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Abstract

The genealogical relationships of individuals in a finite population can create statistical non-independence of alleles at unlinked loci. In

this paper, we introduce a flexible graphical method for computing the probabilities that two individuals in a finite, randomly mating

population have the same haplotype or genotype at several loci. This method allows us to generalize the analysis of Laurie and Weir

[2003. Dependency effects in multi-locus match probabilities. Theor. Popul. Biol. 63, 207–219] to cases with more loci and other models

of mating. We show that monogamy increases the probabilities of genotypic matches at unlinked loci and that the effect of monogamy

increases with the number L of loci. We conjecture a sharp upper bound on the effect of monogamy for a given L.

r 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The probability of a complete genotypic match of two
unrelated individuals at two or more unlinked loci is of
importance to the forensic use of DNA typing. The
question that often arises is the extent to which a genotypic
match at several unlinked loci between a suspect and a
blood or other sample from a crime scene indicates that the
suspect is the source of the crime-scene sample (Evett and
Weir, 1998). The standard procedure in US criminal courts
is to assume that the probability of a genotypic match
between two unrelated individuals in the same population
can be obtained by assuming statistical independence of the
loci. With that assumption, the probability of a genotypic
match at all loci, called the random match probability
(RMP), is obtained by multiplying the probabilities of
genotypic matches at each locus, which are obtained from
Hardy–Weinberg frequencies (Evett and Weir, 1998). This
assumption, which is called the product rule in US courts, is
e front matter r 2006 Elsevier Inc. All rights reserved.
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the basis for computing such low RMPs that juries are
usually convinced that a suspect whose genotype matches
that from a crime-scene sample at several loci was indeed at
the crime scene.
The product rule is based on the well-established

population genetics theory that shows that recombination
in an infinite population eliminates statistical dependence
between pairs of loci, i.e., linkage disequilibrium (LD). In
finite populations, however, genealogical relationships
between unrelated individuals can create LD even between
unlinked loci. For two loci the effect is very small (Hill and
Robertson, 1968; Ohta and Kimura, 1969). Although this
result supports the use of the product rule, it does not
ensure that consistent deviations from the predictions of
the product rule will not emerge when more than two loci
are considered together. At present, 13 tetranucleotide
microsatellite loci, called the combined DNA index system
(CODIS) loci, are generally typed in the US and many
other populations (the CODIS web-site is http://www.fbi.
gov/hq/lab/codis/index1.htm). Because there are 78 pairs
of CODIS loci, it is possible that subtle LD between each
pair could result in substantial errors in the RMP for all
13 loci. In a detailed study of a very large data set of
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genotypes at nine loci, Weir (2004) found approximate
agreement between the numbers of individuals who had the
same genotypes at 5 of 9 loci and the predictions of the
product rule, provided that a large enough correction
(denoted by y) for excess homozygosity was assumed.

Laurie and Weir (2003) presented a way to compute the
probability that two unrelated individuals match at two
and three loci in a finite randomly mating population. They
showed that the product rule works quite well unless the
mutation rate to new neutral alleles is unrealistically high.
Their results are obtained from a system of coupled linear
recurrence equations. The equilibrium match probabilities
are found by assuming stationarity.

Although the method of Laurie and Weir (2003) is
simple in principle, setting up the systems of recurrence
equations becomes increasingly difficult for more than two
unlinked loci. For the standard Wright–Fisher model of
random mating, Laurie and Weir succeeded in computing
the genotypic match probability for two loci and the
haplotypic match probability for two and three loci, but
they concluded that finding the genotypic match prob-
ability for more than two loci or the haplotypic match
probability for more than three loci, ‘‘would be combina-
torially very difficult.’’

In this paper, we develop a simpler and more flexible
framework for computing match probabilities. Using this
framework, we can consider more than three loci and other
models of mate choice. Our strategy is to represent match
probabilities in terms of graphs. By performing a set of
prescribed operations on a given graph at generation t, we
determine how it is related to a linear combination of
graphs at generation t� 1. The graphical method makes
the combinatorial structure of the problem easier to
understand. For constructing the required systems of
equations, it is possible to implement our method in a
fully automated program, thus reducing the chance of
human error in finding the recurrence equations for a
particular model. We have written such a program in
Mathematica that can compute genotypic match probabil-
ities for up to three loci and haplotypic match probabilities
for up to five loci. It should be possible to analyze more loci
by implementing our algorithm in a faster programming
language such as C. If mutation rates at all loci are the
same, then certain match probabilities become equal; this
reduction in the number of independent variables should
allow us to handle about twice as many loci.

