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Sa�glam et al. recently argued that the Devil’s Hole pupfish (Cyprinodon diabolis), a

conservation icon with the smallest known species range, was isolated 60 kya based

on a new genomic data set. If true, this would be a radically long timescale for any

species to persist at population sizes <500 individuals, in contrast to conservation

genetics theory. However, here we argue that their analyses and interpretation are

inappropriate. They placed highly restrictive prior distributions on divergence times,

which do not appropriately model the large uncertainty and result in removing

nearly all uncertainty from their analyses, and chose among models by assuming

that pupfishes exhibit human mutation rates. We reanalysed their data with their

same methods, only using an informative prior for the plausible range of mutation

rates observed across vertebrates, including an estimate of the genomewide muta-

tion rate from a pedigree analysis of cichlid fishes. In fact, Saglam et al.’s phyloge-

netic data support much younger median divergence times for C. diabolis, ranging

from 6.2 to 19.9 kya, overlapping with our previous phylogenetic divergence time

estimates of 2.5–6.5 kya. There are many reasons to suspect an even younger age

and higher mutation rate in C. diabolis, as we previously estimated, due to their high

metabolism, small adult size, small population size and severe environmental stres-

sors. In conclusion, our results highlight the need for measuring mutation rate in this

fascinating species and suggest that the ages of endangered taxa present in small,

isolated populations may frequently be overestimated.
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1 | INTRODUCTION

Estimation of species divergence time is critical not only for under-

standing the evolutionary history of a group (Drummond & Rambaut,

2007; Edwards, 2009) and testing fundamental concepts in evolu-

tionary ecology (Coyne & Orr, 2004; Hendry & Kinnison, 1999; Sch-

luter, 2000) but also for the management of small populations and

their future conservation (Kinnison, Hendry, & Stockwell, 2007;

Martin, Crawford, Turner, & Simons, 2016; Reed & Stockwell, 2014;

Stockwell, Heilveil, & Purcell, 2013). Older lineages—particularly

relict lineages such as the coelacanth and tuatara—are widely

regarded as higher conservation value due to their greater reservoir

of evolutionary history and unique traits (Faith, Reid, & Hunter,

2004; Vane-Wright, Humphries, & Williams, 1991). However, radia-

tions of young taxa are also valuable and provide the most direct

insights into the speciation process (Erwin, 1991; Hendry, 2017;

Martin, 2012, 2013; Martin & Wainwright, 2013a,b; Nosil, 2012;

Seehausen et al., 2014; Turelli, Barton, & Coyne, 2001). Searching
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for complex histories of gene flow and introgression within endan-

gered taxa can also highlight the need for alternative management

strategies to preserve this dynamic: Are endangered species relics

that must be isolated or complex interconnected communities that

would not persist without periodic influxes of secondary gene flow

(Martin et al., 2016; Wayne & Shaffer, 2016)? Answering this ques-

tion is of critical importance for proper management (e.g., Eldridge

et al., 1999; Kennedy, Grueber, Duncan, & Jamieson, 2014; Martin

et al., 2015; Robinson et al., 2016); however, scientists should not

fall into the trap of claiming that a species’ age “is vital for determin-

ing its status as a critically endangered species” (Sa�glam et al.,

2016a).

The age of the Devil’s Hole pupfish (DHP) is highly controver-

sial. Published estimates range from 500,000 to 200 years, largely

reflecting the choice of outgroup fossil or recent calibration priors

and phylogenetic or demographic analyses (note that Devil’s Hole

itself has been physiochemically dated to 60 kya based on calcite

deposition rates: Winograd et al., 1992; Riggs & Deacon, 2002;

Echelle et al., 2005; Martin et al., 2016; Smith et al., 2002). The

age of this species is also critically important for setting the

timescale for the survival of such a small population, historically

fluctuating between 35 and 500 individuals (Beissinger, 2014; Reed

& Stockwell, 2014; Stoike & Pister, 2010), the evolution of postzy-

gotic intrinsic incompatibilities in Cyprinodontidae (e.g., Tech,

2006) and determining the frequency of periodic renewal of

genetic diversity in isolated desert populations through gene flow

(Martin et al., 2016). The historical frequency of gene flow is also

vital for informing management actions (e.g., Wayne & Shaffer,

2016).

