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The theory of balanced polymorphism
which has been elaborated by popula-
tion geneticists, notably Sewall Wright
and R. A. Fisher, has in the main been
concerned with the effects of single loci.
As theory generally goes apace with
experiment, this accent on single locus
polymorphisms has been due to the
plethora of observational evidence re-
lating to simple cases. It is sufficient to
note the vast effort made by Dobzhansky
and his co-workers in their elucidation of
the inversion polymorphism of the third
chromosome of Drosophila pseudoobscura.

In recent years, however, a few cases
have come to light of polymorphisms in-
volving more than one Mendelian unit.
Among these are the inversions on
different chromosomes found in D.
robusta studied by Levitan (1955 and
1958), the shell color of Cepaea nemoralis
reported by Lamotte (1951) and by
Cain and Sheppard (1952), the complex
mimicry pattern in certain butterflies
(Sheppard, 1959) and the inversions in
two chromosomes of the grasshopper
Moraba scurra analyzed by White (1957)
and Lewontin and White (1960).

The study of effects of natural selec-
tion on single locus polymorphisms must
take into account only inter-allelic
effects such as additivity and dominance.
In multi-locus polymorphisms, however,
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two new factors add more complexity.
They are recombination between loci
and interactions between the loci in
determining fitnesses of genotypes (epi-
stastzs in the broad sense).

Some theoretical work has been done
on selection in multi-locus systems,
notably the paper of Kimura (1956) on
a special case of epistasis and heterosis.
Kimura’s equations (p. 279) are, how-
ever, quite general in their applicability
and are completely analogous to our
equations 12a-12d although arrived at
from a different point of view.

It is our purpose in this article to
present the basic theoretical considera-
tions for the analysis of multiple poly-
morphisms, by examining in some detail
the evolutionary dynamics of two-locus
systems. It is believed, in view of the
results to be presented, that no great
gain in understanding would be made by
an extremely unwieldy analysis of more
complex systems.

LINKAGE EQUILIBRIUM AND
DISEQUILIBRIUM

Essential to a discussion of the two-
locus problem is the concept of linkage
equilibrium. This problem has been
dealt with by Geiringer (1944) and can
be summarized as follows: Suppose that
there are two segregating loci, A—a and
B-b. There will then be four possible
gametic types: AB, Ab, aB and ab. Let
the frequencies of these four gametic
types be gi1, gio, go1, Loo, respectively.
These frequencies satisfy the following

458



DYNAMICS OF POLYMORPHISMS

relationship:

g11+g10=7p, the frequency of allele 4,
gorF+goo= (1—p), the frequency of allelea,
g11+go1=r, the frequency of allele B,
g10+goo= (1—7), the frequency of allele b.

Linkage equilibrium will be defined by
the condition that each gametic fre-
quency is the product of the appropriate
gene frequencies. That is, at linkage

equilibrium
gu=pr, go=p(1—r),
ga=1—p)r, goo=0—p)(1—r). (1)

It can be shown that at a non-equilib-
rium condition the gametes will have the
frequencies

g1 = fu + D, g0 = £ — D, (2)
g = §01 - D, Loo = };700 + D,
where D = giigoo — gugori. The equa-

tions in (2) imply that any time the
gametic frequencies will deviate from
the equilibrium frequencies by an amount
D which is the product of the coupling
gametic frequencies minus that of the
repulsion gametic frequencies. D, thus
defined, may be considered as a measure
of linkage disequilibrium. Obviously,
at equilibrium
D=g1goo—g108n
=pr(1=p)(1—r)—p(1—r)r(1—p)=0.

Finally it should be noted that in the
absence of any evolutionary pressure
such as selection, the value of D will
approach zero with succeeding genera-
tions. The relation between the initial
value, Dy, and the value in the #-th
generation through random mating is

D, = (1 — R)"D, 3)

where R is the recombination frequency
between the loci. It is important to
stress that the relation (3) is true only
when no other evolutionary forces are
assumed, because, as will be shown,
natural selection may upset the ap-
proach to eventual linkage equilibrium.
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PoPULATIONS IN LINKAGE
EqQuiLiBRIUM

The approach used in this paper for
investigating the interactions of recom-
bination and gene effects is to first
assume, incorrectly, that the evolving
population is in linkage equilibrium in
every generation, i.e., that D, = 0 for
all #, and then this inexact model will be
compared with the exact treatment in
which no such assumption is made.

