Bio1B Evolution 3

Last lecture:
• Natural selection - principles, lines of evidence in the “Origin”
• Descent with modification
• Estimation & interpretation of phylogeny
• Some major insights about the “Tree of Life”
 – 3 kingdoms: Archaea, Bacteria, Eukarya
 – Metazoan origins & relationships (not covered)

Today
• More history - Darwin+Mendel => the Neodarwinian synthesis
• Mechanisms of evolution:
 – Evolution in populations - population genetics
 – Allele, genotype and phenotype frequencies
 – Predicting genotype freq’s: Hardy (Castle) Weinberg Equilibrium
 • Application: Null model for evolution
 • Application: Predicting heterozygote frequencies for recessive traits
Mendel’s principles of inheritance (1865) [see Ch 14]

• Alternative versions of genes (alleles) account for variation in inherited characters

• For each character, an organism inherits 2 alleles, one from each parent

• If the 2 alleles at a locus differ, then the dominant allele determines phenotype

• The 2 alleles for a heritable character segregate during gamete formation (Law of Segregation)

• Each pair of alleles segregates independently of others during gamete formation [for unlinked genes]
Dominance of purple (P) over white (p) flower color: Fig. 14-5

- **P Generation**
 - Appearance: Purple flowers
 - Genetic makeup: PP
 - Gametes: P

- **F₁ Generation**
 - Appearance: Purple flowers
 - Genetic makeup: Pp
 - Gametes: 1/2 P, 1/2 p

- **F₂ Generation**
 - F₁ eggs: PP, Pp, pp
 - 3:1Ratio

Co-dominance - heterozygote is intermediate (pink) in snapdragons: Fig. 14.10

- **P Generation**
 - Red: C²R²
 - White: C²W²
 - Gametes: C², C², R², R², C², W², C², W²

- **F₁ Generation**
 - Pink: C²R²
 - Gametes: 1/2 C², 1/2 C²

- **F₂ Generation**
 - Eggs: 1/2 C²R², 1/2 C²W²
 - Sperm: 1/2 C²R², 1/2 C²W²
Genotype and allele frequencies for a locus with two alleles

Genotypes

- A_1A_1
- A_1A_2
- A_2A_2

Alleles

- A_1
- A_2

Genotypes, parental generation

- Genotype frequencies
- Parental generation

Allele frequencies among gametes

- Allele frequencies

Genotype frequencies, offspring generation

- Genotype frequencies
- Offspring generation
Hardy-Weinberg Equilibrium

general case

male gametes

\[f(A_1) = p \quad f(A_2) = q \]

<table>
<thead>
<tr>
<th></th>
<th>(p^2)</th>
<th>(pq)</th>
<th>(q^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1A_1)</td>
<td>(A_1A_2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(qp)</td>
<td>(q^2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A_2A_1)</td>
<td>(A_2A_2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

female gametes

\[f(A_2) = q \]

<table>
<thead>
<tr>
<th></th>
<th>(p^2)</th>
<th>(pq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1A_1)</td>
<td>(A_1A_2)</td>
<td></td>
</tr>
<tr>
<td>(qp)</td>
<td>(q^2)</td>
<td></td>
</tr>
<tr>
<td>(A_2A_1)</td>
<td>(A_2A_2)</td>
<td></td>
</tr>
</tbody>
</table>

Expected genotype frequencies

\[A_1A_1 = p^2 \]
\[A_1A_2 = 2pq \]
\[A_2A_2 = q^2 \]

Gametes for each generation are drawn at random from the gene pool of the previous generation:

- 80% \(C^R \) (\(p = 0.8 \))
- 20% \(C^W \) (\(q = 0.2 \))

![Fig 23.7](image)

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.
Hardy-Weinberg Equilibrium

• Predicts genotype (& phenotype) frequencies from allele frequencies
• Genotype frequencies in expected proportions in a single generation
• Allele (& genotype) frequencies constant across generations => inheritance alone does not cause evolution
• Assumptions
 – Random mating (for this gene/trait)
 – No mutation, selection, migration
 – Large population (no drift)
Applications of HWE

- A null model for evolution
 - Deviations from expected proportions indicate something interesting - but what?
- Predicting frequency of heterozygotes for recessive alleles, e.g. cystic fibrosis

Cystic fibrosis: Mapped to chloride transport gene on chromosome 7

Common mutation, ΔF508 is recessive and at \(p = 0.02 \) in caucasian population

\[
F(\text{het}) = 2pq = 0.04 \text{ (carriers)}
\]

\[
F(\text{hom}) = p^2 = 0.0004 \text{ (affected)}
\]
Hardy-Weinberg genotype frequencies as a function of allele frequencies at a locus with two alleles

\[q^2(A_2A_2) \]
\[p^2(A_1A_1) \]
\[2pq(A_1A_2) \]