Sa�glam et al. (2016a); hereafter SEA) recently estimated the

age of DHP. They compared divergence times with the neighbouring

Ash Meadows Amargosa pupfish population (C. nevadensis

mionectes) and one outgroup (Owens pupfish, C. radiosus) by plac-

ing restrictive prior distributions on divergence times corresponding

to four different scenarios, which has the effect of eliminating

nearly all uncertainty in their divergence time estimates. These

restrictive priors do not appropriately capture the large amount of

uncertainty in these estimates. They also used the simple

Jukes-Cantor model for nucleotide substitution rates without rate

variation among sites or loci, which is probably inappropriate for

genomic data (however, divergence times seemed robust when

analysed under the more complex GTR+Γ model (data not shown)).

SEA then compared the four divergence time hypotheses based on

the inferred mutation rate under each scenario and chose the

model predicting the slowest mutation rate (1.08 9 10�8 muta-

tions/site/generation) as correct based on its similarity to what

they claim is the average vertebrate mutation rate based on cita-

tions to (Lynch, 2010; Roach et al., 2010). However, both these

publications only refer to 1 9 10�8 mutations/site/generation as

the human mutation rate; indeed, Lynch (2010) further demon-

strates that mutation rate scales negatively with effective popula-

tion size over more than an order of magnitude across taxa,

suggesting a much greater rate in DHP. The true mutation rate of

DHP is unknown; simply using the human mutation rate is not

appropriate (Martin & Palumbi, 1993).

There are many reasons to suspect in general that DHP may

have a genomewide mutation rate that differs from other verte-

brates. First, despite intense scrutiny, even the human mutation rate

is controversial (Harris, 2015; Harris & Pritchard, 2016; Moorjani,

Gao, & Przeworski, 2016; Nachman & Crowell, 2000; Scally & Dur-

bin, 2012). Indeed, there appears to be a “hominoid-slowdown” in

mutation rate due to increased generation times, violating assump-

tions of a strict molecular lock (Li & Tanimura, 1987). Second, the

correct mutation rate to use for calibration is particularly controver-

sial in exactly the scenario discussed here: very recent timescales

(Burridge, Craw, Fletcher, & Waters, 2008; Ho & Phillips, 2009; Ho,

Phillips, Cooper, & Drummond, 2005; Ho et al., 2011). Pedigree anal-

ysis and mutation accumulation lines generally detect much faster

mutation rates than fossil and ancient geological calibrations used to

estimate substitution rates on phylogenies, likely due to purifying

selection over the extended period from spontaneous mutations

appearing in a population to fixation (substitution) over million-year

evolutionary timescales (Liu et al., 2014; Millar et al., 2008; Santos

et al., 2005). Third, teleost fish mutation rates are known to be

higher than other vertebrates, possibly due to their whole-genome

duplication (Jaillon et al., 2004; Kasahara et al., 2007; Ravi & Venka-

tesh, 2008; Recknagel, Elmer, & Meyer, 2013). Fourth, variation in

mutation rates among vertebrates has long been known, leading

Martin et al. in 1992 to directly advise against the strategy used by

SEA “it is inappropriate to use a [molecular substitution rate] calibration

for one group to estimate divergence times or demographic parameters

for another group.”

In addition, there are many reasons to suspect that the Devil’s

Hole pupfish in particular may exhibit much higher mutation rates

than other teleost fishes (which would result in a younger age esti-

mate for this species). First, higher mutation rates are correlated

with higher metabolism in vertebrates (Bleiweiss, 1998; Martin &

Palumbi, 1993). Higher metabolism is strongly correlated with envi-

ronmental temperature in fishes (Clarke & Johnston, 1999) and

DHP persist in one of the hottest environments of any vertebrate

species at 32°C year-round in Devil’s Hole (Stoike & Pister, 2010).

Furthermore, DHP periodically goes into states of anaerobic meta-

bolism for up to 2 hr, paradoxically reducing its metabolic effi-

ciency even in the presence of oxygen and driving up its metabolic

rate (Heuton, Ayala, Burg, & Dayton, 2015; Hillyard, Burg,

McKenna, & Urbina, 2014). Second, higher metabolism is also cor-

related with smaller size (Gillooly, Brown, West, & Savage, 2001)

and Devil’s Hole pupfish are the smallest species of Cyprinodon

(Stoike & Pister, 2010). Third, higher metabolism is correlated with

lifespan (Bromham, 2009; Hulbert, Pamplona, & Buffenstein, 2007)

and Devil’s Hole pupfish have the shortest lifespan of any Cyprin-

odontidae at approximately one year (Stoike & Pister, 2010).