With two loci and two alleles at each
locus all possible genotypes can be
tabulated in a two-way table of nine
cells, in each of which are found the fre-
quency and adaptive value of the indi-
vidual genotypes (table 1). The fre-
quency of each genotype is denoted by
Zij, and the adaptive value by W,
The latter is the relative probability
that a zygote of this genotype will leave
a zygote in the next generation. The
subscript, 7, stands for the number of
alleles, A, and j for the number of
alleles, B, in each genotype. The mean
adaptive value of the population is
obtained from Table 1 as

2
W = Z Z{]‘WM‘. (4)
1, 5=0

TABLE 1. The frequencies (the upper entries) and
adaptive values (the lower entries) of all
possible genotypic arrays with
two loci (see text)

Marginal
AA Aa aa mean
Zss Zz Zo2 _
BB Wae
Was Wie Waoe
Zn Zu Zon _
Bb W
Wa Wn Wo
Za0 Zo Zoo _
bb Wb
Wao W Woo
Marginal Wau W sa Woaa w
mean
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Under the assumptions of random
mating and of linkage equilibrium at
every generation, the Z;’s are the
products of the appropriate gametic
frequencies in formulae (1). For ex-
ample, Zyy = p*?2, Zoy = 2p (1 — r) and
so on. From these and the set of W;;
given, it is possible to calculate the mean
adaptive value, W, for any combination
of gene frequencies, p and 7. These
mean adaptive values may then be put
in the form of adaptive topography, a
concept introduced by Wright (1932).
Figure 1 shows a topography taken from
Lewontin and White (1960). The two
axes represent the two gene frequencies
pand 7. The lines in the plane (isodapts)
join points of equal W in the manner of
lines of equal altitude in a topographic
map. Two adaptive peaks marked by P,
two valleys marked by ¥V and a saddle
point, S, are seen in figure 1.

It has been shown by Wright (1942)
and others that in the simple case of
linkage equilibrium the peaks represent
points of stable gene frequency equi-
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Fic. 1. Adaptive topography for Royalla
population of Moraba scurra taken from Lewon-
tin and White (1960). The abscissa is the fre-
quency of the Blundell inversion on chromosome
CD, the ordinate is the frequency of the Tidbin-
billa inversion on Chromosome EF. Lines are
those of equal adaptive value (isodapts). The
numbered trajectories are the paths of gene
frequency change computed from equations 24
a-c. P, V,and S show the locations of adaptive
peaks, valleys and a saddle respectively.
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librium, while the saddle or minimax
point is one of unstable equilibrium.
That is, in a population the gene fre-
quencies will change under the influence
of natural selection until they arrive at
a peak, and, although the frequencies
may remain in equipoise at a saddle
point, any slight disturbance will cause
them to change toward a peak. In the
case of two peaks, as in figure 1, the
particular peak to which the frequencies
move, depends upon the initial fre-
quencies. The genetic conditions for a
stable gene frequency equilibrium when
linkage disequilibrium is unimportant
are given by Kojima (1959).

What is to be examined further here
is the trajectory of the population as it
approaches equilibrium. This will then
be compared with the trajectory and
equilibrium situation when linkage equi-
librium is no longer assumed.

It has been shown by Wright (1942)
that for linkage equilibrium the changes
in gene frequency per generation, Ap
and Ar, may be written as

6W

Ap = (5.a)

1 oW

Ar = Yz r(l — r)-— (5.b)

or in the case of a continuous change of
gene frequency with time,

d W
T-wi-p5, (62
d 5W
75 =¥ —nN5-.  (6b

Combining (6.a) and (6.b) to eliminate
dt, yields,

7(1—7)—0319 P(I—P)—dr (7

By integrating both sides of (7), an
equation for the trajectory of p and r
in the gene frequency plane can be ob-
tained. This equation will contain the
initial gene frequencies, po and 7o, which



DYNAMICS OF POLYMORPHISMS

determine the specific paths of gene
frequency changes. To see the signifi-
cance of the equation (11), it is fruitful
to analogize the path of genetic evolu-
tion with the path of a particle moving
in a two-dimensional potential field.
The coordinates of the particle are the
p- and r-axes, and the isodapts are equi-
potential lines. This type of analogy
has been explored to some extent by
Wright (1955) and Lewontin (1958) for
a single locus case. In such a potential
field a particle will move so as to make
the maximum change of potential per
unit length of path. This can be repre-
sented in the symbolism used in (7), by
the differential equation

oW

o dp = 5p dr,

®)

and the rate of change of potential
along this path is

AR
or + ép 1
(Proofs of (8) and (9) may be found in
any elementary text of calculus in dis-
cussions of directional derivatives and
gradients.) Now a comparison of (7)
and (8) shows that gene frequencies do
not change in such a way that the rate
of increase of W is maximized, although
eventually the population does reach a
point of maximum mean adaptive value
(Wright, 1949). In a sense the popula-
tion takes an ‘‘indirect” path to the
peak. It is to be emphasized that the
actual position of a population in the
gene frequency plane as well as the
gradient in fitness determines the vectors
of gene frequency displacement and the
change of mean adaptive value is only
a resultant of gene frequency changes.
To illustrate the difference between
the ‘‘steepest path’ predicted by (8) and
the “‘genetic path” given by (7) we
have solved these equations for two
cases. In Case I, the adaptive values
which are given in table 2, show no
epistasis, while for Case II given in

