpf. The gene names and P-values of
1541	genes that were found to be significantly differential expressed (FDR> 0.05) between scale-
1542	eaters and mollsucivores at the 8 days post-fertilization larval stage in a previous study (48).
1543	
1544	Data S6.
1545	San Salvador Island GWAS trait measurements. Trait values of standard length, lower oral
1546	jaw size, nasal protrusion distance, and caudal fin pigmentation measured across the three
1547	species of SSI radiation to include in a GWAS for alleles underlying these traits.
1548	
1549	Data S7
1550	Top genomic regions associated with lower oral jaw size in a GWAS of San Salvador Island
1551	species. Regions in which all the alleles within a 20-kb windows had a summed PIP score that
1552	was in the 99 th percentile of all summed PIP scores for association with lower oral jaw size
1553	across 10 independent runs of Bayesian linear mixed model implemented in GEMMA (45).
1554	
1555	Data S8.
1556	Top genomic regions associated with lower caudal fin pigmentation in a GWAS of San
1557	Salvador Island species. Regions in which all the alleles within a 20-kb windows had a summed
1558	PIP score that was in the 99 th percentile of all summed PIP scores for association with caudal fin
1559	pigmentation across 10 independent runs of Bayesian linear mixed model implemented in
1560	GEMMA (45).
1561	D-4- 50
1562	Data S9.

1563Top genomic regions associated with lower maxillary nasal protrusion in a GWAS of San1564Salvador Island species. Regions in which all the alleles within a 20-kb windows had a summed1565PIP score that was in the 99th percentile of all summed PIP scores for association with maxillary1566nasal protrusion across 10 independent runs of Bayesian linear mixed model implemented in1567GEMMA.