Although these life history traits are all correlated, combined analy-

ses of large data sets have generally been able to disentangle sepa-

rate contributions from each factor (e.g., Bromham, Rambaut, &

Harvey, 1996; Romiguier et al., 2014; Welch & Bininda-Emonds,
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2008). Fourth, laboratory experiments demonstrate that populations

experiencing severe environmental stress increased their mutation

rate (Bjedov, Tenaillon, Gerard, & Souza, 2003; Ji, Ng, Sharma, Nec-

ulai, & Hussein, 2012), which may also be expected in the low-

resource, high temperature environment of Devil’s Hole; for exam-

ple, this extreme environment may stunt DHP growth rates and

prevent normal pelvic fin development (Lema & Nevitt, 2006). Fifth,

purifying selection is weaker in smaller populations, leading to a

more rapid accumulation of deleterious mutations, including within

DNA repair machinery. This effect is the leading explanation for

increased substitution rates observed at more recent timescales

(Ho et al., 2011; Woodhams, 2006) and is likely to be amplified in

one of the smallest vertebrate populations known (Lynch, 2010;

Martin et al., 2016). For example, a previous small refuge popula-

tion of DHP may have exhibited a severe genetic load (Martin,

Echelle, Zegers, Baker, & Keeler-Foster, 2011). Thus, the extreme

life history, environment and population size of the Devil’s Hole

pupfish suggest that it may exhibit much higher mutation rates

than other teleost fishes. This list includes many of the same rea-

sons that they are fascinating to evolutionary and conservation

biologists, suggesting that elevated mutation rates may be common

within small populations of endangered species.

Here we used estimates of vertebrate mutation rates from the

literature while not taking into account the many exceptional cir-

cumstances surrounding Devil’s Hole pupfish, thus likely overesti-

mating the age of this species in our analyses. For the purposes

of this study and to compare to SEA, we performed divergence

time estimation using biologically informed prior distributions on

the substitution rate. We specified a 0.025 accumulated prior den-

sity bound of 2.09 9 10�8 mutations per site per year (i.e., we

put only 0.025 prior probability on rates being smaller than

2.09 9 10�8) based on estimates of the human mutation rate

(Scally & Durbin, 2012) and a 0.975 accumulated prior density

bound of 2.09 9 10�7 mutations per site per year from compar-

isons of isolated riverine fishes (Burridge et al., 2008). The latter

estimate comes from mtDNA substitution rates, but the authors

note that it is a lower bound based on river basin divergence and

we use it only as an extreme upper bound. Note that our prior

bounds cannot precisely match the estimates in these studies to

accommodate a lognormal distribution. We centred our mutation

rate prior on our best guess from the nonpupfish literature,

6.6 9 10�8 mutations per site per year, from a pedigree analysis

of spontaneous mutation rates in a cichlid F2 intercross (Recknagel

et al., 2013). These cichlids are relatively closely related to Cyprin-

odontiform fishes (Wainwright et al., 2012), but do not exhibit any

of the life history traits that might predispose them to higher

mutation rates as discussed above. Furthermore, to remain inde-

pendent from our previous analysis in Martin et al. (2016), we

avoided using the mutation rate estimated specifically for Cyprin-

odon, 5.23 9 10�7 mutations per site per year from a recent cali-

bration on the age of a geographic basin as recommended for

estimation of recent divergence events (Ho & Phillips, 2009; Ho

et al., 2005, 2011).

2 | METHODS

We obtained the 10 twenty-locus RADseq data sets used by SEA

from the Dryad Digital Repository (Sa�glam et al., 2016b: https://doi.

org/10.5061/dryad.2bm21). We ran *BEAST (v. 2.4.4; Heled &

Drummond, 2010; Bouckaert et al. 2014) following the methods of

SEA with a strict molecular clock, Yule birth process, a linear popula-

tion size change model and a Jukes-Cantor model of nucleotide sub-

stitution. Hence, we kept all modelling choices as in SEA except

replacing the narrow lognormal prior distribution on divergence

times with a wide, uninformative uniform (0, 106 years) prior distri-

bution. Additionally, we used a lognormal distribution for the muta-

tion rate prior with a mean parameter of 6.6 9 10�8 per site per

year and standard deviation of 0.587, thus placing 95% prior proba-

bility between 2.087 9 10�8 and 2.087 9 10�7 per site per year.