)
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TABLE 2. Hypothetical fitness values of nine
genotypes of locus A and locus B.
No epistasis

AA Aa aa
BB 1 3 1
Bb 2 4 2
bb 1 3 1

TABLE 3. Hypothetical fitness values showing
epistasis between locus A and locus B

AA Aa aa

BB 1 1.5 1
Bb 2.5 4 2.5
bb 1 1.5 1

table 3 there is a strong epistasis or
non-allelic interaction between the two
loci. In figure 2 the steepest path (solid
curve) and the genetic path (dashed
curve) are given for Case I. Several
sets of paths are shown, each correspond-
ing to different initial values of p and 7.
Because of the symmetry of the adaptive
topography with one central peak at
p = r = .50, only one quadrant of the

100
p (A)

F1G. 2. Steepest path (solid lines) and path
taken by gene frequencies with constant linkage
equilibrium (broken lines) for adaptive values in
table 2 (no epistasis). Ordinate and abscissa are
frequencies of alleles at two loci.
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F16. 3. Steepest path (solid lines) and path
taken by gene frequencies with constant linkage
equilibrium (broken lines) for the adaptive values
in table 3 (epistasis). Ordinate and abscissa are
frequencies of alleles at two loci.

p—r plane is shown. The results of
calculations for Case II are shown in
figure 3. The deviations of the genetic
paths from the steepest paths are in the
direction of a larger vector component
for that gene frequency closer to .50.
The paths are more divergent for the
epistatic case than for the non-epistatic,
these deviations being in some cases
quite large.

One of the most interesting concomi-
tants of this effect arises when there is
more than one adaptive peak in the
topography as in figure 1. In such cases
the population may actually go to a
different peak than that which has the
steepest gradient on the adaptive topog-

R. C. LEWONTIN AND KEN-ICHI KOJIMA

raphy. This complication is in addition
to the fact that the population does not
necessarily ascend the highest peak, since
gene frequencies only move to points of
local maxima of mean adaptive values.
This latter point can be seen in the
trajectory of figure 1. Depending upon
initial conditions, the populations may
go to either peak or toward the saddle.

TaE COMPLICATION OF LINKAGE

When the assumption of constant
linkage equilibrium is relaxed, which is
necessary for an accurate treatment of
the problem, it is gametic rather than
gene frequencies that must be examined.
Using the notations developed in the
previous sections, let gf?, =1 or 0
and / =1 or 0, be the frequency of a
particular gametic type in the ¢-th
generation immediately after meiosis.
Then Z{) will be the frequency of a
zygote formed from the gametes gfi’s,
while giit? denotes the frequency of a
particular gamete formed by meiosis
of the zygotes in the f-th generation.
In table 4 the relations between the
Z$} and the gf? are given in the second
and third columns for a random mating
population. The relative frequencies of
these ten genotypes after selection are
given in the fifth column. After selec-
tion, meiosis occurs again to produce the
gametes of the (¢ -+ 1)-th generation
The gametic frequencies, g{it", are
easily computed with the aid of the last
column of table 4. The gametic fre-
quencies in the (¢ -+ 1)-th generation
are then:

g“+1) _ghgil W22+% (nglgfo W21+2gilg61 W12) +[(1 —R)ghgéo+Rgiog61]Wu
11 = =

go1

(10.a)

g5 = giogio Wao+3% (2gi1gt0 Wai+2glogbo I1/'10) +[Rgirgoo+ (1 —R)glogo JW.. (10.b)
(4D =g61g61 Wo2+3 (2801811 Wia+ 2g01800 VYM) +[Rei1goo+ (1 —R)glogh JWis (10.0)
e+ _ 260860 Woo~+3% (2g00g1i0 W10+ 2gb0ghs Vl/m) +L[(1—R)gl1g00 +Rgiog31]Wu‘ (10.d)

£o

w
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TABLE 4. Relations between gametic and genotypic frequencies in a
random mating population

Zygotic Adaptive Frequency after
Genotype frequency Composition value selection Gametes produced

