

After *On the Origin...*

When Darwin and Wallace jointly published their paper on natural selection, they began a new era of evolutionary study. While their work was important, they were still wrong about inheritance, a process which they believed was the result of blending of genetic factors.

Mendel's Principles

- Alternative forms of genes, known as alleles, account for variation
- Offspring individuals inherit two copies of genes, one from each parent, in most cases (these are known as diploid organisms)
- If the possible alleles of a gene differ, one *may* be dominant (meaning that it would mask the phenotypic expression of the other allele)
- Two alleles for a heritable trait segregate during meiosis, usually independently of other traits (except for case of linked genes, which are close together on the chromosome)
- Dominant alleles mask all other phenotypes (known as recessive), but there is also the case of co-dominance—think of one red and one white flower making a pink flower, or look at the examples below

Dominance of purple (P) over white (p) flower color: Fig. 14-5

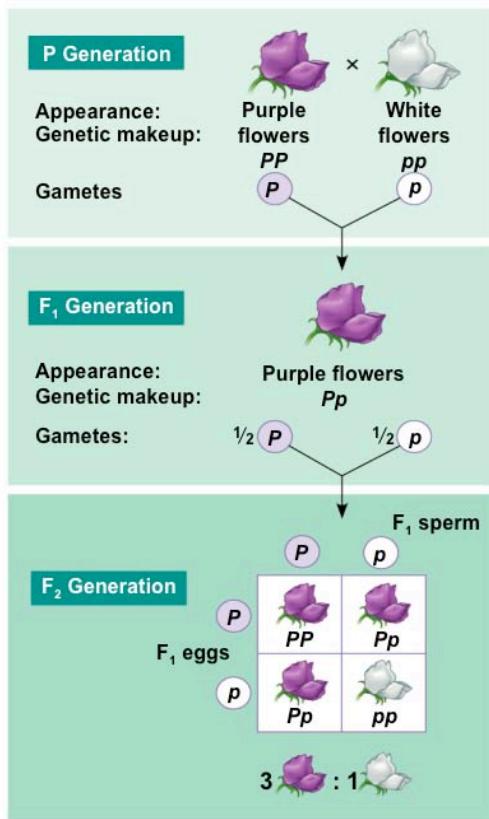
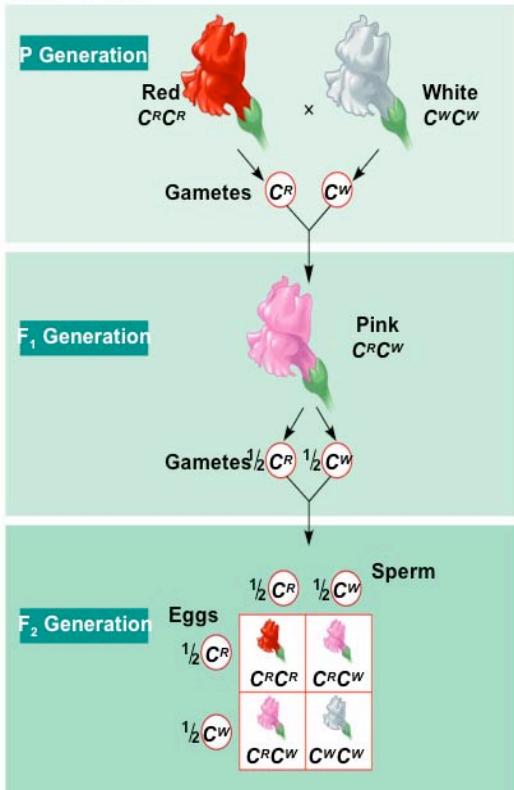



Figure 14.5 (pg. 266, 8th edition)

Co-dominance - heterozygote is intermediate (pink) in snapdragons: Fig. 14.10

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

Figure 14.10 (pg. 272, 8th edition)

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

Alleles

A

Genotypes

AA

B

AB

Possible Phenotypes

Dominant

Codominant

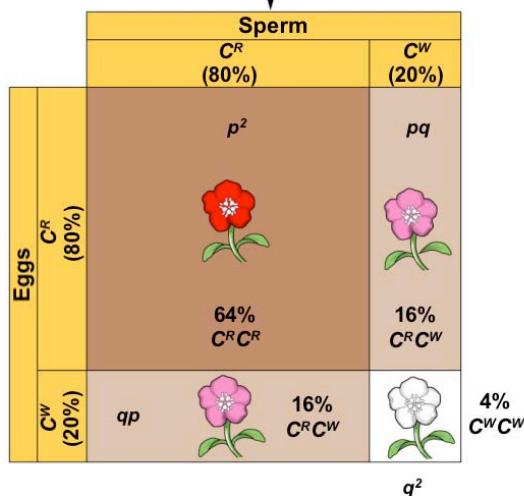
Dominant

Recessive

In this case, AA and BB are known as *homozygous* (same allele type) and AB is known as *heterozygous*.

Population Genetics

- A population, in genetic terms, is a randomly breeding group of individuals that is largely isolated from others
- Key evolutionary processes: mutation (the only source of variation), sampling processes (also known as genetic drift), the various forms of natural selection, exchange of genes through migration, and non-random mating


Mathematical Models—Hardy-Weinberg Equilibrium

Example of a natural population of flowers:

Gametes for each generation are drawn at random from the gene pool of the previous generation:

80% C^R ($p = 0.8$) 20% C^W ($q = 0.2$)

Fig 23.7

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

Figure 23.7 (pg. 474, 8th edition)

Now, the general case:

general case

male gametes

$$f(A_1) = p \quad f(A_2) = q$$

female gametes	$f(A_1) = p$	$f(A_2) = q$
$f(A_1) = p$	p^2 $A_1 A_1$	pq $A_1 A_2$
$f(A_2) = q$	qp $A_2 A_1$	q^2 $A_2 A_2$

Expected
genotype
frequencies

$$\begin{aligned} A_1 A_1 &= p^2 \\ A_1 A_2 &= 2pq \\ A_2 A_2 &= q^2 \end{aligned}$$

Phenotype Frequency	Genotype Frequency
Red Flowers	320
Pink Flowers	160
White Flowers	20

Allele Frequency

$$\begin{aligned} p &= f(C^R) = 0.8 \\ q &= f(C^W) = 0.2 \end{aligned}$$

Expected proportions:
 $p^2 + 2pq + q^2 = 1$

Also, $p+q=1$ because there are only two possible alleles (in this case)

$f(A_1) = p^2 + 1/2(2pq) = p(p+q) = p$, meaning that the next generation will in theory have the same gene frequency as that of the parents

Conclusions from Hardy-Weinberg math: Inheritance alone does not cause the frequency allele changes of evolution

This is because Hardy-Weinberg acts on these assumptions:

- Random mating only - for this gene/trait
- No mutation or selection on population in question
- This is an isolated population with no gene flow from outside (i.e. no migration)
- This is only true for a large population with no sampling error

Based on these assumptions, we can call Hardy-Weinberg a *null hypothesis* for evolution.

That means that if a population does not conform to Hardy-Weinberg Equilibrium for a certain trait, then evolution has occurred.

Example of HWE as a Null Hypothesis:

Wild Oats—

Genotype Frequency

0.548	A_1A_1
0.071	A_1A_2
0.381	A_2A_2

Note that there are far fewer heterozygotes than HWE would predict. Some explanations for this would be that the wild oats do not practice non-random mating, or that heterozygotes are selected against in the environment the oats inhabit.