We examined 100 MCMC runs for each data set to assess conver-

gence and ran each chain for 100 million steps. The large number of

replicate runs was necessary because of severe convergence prob-

lems with the MCMC algorithm in *BEAST. We discarded the first

10 million steps as burn-in. We then corrected the estimated muta-

tion rate by multiplying by 0.75 years per generation, reflecting 1.33

generations per year for the Devil’s Hole pupfish from Martin et al.,

2016; similar to the 1.5 generations per year used in SEA. Labora-

tory pupfish generation times of 4 months (Martin, 2016a, 2016b;

Martin & Wainwright 2013b) suggest that our generation time

choice is conservative, erring on the side of overestimating the age

of DHP.

We also performed a second analysis based only on the pedigree

estimate of the cichlid spontaneous mutation rate, our best guess

for the most appropriate pupfish mutation rate (without relying on

our earlier pupfish mutation rate estimate in Martin et al., 2016).

Recknagel et al. (2013) made two estimates of the mutation rate in

F1 and F2 progeny with a mean � 1 standard deviation of

6.6 9 10�8 � 1.13 9 10�8 mutations per site per generation. We

used a lognormal prior with mean = 6.6 9 10�8 and standard devia-

tion = 0.168 to capture this distribution for our analysis following

similar procedures as described above.

3 | RESULTS

Using a conservative prior for the range of mutation rates observed

in vertebrates, we used SEA’s data to estimate the median age of

the Devil’s Hole pupfish between 6.2 and 19.9 kya across all ten

data sets, with a mean of 12.6 kya (range of 95% highest posterior

density intervals (HPD): 1.7–63.8 kya; Figure 1, Table 1). These esti-

mates partially overlap with the phylogenetic divergence times esti-

mated by Martin et al. (2.5–6.5 kya; Fig. 2: Martin et al., 2016). Our

analysis also illustrates the large amount of uncertainty still present

in this estimate due to the limited data set used and substantial

range of plausible vertebrate mutation rates.

We estimated the median divergence time between the Owens

pupfish and Death Valley pupfishes between 15.1 and 39.5 kya
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across all ten data sets, with a mean of 28.4 kya (95% HPD: 4.6–

128.96; Figure 1, Table 1). This divergence across the entire Death

Valley region and Owens River Valley is still younger than the age of

Devil’s Hole (60 kya) and overlaps with the wettest period during

the last glacial maximum 15 kya in which Lake Manly within Death

Valley was flooded and connected to the neighbouring Owens Lake

and Amargosa River within Ash Meadows National Wildlife Refuge

(Lowenstein, Li, Brown, & Roberts, 1999; Lyle et al. 2012). Our

analyses based only on the cichlid pedigree estimate of spontaneous

mutation rate (Recknagel et al., 2013) produced similar results, with

substantially less uncertainty around these estimates (Fig. S1).

4 | DISCUSSION

Here we reanalysed a new RADseq data set provided by SEA and

estimated the age of the Devil’s Hole pupfish by setting a conserva-

tive prior on the plausible range of mutation rates across verte-

brates. We estimate that pupfish first colonized Devil’s Hole

between 6.2 and 19.9 kya (range of median estimates across ten

data sets). This age is approximately six times younger than the age

of Devil’s Hole and SEA’s previous estimate (SEA: mean 62.3 kya,

95% HPD: 29.6–99.5 kya), consistent with the sixfold higher muta-

tion rate observed in closely related cichlid fishes (Recknagel et al.,

2013) that we used to centre our prior. Our phylogenetic estimate

in this study also overlaps with our previous phylogenetic estimate

of the age of DHP (2.5–6.5 kya; Fig. 2: Martin et al., 2016). Further-

more, our estimate for the divergence between all Death Valley pup-

fishes and Owens Valley pupfish from 15.1 to 39.5 kya overlaps

with a prolonged period of pluvial lakes in the region from 10 to 20

kya.