AB _
i3 z% e8] W g W/ W 14B
AB 34AB
o= VA 1) 2 @) () w. (z) @®) Wt/ W 2

Ab 31 811810 21 2g11810Wa/ 14b

Ab _

T z% e W 20D Wao/ W 14b
AB 1AB
— 2¢fie Wiz 260361 W/ W ,

aB 3B
AB 3(1—R)AB, iR Ab
o 2 (t) w. (t) @®) W, W z ’

ab & " 2eiig10 W/ iR aB, $(1—R)ab

2

Ab 3R AB, 1(1—R)A4b
av 2 @ (0 W, (t) 1) Wi /W ' 2

5B £10&o1 u 2650861 W/ 1(1—R)aB, 3R ab
Ab 14b

— z0 26008 Wio 260e60 W10/ W :

ab 2ab

aB _

2B A 6128 Woe el Woo/ W 1aB

aB _ 1aB

— z§ 2¢81e6 Wao e Wor/ W :

ab 2ab

ab _

2 z8% g8e% Woo 25088 Woo/ W lab

Making the convention that W,p is the
average adaptive value of gametic phase
AB in all its combinations, i.e., the
the marginal mean of the gamete A B, and
similarly W,p, Wiy and W, for AB,
Ab and ab, respectively, the four equa-
tions from (10.a) to (10.d) can be written
in the form

gh Wap — RWyD?

gttt = 7 (11.a)
£ = gioWa J;T/RWHDt (11.b)
o — e ERIWD!
gt GoWer = RWuD' (4 o

Finally, the changes in gametic fre-
quencies in each generation, Ag, are
expressed as follows (dropping the super-
scripts),

gll(WAB - W) - RW11D

Agu = W (123.)
— W D

Agy = 0w vaI? + RWuD ) 1)
g — W D

Agor = g0(Wap g) + RWu (12.c)
Wa - W - RW D

Agoo = goo( b W) 11 ' (12.d)

Equations (12.a)—(12.d) are equivalent
to those derived by Kimura (1956) in
his treatment of a special case of inter-
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action between two genes. His deriva-
tion was based on a time-continuous
model (instead of generation-time) with
instantaneous rates of birth and death.

TuE EQUILIBRIUM CONDITION

First, to be examined is the question
of whether the complication of linkage
disturbs the simple equilibrium picture
expected with the assumption of constant
linkage equilibrium. Specifically, do the
gene frequencies come to the same equi-
librium wvalues, irrespective of linkage,
and does the population reach linkage
equilibrium as it approaches equilibrium?

An equilibrium of the population in
the present investigation is defined by

(13)

Under this definition not only do the
frequencies of gametes and zygotes not
change but also the value of D must be a
constant. Substituting (13) in equa-
tions (12.a)—(12.d), yields

gu(Wapg — W) — RDWy,; =0 (14.a)

Agy = Agro = Agor = Agoo = 0.

210(Wap — W) + RDWy;; =0  (14.b)
g()l(Wab bt W) + RDWU = 0 (14C)
goo(Wab - W) - RDWu = 0. (14d)

These deceptively simple equations are
not easy to solve in general since they are
cubic equations in the gp's. By ex-
amining some symmetrical cases of
adaptive values, however, the equations
can be rendered simple enough to solve.
Specifically, we have used adaptive
values given in table 5 where a, b, ¢, and
d can, in general, take any value. This
model allows epistasis when

a—b—c+d#N0.

TABLE 5. General scheme of adaptive values
for the symmetrical case

AA Aa aa
BB a b
Bb c d c
bb a b

R. C. LEWONTIN AND KEN-ICHI KOJIMA

In this model the generality is restricted,
but not to a great extent when one
quadrat in the gene frequency plane,
say p and 7 both being from 1.00 to .50,
is considered. Substituting the adaptive
values in table 5 into the equations,
(14.a)-(14.d), and writing them in ex-
tenso gives:

gulagu+cgio+bgo+dgon— W]
— Rd[g11800—g10g01]=0 (15.a)

glO[Cgll +agio+dgoi+bgoo— W:I
+Rd[g11800—g10g01 ]=0 (15.b)

go1[bg1+dgiotagor+cgoo— W]
+ Rd[g118€00—g10g01]=0 (15.c)

goo[dg11+bg10+cgor+agoo— W]

— Rd[g11800—g10g01]=0. (15.d)

Because of the symmetry of the equa-
tions, (15.a) with (15.d) and (15.b) with
(15.c), the solutions require that g;1 = goo
and g0 = g1 = 3 — gnn. Making the
appropriate substitutions in the equa-
tions, (15.a), and noting that

W=4(a+d—b—c)gh

d
—2(a+d—b—c)gu+a—;L (16)
it is found that .
gu(b+c—d—a)(4gh —3gu+3)
—Rd(gn—1)=0. (17)

In the following, two cases, epistatic
and non-epistatic, are to be examined.

Case 1: Additivity between loci

When a 4+ d — ¢ — b = 0, there is no
epistasis (see, e.g. Kojima, 1959). If
the adaptive values satisfy this condi-
tion, then the solution is

g11 = g10 = fo1 = foo = %.

That is, there is an equilibrium at
p =r =3} and there is no linkage dis-
equilibrium since

D = (guigoo — g10go1) = 0

The stability of the equilibrium now
depends simply on whether the value of
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d is the largest among the four adaptive
values or not. If it is, then the point,
p=r=1%, is a simple overdominant
equilibrium.