In addition to the standard Wright–Fisher model of
random mating, we consider a mating scheme with perfect
monogamy. We show that the effect of monogamy on the
L-locus match probability increases as L increases.
Furthermore, for a given number of loci, we conjecture
sharp upper bounds on the effect of monogamy on the
haplotypic and genotypic match probabilities.

This paper is organized as follows. The models
considered in this paper are described in Section 2. Our
graphical framework is described in detail in Section 3,
where we explain the correspondence between match
probabilities and graphs, as well as the operations that
one needs to perform on the graphs. Simple examples are
provided in Section 4 and the main results on match
probabilities are discussed in Section 5, where we also
describe an approximation method and discuss the afore-
mentioned sharp upper bounds on the effect of monogamy
on match probabilities. We conclude with discussion in
Section 6.

2. Model description

Some frequently used symbols are listed in Table 1.
Throughout, we assume a neutral infinite-alleles model for
a single population containing N diploid individuals where
N is assumed to be large. By a gamete, we simply mean a
collection of loci; different loci may physically reside on
different chromosomes. We assume that generations are
non-overlapping and that mutations occur at locus i with
probability mi per gamete per generation, independently of
other loci.
We use xi to denote the allele at locus i in gamete x.

When many gametes are considered, a superscript is
sometimes used to distinguish different gametes. For
example, xk

i denotes the allele at locus i in gamete xk.
Our convention differs from that of Laurie and Weir
(2003), who use subscripts to denote gamete labels. In their
notation ai denotes the allele at locus a in gamete i.

2.1. Mating schemes

How gametes in the next generation are produced from
those in the current generation depends on the assumed
mating scheme. In this paper we consider the following two
random mating schemes:

Unconstrained mating: Randomly sample two gametes,
each with replacement. The same gamete may be sampled
twice under this mating scheme. A new gamete is produced
as a mosaic of the two samples (as described below). This is
the standard Wright–Fisher model and the work of Laurie
and Weir (2003) pertains to this model. With probability
mi, the offspring gamete has an allele at locus i that has
never been seen before.

Perfect monogamy: Before sampling, first randomly
partition the 2N gametes into a set of N disjoint pairs.
To create an offspring gamete, randomly sample a pair
from the set of pairs, replacing the pair after sampling. As
in unconstrained mating, a new gamete is produced as a
mosaic of the two sampled gametes (see below), and with
probability mi, the offspring gamete has an allele at locus i

that has never been seen before. Unlike in unconstrained
mating, the two parental gametes are always different
gametes, though they may be identical by state.

2.2. Inheritance pattern of the offspring gamete

Two loci: Let x1x2 and y1y2 denote the two sampled
parental gametes. Then, the inheritance pattern of the
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Table 1

Frequently used notation

Notation Explanation

2N Number of gametes in each generation

L Number of loci

mi Per gamete per generation mutation rate at locus i

xi Allele at locus i in either a haplotypic or a genotypic sequence (it will be clear which from context)

x A haplotypic or a genotypic sequence x ¼ x1x2 . . . xL

xi � yi Allele xi matches allele yi

x � y Allele xi matches allele yi for all loci i ¼ 1; . . . ;L
Phðxi � yiÞ One-locus haplotypic match probability for locus i

Phðx � yÞ L-locus haplotypic match probability

Pgðxi � yiÞ One-locus genotypic match probability for locus i

Pgðx � yÞ L-locus genotypic match probability

RU
h ;R

M
h The ratio Phðx � yÞ=

QL
i¼1Phðxi � yiÞ under unconstrained and perfect monogamy mating schemes, respectively

RU
g ;R

M
g The ratio Pgðx � yÞ=

QL
i¼1Pgðxi � yiÞ under unconstrained and perfect monogamy mating schemes, respectively

G1= x G2= x2

1

2

1

y yz z

Fig. 1. Examples of fully labeled graphs. Vertex labels correspond to

gamete labels and edge labels denote loci. The graph G1 represents the

match probability Pðx1 � y1;x2 � y2; x3 � z3Þ, whereas G2 represents

Pðx1 � y1;x2 � y2; y3 � z3Þ. Ignoring the vertex labels, these graphs are

isomorphic as edge-labeled graphs. Under random mating,

Pðx1 � y1;x2 � y2; x3 � z3Þ ¼ Pðx1 � y1; x2 � y2; y3 � z3Þ, and G1 and

G2 are considered equivalent.
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offspring gamete is x1x2, y1y2, x1y2, or y1x2, with
probability 1

2
ð1� rÞ, 1

2
ð1� rÞ, 1

2
r, or 1

2
r, respectively. Note

that r ¼ 1
2
corresponds to the case of unlinked loci.