We did not conduct demographic analyses such as dadi (Guten-

kunst & Hernandez, 2009) which incorporate secondary gene flow

among populations and variation in ancestral and derived population

sizes; this approach previously suggested a much younger age for

DHP (105–830 years: Martin et al., 2016) than our phylogenetic

analysis using the same mutation rate. Thus, our reanalysis of SEA’s

data most likely overestimated the age of DHP by a substantial fac-

tor. Such overestimation of divergence times in phylogenetic

0

25,000

50,000

75,000

100,000

1 2 3 4 5 6 7 8 9 10

0

50,000

100,000

150,000

200,000

1 2 3 4 5 6 7 8 9 10
RADseq dataset

D
iv

er
ge

nc
e 

tim
e

(a)

(b)

D
iv

er
ge

nc
e 

tim
e

F IGURE 1 (a) Estimated divergence time (years) between Devil’s
Hole pupfish and the neighbouring Amargosa pupfish population
across ten independent RADseq data sets of twenty loci each. (b)
Estimated divergence time between Owen’s pupfish (OWP) and
Death Valley pupfishes (DHP + AMP) across the same ten RADseq
data sets. Violin plots indicate the density of the marginal posterior
distribution for divergence time. The dashed red line indicates the
estimate from Sa�glam et al. (2016a); the dashed black line indicates
the mean estimate in this study

TABLE 1 Median divergence times (in thousands of years; 95%
HPD in parentheses) estimated using *BEAST and a conservative
prior on mutation rate variation for ten independent data sets of 20
RADseq loci from SEA. DHP, AMP: divergence between Devil’s Hole
pupfish and Ash Meadows Amargosa pupfish (C. nevadensis
mionectes). OWP (DHP + AMP): divergence between Owen’s pupfish
(C. radiosus) and two Ash Meadows/Death Valley species. Bold
values represent minimum and maximum median divergence time
estimates for DHP

Data set Divergence time: DHP, AMP
Divergence time:
OWP (DHP + AMP)

1 11.8 (3.3–41.9) 39.5 (11.6–126.3)

2 13.7 (4.2–47.2) 34.1 (10.3–114.0)

3 16.3 (4.8–58.7) 33.8 (9.5–115.4)

4 10.6 (3.0–36.6) 18.7 (5.4–63.7)

5 19.9 (5.9–63.8) 38.1 (11.5–124.7)

6 8.0 (2.4–28.5) 26.1 (7.8–90.4)

7 6.2 (1.7–21.7) 16.5 (4.6–58.5)

8 15.1 (4.7–49.7) 15.1 (4.7–49.7)

9 8.8 (2.4–32.0) 24.5 (7.3–83.8)

10 15.8 (4.5–55.5) 37.7 (11.1–128.6)
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analyses is expected because these phylogenetic methods do not

account for variation in ancestral population sizes (Gutenkunst &

Hernandez, 2009; Nadachowska-Brzyska et al., 2013; Liu et al.,

2014).

Although SEA did not include additional species in their analysis,

it also important to note that an older age for DHP of 60 kya would

imply divergence between sister C. salinus salinus and C. salinus mil-

leri populations residing within Badwater basin in Death Valley at

around 30 kya (see Martin et al., 2016; : Fig. 2d). However, 15 kya

this basin was the inland sea, Lake Manly, with a depth of 10 m;

Badwater basin still periodically floods (Lowenstein et al., 1999; Lyle

et al. 2012). It is unlikely that these two basin populations would

remain isolated within a single lake as no reproductive isolating barri-

ers are known (and pupfishes are known for rampant hybridization

upon secondary contact: Echelle & Connor, 1989; Rosenfield & Kod-

ric-Brown, 2003; Tobler & Carson, 2010; Martin & Wainwright

2013a; Martin & Feinstein, 2014; McGirr & Martin, 2016; Richards

& Martin, 2017).

Our phylogenetic age estimate remains a conservative upper

bound on the age of the Devil’s Hole pupfish because we did not

account for the many life history and environmental factors associ-

ated with DHP, including high temperatures, high metabolic rate,

small body size, short generation times, severe environmental stres-

sors and small population size which likely predispose the species to

exhibit much higher mutation rates than contained within our prior.