Case 1 : Interaction between loci—epistasis

Ifa+d—b—c;'f0,thentheequa—

tion, (17), is a cubic equation with
three distinct solutions. They are:
4Rd
— 11 e
gu=1+1u 1+b+c-a—d(18'a)
_ 11 4Rd
gu i 4\/1+——b+—c_a_d(18.b)
g = i (18C)
Since g1 = goo = 3 — o = 3 — L1,

the gene frequencies of both loci, p and 7,
are again % at equilibrium. Butif (18.a)
or (18.b) should be the solution, there
would no longer be linkage equilibrium,
because

D = Z11800 — Z1ogo1

4Rd
= 41
4\/1+b+c—d—a'

In order for (18.a) and (18.b) to hold
true, the quantity under the radical sign

(19)
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must be between zero and one, inclusive.
This requires that 6 +¢ —a — d be
negative and that

a+d—0>b—c¢
4d '

R < (20)
That is, linkage must be tighter than
the value on the right-hand side of (20),
or else the system will go to linkage
equilibrium given in (18.c). For ex-
ample, using values in Table 3, a = 1,
b=15, ¢ = 2.5, d =4, R must then
be less than .0625 for permanent linkage
disequilibrium. When R = .0625, three
solutions, (18.a)—(18.c) are equal.

Finally, there is the possibility that
(18.a) and/or (18.b) represent unstable
equilibrium and only (18.c) is stable, or
the reverse. The stability of equilibria
in this case can be tested by regarding
the four gametic types as four alleles
of a single super-locus. The rules for
testing stability of this type of equilibria
are given by Kimura (1956). The
algebra is extensive but straightforward
and will not be reproduced here in any
detail.

We simply point out that for (18.c) to
be a stable equilibrium it is necessary
for the matrix

2(a — d) (@a+c—0b—4d (@+b—c—d i
@4+c—b—d 2@—0b) —4Rd  (@+d—b—c) — 4Rd
(@ +b—c—d) (a+d—0b—-2c) 2(a — ¢) — 4Rd

to be negative definite. This turns out
to be equivalent to requiring that

a+d—0b—c¢

R > id

(21.a)

and

la —d|>|b—¢| and d>a. (21.b)
That is to say, these conditions are neces-
sary and sufficient for an equilibrium at
g11 = g0 = go1 = goo = T to be stable.
Since the condition (21.a) is the con-
verse of the inequality, (20), linkage
equilibrium at p = » =  for the model
given in Table 5 will represent a stable

equilibrium of the population if and
only if (21.a) and (21.b) are true. The
condition, (21.a) assures that the popula-
tion tends to linkage equilibrium as it
approaches gene frequency equilibrium.
The stability of such equilibria was
studied by Kojima (1959) : the necessary
and sufhcient conditions for such equi-
libria to be stable are (1) overdominance
on the marginal means of three zygotic
phases at each locus and (2) addi-
tive X additive epistatic variance being
smaller than dominance variance. In
the present model, the condition, (21.b),
turns out to be the same as overdomi-
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nance, i.e., WAa > WAA, WAa > Waa,
Wgs > Wepand Wge, > Wiy (see Table
1). The second condition on the magni-
tude of additive X additive epistasis is
also satisfied in this case, since the addi-
tive X additive variance is zero at
gu = g1 = go1 = goo = %

When the inequality, (20), is true,
linkage may be so tight that linkage
equilibrium would not be achieved in
the population. If there is an equilib-
rium under this condition, the solutions
of gametic frequencies in (18.a) and/or
(18.b) represent those at equilibrium.
The amount of linkage disequilibrium in
such a case is given in (19). It is ex-
tremely difficult to obtain the critical
upper bound of R with which populations
tend to a stable equilibrium without
linkage equilibrium, although, when the
values of fitness and recombination
fractions are given, the stability of such
equilibria is readily tested.

Consider the adaptive values of table
3. It has already been found that with
recombination fractions greater than
.0625, the population tends to a stable
equilibrium at g1; = gio = go1 = oo = 1.
If R = .05, then

Il

n=go=2+2V1—16R=.362 or .138
fa=g10=1FiV1—16R=.138 or .362
D=+1V1—16R=+.112.

o

Both of these equilibria turn out to be
stable. When R tends to zero, the dis-
equilibrium tends increasingly to =%
which is the maximum value for D.
Using Table 1 it can be shown that at
equilibrium

WAa > Was and Waa

and

WBb > WBB and Wbb-

The next example is a model with
a=3,b=4 c=1, and d = 5 which
shows epistasis. In this case there is %o
stable equilibrium with linkage equi-
librium since these adaptive wvalues

R. C. LEWONTIN AND KEN-ICHI KOJIMA

violate the condition (21.b). The con-
verse of the condition, (21.a), i.e.,

a+d—b—c¢
R = 4d

becomes
R < .15.