More than two loci: Let x1x2 . . . xL and y1y2 . . . yL denote
the two sampled parental gametes with L loci. For ease of
discussion, we focus on a set of loci that are pairwise
unlinked, as was done previously by other authors
(Strobeck and Golding, 1983; Laurie and Weir, 2003).
Hence, in the offspring gamete z1z2 . . . zL, the allele zi at
locus i is equally likely to have descended from xi or yi. The
probability of any particular inheritance pattern is 1=2L.

3. Graphical framework: overall idea

In this section, we lay out our strategy, explaining
the correspondence between match probabilities and
graphs, and that between the events in the assumed
reproduction model and certain operations on graphs.
In the previous section, we described a forward perspective
on genealogy. Here, we adopt a backward point of
view and determine how a match probability at genera-
tion t is related to a combination of match probabilities
at generation t� 1. Henceforward, L denotes the number
of loci.

3.1. Graphical representation of match probabilities

We use xi � yi to denote that alleles at locus i are identical
in gametes x and y. To a particular match probability (e.g.,
the probability of ðxi � yiÞ ^ ðxj � zjÞ ^ ðyk � zkÞ), we
associate a fully labeled graph as follows:
�
 Vertex: Create a vertex labeled x for gamete x.

�
 Edge: Draw an edge labeled i between vertices x and y if
and only if xi � yi.

For example, shown in Fig. 1 are two graphs G1 and G2

which correspond to the match probabilities Pðx1 �

y1; x2 � y2;x3 � z3Þ and Pðx1 � y1;x2 � y2; y3 � z3Þ, re-
spectively. Under random mating, note that these two
probabilities are equal. More generally, any two match
probabilities are equal under random mating if they are
related by some permutation of the gamete labels. In terms
of our graphical representation, this equality of match
probabilities translates to the following equivalence rela-
tion: two fully labeled graphs (i.e., all vertices and edges are
labeled) are equivalent if they are isomorphic as edge-

labeled graphs (i.e., ignoring vertex labels). In Fig. 1, G1

and G2 are equivalent since they are isomorphic as edge-
labeled graphs. In terms of this graphical framework, our
objective is as follows.

Main goal: To develop a graphical method of setting up
systems of equations that correctly relate edge-labeled

graphs, in the same way that corresponding match
probabilities are related.

3.2. Mutations (vertex count)

Let fx1
i ;x

2
i ; . . . ; x

k
i g denote a set of alleles at locus i in k

gametes at time t. Under an infinite-alleles model, the
alleles fx1

i ;x
2
i ; . . . ;x

k
i g all match only if their parental alleles

at time t� 1 all match and no mutation occurs between
times t� 1 and t in the lineages relating fx1

i ;x
2
i ; . . . ;x

k
i g to

their parents. Hence, the probability of any match relation
at time t that requires x1

i � x2
i � � � � � xk

i must contain an
overall factor of ð1� miÞ

k when written in terms of match
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1
1 11 1

2 2 2 2

h h
Prob. r

Fig. 3. Illustration of vertex split operations on match graphs for two loci.

Vertex h has d-degree 2. On the left-hand side, vertex h is split into two

vertices, and the edges that used to be incident with h are divided between

the two new vertices such that each new vertex has d-degree 1. On the

right-hand side, zero vertex split operation is performed.
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probabilities at time t� 1. This fact translates to the
following statement in our graphical representation:

Given a graph G, let V ðGÞ denote the set of all vertices in
G, and, for v 2 V ðGÞ, define

diðvÞ:¼
1 if at least one edge labeled i is incident with v;

0 otherwise:

�
(1)

That is, diðvÞ is an indicator variable that says whether the
gamete associated with vertex v is involved in a match
relation at locus i. The total number of gametes involved
in match relations at locus i is denoted by diðGÞ:¼P

v2V ðGÞdiðvÞ. When relating G to graphs in the previous
generation, there will be an overall factor of

YL
i¼1

ð1� miÞ
diðGÞ.