In line with this expectation, our previous concatenated phylogenetic

analysis of Cyprinodon pupfishes estimated a mutation rate about

10-fold higher than the recent high-quality estimate of the mutation

rate in cichlids over two generations in the laboratory (Recknagel

et al., 2013) used as a conservative prior in this study. We also

demonstrated that concatenation of RADseq loci in our previous

phylogenetic analysis, as opposed to multispecies coalescent analysis

of these loci, would only overestimate mutation rates by a maximum

of twofold (Martin et al. 2017).

Furthermore, SEA’s *BEAST analysis and our own follow-up

*BEAST analyses here do not take into account complex demographic

histories, such as secondary gene flow, and result in an overly simplistic

model of Death Valley populations, given evidence of substantial gene

flow in our previous study. SEA used a simple linear model of changes in

population size through time, but new demographic models relax this

assumption and allow for estimation of independent effective popula-

tion sizes within the ancestor and each descendant lineage (Gutenkunst

& Hernandez, 2009; Nadachowska-Brzyska et al., 2013; Kautt,

Machado-Schiaffino, & Meyer, 2016; Martin et al., 2016). Failing to

account for ancestral changes in population size led to a several million

year overestimate of polar bear divergence times, indicating that phylo-

genetic models which do not account for variable population size

changes through time, such as a population bottleneck in only one lin-

eage after colonizing a new isolated environment (e.g., Devil’s Hole), are

biased and lead to an overestimate of divergence times (Liu et al., 2014;

Nadachowska-Brzyska et al., 2013).

An additional factor that may result in elevated mutation rates in

our study and SEA is the method of down-sampling from the

genome. Reduced-representation restriction site-associated sampling

(RADseq) is not unbiased nor random (Puritz et al., 2014); indeed,

both studies used restriction enzymes (SbfI and PstI), which target

GC-rich regions. Theoretical studies point out that RADseq will sys-

tematically underestimate heterozygosity in general due to allele

dropout at polymorphic restriction sites (Arnold, Corbett-Detig, Hartl,

& Bomblies, 2013). Indeed, when we compared genetic diversity (p)

among San Salvador, Bahamas pupfish species sampled using our

ddRADseq protocol (Martin & Feinstein, 2014; : Fig. 5c: p: general-

ist = 0.002, snail-eater = 0.0018, scale-eater = 0.0016) and in our

more recent whole-genome resequencing study (McGirr & Martin,

2016: generalist = 0.00402, snail-eater = 0.00321, scale-eater =

0.00324), we found that genetic diversity was generally about 50%

lower using the RADseq method. Nonetheless, as we originally dis-

cussed in Martin et al. (2016), “although our data set may be biased,

Bayesian posterior estimates of divergence time are extremely sensi-

tive to calibration priors, rather than the observed heterozygosity

within a data set (Warnock, Parham, Joyce, Lyson, & Donoghue,

2014).” Thus, our estimate of the age of DHP depends mainly on

the accuracy of our calibration choice, not the underlying bias in our

data set, because any mutational bias present is rescaled to an exter-

nal timescale and we used this same data set for later demographic

analysis.

Finally, SEA claim that their analysis of secondary gene flow “re-

futes the claim that the evolutionary history of Death Valley pupfish

was influenced by frequent overland dispersals and mixing on a scale

of hundreds to thousands of years (Martin et al., 2016).” This is

highly misleading because they did not sample either Death Valley

pupfish species showing significant evidence of secondary gene flow

with DHP that was originally analysed in Martin et al. (2016)

(Table S4 and discussed in main text): C. nevadensis amargosae and

C. nevadensis pectoralis were not included in SEA’s analyses of gene

flow. Only C. nevadensis mionectes was included by SEA; similarly,

Martin et al. (2016) found no significant evidence of gene flow

between C. nevadensis mionectes and DHP.

In conclusion, our new analyses of SEA’s data set continue to

suggest a young age for this iconic endangered species. We further

discuss life history features shared across many endangered taxa

that may lead to an underestimation of their age if their mutation

rate is assumed to be similar to even closely related nonendangered

taxa. We also did not conduct demographic analyses of the age of

DHP incorporating gene flow which previously indicated a much

younger age (105–830 years) than our phylogenetic estimates

(2,500–6,500 years; Fig. 2: Martin et al., 2016). We conclude that

Saglam et al.’s conclusions and analyses are based on incorrect

assumptions and omission of taxa showing evidence of secondary

gene flow. Their assertion of “overwhelming support for an older

divergence time and isolation of DHP” is unwarranted.
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