However, the numerical computation
shows that equilibria are not stable un-
less R is less than approximately .116.
In other words, the model under present
consideration does not lead to any
stable equilibrium unless linkage is
tighter than .116. Computing Wau,
W 44, etc. appearing in table 1, it is
found that these marginal means satisfy
overdominance at such stable equilibria.
Findings from this and several other
examples suggest that over-dominance at
equilibrium is necessary for populations
to be maintained in a stable equilibrium,
just as in the case of the epistatic model
in linkage equilibrium (Kojima, 1959).

The effect of the linkage disequilib-
rium on the mean adaptive value can be
judged from the expression, (16), which
can be rewritten as

W=4D2(a+d—b—c)+g—+b1_—c+(—i

. (22)
At equilibrium the difference in W with
and without linkage disequilibrium is

4D%*(a +d — b — ¢)

which is not large unless the epistatic
deviation measured by

(a+d—0b—9¢

is extremely large. Moreover, the size
of W does not depend on the sign of D.
That is, the excess of coupling or repul-
sion phase in the case of symmetrical
adaptive values given in table 5 is
immaterial.

It might be supposed that results so far
presented are restricted to the relatively
simple symmetrical set of adaptive
values shown in table 5. This set was
chosen as an illustration because analytic



DYNAMICS OF POLYMORPHISMS

TABLE 6. Hypothetical fitness values for a partially
asymmetrical case showing the same degree
of epistasis as the symmetrical
case in Table 3

AA Aa aa
BB 1 1.5 1
Bb 2.5 4 2.5
bb 2 2.5 2

solutions to the equilibrium equations
are possible for a symmetrical case. For
an asymmetrical case although analytic
solutions are not possible, numerical
solutions can be found, and we have in-
cluded a case of this sort to show the
generality of our result. Table 6 gives
the adaptive values for a case in which
there is symmetry with respect to the 4
locus but asymmetry with respect to the
B locus. The epistatic deviations are
identical with these in table 3. The
results of numerical calculation for this
new case are given in table 7. As the
table shows, not only are there profound
effects of linkage on the gametic fre-
quencies but in this case there are also
marked effects or gene frequencies. This
latter phenomenon did not appear in
the symmetrical case. Again, however,
rather tight linkage must be assumed
before there is any departure from the
expected result with no linkage com-
plication. The critical upper bound for

TABLE 7.
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R cannot be given analytically but it
appears to be close to if not equal to
.0625 as in the previous case. For R
as large as .08 the stable equilibrium
condition is that predicted if linkage is
ignored. The smaller the value of re-
combination the greater is the departure
from this expectation both in gametic
and gene frequencies and as in the pre-
vious examples two stable, conjugate,
equilibria exist for each condition. This
occurrence of paired solutions is a result
of the symmetry of the 4 locus since in
a sense, 4 and ¢ are indistinguishable.

THE APPROACH TO EQUILIBRIUM

Although a fairly marked epistasis
associated with a tight linkage is re-
quired to disturb linkage equilibrium
and gene frequency equilibrium, the
approach to the equilibrium will be
affected by any values of linkage and of
fitness. To investigate these effects,
the equations, (12.a)—(12.d), are put in
their approximate differential forms:

d _
ﬁ;l =gu(Wip — W) — RDW,; (23.a)
dgm _
3 = ©o(Wap — W) + RDWy, (23.b)
dgo .
g = &1(Wap — W) + RDWu (23.0)

Equilibrium values of gametic frequencies, gene frequencies, adaptive value and linkage
disequilibrium for the fitnesses shown in table 6.

R is the value of recombination

R gn g10 go1 goo 4 v w D
.01 .014 .576 .376 .034 .590 .390 2.762 —.216
.376 .034 014 576 410 .390 2.762 +.216
.02 .030 .549 .351 071 .579 381 2.724 —.190
.351 .071 .030 .549 421 .381 2.724 +.190
.04 .068 482 .289 161 .550 .357 2.652 —.128
.289 161 .068 482 450 .357 2.652 —+.128
.062 156 .348 179 317 .504 .335 2.584 —.013
179 317 .156 .348 .496 .335 2.584 +.013
.08 167 333 167 333 .500 333 2.582 .000
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d _
—% = g00(Way — W) — RDWy. (23.d)

The factor of time can then be elimi-
nated by dividing (23.a), (23.b) and
(23.c) by (23.d), yielding

dgn  gu(Wap — W) + RDWy

= — 24,
dgoo  goo(Wew — W) + RDW 4 (24.2)
@ — glO(WAb - Wv) - RDI/Vll (24 b)
dgo, 2oo(Wap — W) + RDW, '
@ _ gOl(WaB - W) - RD W]l (24'(:)

dgoo B g00(Wa, — W) + RDW,y,

When these equations are written in
their extensive forms in terms of adap-
tive values of genotypes and solved
simultaneously, the trajectories of ga-
metic frequency changes can be plotted,
and these, in turn, can be put in terms
of gene frequencies by adding the ap-
propriate gametic frequencies. The
simultaneous equations, (24.a), (24.b)
and (24.c), are not easy to solve an-
alytically, so numerical solutions for
several cases have been obtained by
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F1G. 4. Trajectories of gene frequencies under
the assumption of constant linkage equilibrium
(solid lines) compared with true trajectories for
R = .1250 (dashed lines) and R = .0000 (dotted
lines). Non-epistatic case of table 2.
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F16. 5. Trajectories of gene frequency under
the assumption of constant linkage equilibrium
(solid lines) compared with true trajectories for
R = .1250 (dashed lines) and R = .0000 (dotted
lines). Epistatic case of table 3.

using a combination of the Runge-
Kutta and Milne methods adapted to
digital computers. Specifically, we have
used the two sets of adaptive values
given in tables 2 and 3 in combination
with different recombination fractions.
The results are shown in figures 4 and 5.
The trajectories under the assumption
of linkage equilibrium are included for
comparison. In each case the initial
gametic frequencies were such that the
populations started in linkage equi-
librium.

Any deviation from the simpler case
is then due to an accumulation of
linkages during the process of selection.
As the curves show, there is a real, but
small, difference between the curves
computed with and without the linkage
equilibrium assumption. Again it is
borne out that there may not be a great
effect on gene frequencies due to linkage.

There is, however, a profound effect
on gametic frequencies. Figure 6 shows
this effect clearly. It is a plot of the
values of D against the changing fre-
quency of the allele, 4, for the epistatic
case with initial conditions p = .80 and
r = .95. The largest value that D can
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F1G. 6. Changes in the value of D, the linkage
disequilibrium, during the process of gene fre-
quency change. The trajectory is the lowermost
one in figure 5 (epistatic case). Ordinate shows
values of D corresponding to gene frequency, 2,
of allele 4 on the abscissa.
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ever attain is ==.25 which would corre-
spond to only coupling or only repulsion
gametes. As the figure shows, very
tight linkages result in a constantly
increasing value of D up to the limit of
.25. When R = .0625 which separates
equilibria with and without linkage
disequilibrium, D goes as high as .036.
For R = .125 a maximum is reached at
D = .02 and then D declines toward
zero at gene frequency equilibrium.
No points are given at p = .50, because
the method of solution becomes un-
stable at the point where the derivatives
do not exist. For this reason the curves
for R = .0625 and R = .125 are not
shown decreasing to zero although they
do come down sharply toward zero near
p = .50.

A qualitatively similar picture is ob-
tained for the additive case except that
even with extremely tight linkage the
value of D never exceeds 10~7. This
suggests that linkage among non-inter-
acting genes does not build up disequi-
librium of linkage.

Whether D will be positive or nega-

-005

-.0lo}-

-0I5}-

-020%-

F1G. 7. Values of the linkage disequilibrium, D, on the ordinate, plotted against distance

along the trajectory in arbitrary units for trajectories 3 and 5 of figure 1.

R = .50.
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FiG. 8. Values of the mean adaptive value, W, (ordinate) plotted against successive
gene frequencies of allele 4 for the lowermost trajectory of figure 5 (epistatic case). Solid
line is W for linkage equilibrium, broken line is W for R = .0000.

tive, and whether increasing or decreas-
ing in any generation will depend upon
the instantaneous value of D, the re-
combination fraction, the adaptive values
of genotypes and the particular path on
the adaptive surface which is being
traversed by the gene frequencies. As
an example of the complexity of changes
possible in D, figure 7, has been drawn.
Figure 1 shows a variety of evolutionary
trajectories computed for the complex
adaptive surface. Corresponding to tra-
jectory 3 and 5 in figure 1, a plot of
changes in D has been made in figure 7.
On the ordinate of figure 7 are the values
of D and on the abscissa are values of
the distance along the trajectory from
the starting point. The most interesting
of these graphs is that for trajectory 5
in which D becomes progressively nega-
tive, reaches a minimum value, then
rises, becoming positive, to a maximum
value and finally declines to zero.
Lastly the values of W may be com-
pared between different linkage values.

As figure 8 shows, there is virtually no
difference in W along the trajectory
between tight and loose linkages except
very near to equilibrium. At this point
there is a sudden rise in mean adaptive
value in the tightly linked case, but
again this amounts to no more than 10%.

GENERAL CONCLUSIONS

It must be said that as a general rule
joint effects of linkage and epistasis do
not produce serious changes of popula-
tion structure except under special cir-
cumstances. These circumstances are
the simultaneous existence of marked
epistasis and tight linkage. For ex-
ample, in order for there to be any im-
portant effect of linkage and epistasis
among genes on different chromosomes
(R = .50); the epistatic deviation, ¢ + d
— b — ¢, must be greater than twice the
fitness of the double heterozygotes, d.
This is equivalent to demanding that
the fitness, a, of the four double homo-
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zygotes be slightly greater than that of
the double heterozygote, while the fit-
ness of the four single homozygotes be
virtually zero, provided that fitnesses,
@, b, ¢ and d are all positive. This would
result in four steep adaptive peaks at the
four corners of the adaptive landscape
and one rather shallow peak at the
center.

There does, in fact, seem to be a case
of this extreme type of epistasis in
nature. Levitan and Salzano (1959)
have described two linked systems of
inversions, £ and H, on the fourth
chromosome of D. guaramuni. Al-
though there are some ambiguities in
classification (HH and hk homozygotes
are indistinguishable), the data show a
great excess of double heterozygotes and
double homozygotes with a virtual ab-
sence of the four single homozygotes.
Data on crossing-over between the E
and H systems are not available directly,
but linkage seems to be tight. This is
then a combination of moderately tight
or tight linkage and marked epistasis
which produces a most aberrant zygotic
array.

When there is tight linkage with the
more moderate degree of epistasis, the
main effect is on gametic rather than
gene frequencies. However, the im-
portance of this effect should not be
underestimated because it is the frequen-
cies of the gametes that determine the
zygotic frequencies and thus the pheno-
typic composition of the population.
Thus, as in the two epistatic models dis-
cussed previously, one can expect a
considerable change in population struc-
ture when tight linkage is introduced.
In the first epistatic model, the frequency
of the genotype, 44 BB, would be .0625
at equilibrium if there were no tight
linkage, while it is .131 or more than
twice as great if recombination fraction
is .05. In the second epistatic model,
there would not be any stable equilibrium
and the population would tend to fixa-
tion if there were no linkage complica-
tion. Gene frequencies alone do not give
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an adequate picture of the genotypic
constitution of the population in such
cases and attention must be paid to the
gametic frequencies.

An example of permanent linkage dis-
equilibrium in a naturally occurring
polymorphism comes from the work of
Levitan (1958) on the X chromosome
inversiors in Drosophila robusta. Each
arm of the chromosome contains an
inverted sequence, I and a normal se-
quence S. Crossing over between se-
quences on the left arm and those on the
right arm is infrequent, about one per-
cent. Data on gametic frequencies in
males and females are as follows:

g Q
SLSr 178 266
Stlr 369 587
ISk 176 259
ILIg 538 912

These data give values of D3 = .019
and DQ = .022. Such values would
not require any extraordinary epistasis
to maintain them considering the tight-
ness of linkage coupled with the lack of
crossing-over in males. It is difficult to
see how such an explanation could be
invoked for Levitan’s second-chromo-
some data, however, in which the asso-
ciation observed is not consistently in
favor of coupling or repulsion gametes.

To what extent linkage and epistasis
are important in nature remains a
question, but there is abundant evidence
that restriction of crossing-over is a
common evolutionary mode. Inversions,
translocations, localization of chiasmata
and restriction of recombination to one
sex are common features in natural
populations. When these mechanisms
reduce recombination to a low degree,
a consideration of the linkage-epistatic
interaction becomes important in the
study of the evolution of these popu-
lations.

SUMMARY
The joint effects of linkage and epis-

tasis (interaction between non-allelic
genes in determining fitness) have been
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examined for two-locus polymorphisms.
The general results are of the following
nature:

(1) Gene frequencies change toward
a stable equilibrium condition which
corresponds to a local maximum in mean
adaptive value. This change occurs in
such a way that the rate of increase of
mean adaptive value is not maximum.
That is, the trajectory of gene frequency
changes is not the ‘‘steepest path’ on
the adaptive surface.

(2) In the absence of epistasis, linkage
does not affect the final equilibrium of
the population.

(3) When epistasis is present, linkage
must be fairly tight in order for there to
be any effect on the final equilibrium.
The amount of recombination allowed
for such cases is, in general, a function of
epistatic deviations.

(4) If linkage is tighter than the value
demanded by the magnitude of epistatic
deviations, there may be permanent
linkage disequilibrium of considerable
magnitude, and the gene frequencies may
also be affected.

(5) There are some cases where a
stable equilibrium is possible only with a
tight linkage. Without such linkage com-
plication, there will be no intermediate
gene frequency stable equilibrium.

(6) The approach to the equilibrium
condition is affected by linkage irrespec-
tive of whether there is epistasis al-
though the effect is greater when
epistasis is present.
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