For instance, each of the graphs shown in Fig. 2 has
d1ðGÞ ¼ d2ðGÞ ¼ 2, so the corresponding probability of
each graph is proportional to ð1� m1Þ

2
ð1� m2Þ

2.

3.3. Inheritance pattern across loci for each gamete (vertex

split)

Here, we consider only a single gamete at time t and
investigate the inheritance pattern across its loci. When
more than one gamete is considered at time t, we also need
to consider how they can share parental gametes. That will
be discussed in the next subsection.

By ‘‘d-degree’’ of a vertex v, we mean the sum
PL

i¼1diðvÞ,
where diðvÞ is defined in (1); it is equal to the total number
of distinctly labeled edges incident with v. In the graphs
corresponding to haplotypic match probabilities, each edge
label appears at most once, so the d-degree of any vertex
coincides with its ordinary degree, the total number of
edges incident with the vertex.

Two loci: Consider the case of two loci. Let x and y

denote the two gametes sampled at time t� 1, giving rise a
child gamete h at time t. With probability r, one of the two
loci in h has descended from x and the other from y, while
with probability 1� r, both loci in h have descended from a
single parental gamete.

Let R denote a match relation at time t and G the
corresponding match graph. If only one of the two loci in a
gamete is involved in R (e.g., in R ¼ ðx1 � y1Þ ^ ðy2 � z2Þ,
locus 2 of gamete x is not involved in the match relation.
Similarly, locus 1 of gamete z is not involved in the match
2
22

1 1
1

Fig. 2. Two-locus match probabilities each proportional to

ð1� m1Þ
2
ð1� m2Þ

2.
relation), then, since we only need to track ancestral loci,
we do not need to consider the possibility of the gamete
having two parental gametes. Suppose that both loci in
gamete h are involved in R, so that the vertex labeled h in G

has d-degree 2. If gamete h has two parental gametes, each
contributing one locus to h, then that is represented in our
graphical framework by splitting the vertex h into two
vertices, distributing the edges that used to be incident with
h such that each new vertex has d-degree 1. An example is
shown on the left-hand side of Fig. 3.
A graph obtained from splitting zero or more d-degree-2

vertices in G is called a split graph of G, and G is called a
pivot graph. The two new vertices that result from a vertex
split are called a split pair. If G contains at least one d-
degree-2 vertex, then more than one inequivalent split
graph can be obtained. Note that a split graph is only an
intermediate graph that is useful for relating a pivot graph
at time t to a set of relevant match graphs at time t� 1.

More than two loci: Suppose that L42. For ease of
discussion, we focus on a set of loci that are pairwise
unlinked. A case with linked loci can easily be accom-
modated in our framework by introducing more para-
meters (recombination rates) and putting constraints on
vertex split operations.
Let D ¼ f1; 2; . . . ; ng, where npL, denote the set of

distinct loci in gamete h that are involved in a match
relation R. Let B1 t B2 denote a bipartition of D into two
disjoint subsets, such that the loci in B1 and those in B2

come from different parental gametes. (Note that if the
bipartition is + tD, then effectively there is only one
parental gamete.) There are 2n�1 inequivalent bipartitions
of D, and we assume that each bipartition has probability
1=2n�1. In the graph G corresponding to R, the vertex
labeled h has d-degree n, and the bipartition of D into
Fig. 4. A split of a d-degree-5 vertex in a model with unlinked loci. This

vertex split corresponds to a bipartition of f1; . . . ; 5g into f1; 4g and

f2; 3; 5g. These are not entire graphs; only the parts relevant for illustrating
a vertex split are shown here.
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fi1; . . . ; ikg t fikþ1; . . . ; ing corresponds to splitting h into
two vertices v1 and v2, such that of all edges that used to be
incident with h in G, those that had labels in Bi now
becomes incident with vi, for i ¼ 1; 2. An example is shown
in Fig. 4.

3.4. Sharing of parental gametes (vertex merge)

As described above, a vertex split operation is used to
capture that a gamete at time t has inherited at least one
locus from each of the two sampled gametes at time t� 1
(cf., Section 2.1). We now need to consider the possibility
of a gamete at time t� 1 being a common parental gamete
of two or more gametes at time t. This sharing of a parental
gamete translates to merging relevant vertices in the split
graph into a single vertex. The precise pattern of allowed
sharing of parental gametes depends on the assumed
mating scheme, and so do the allowed set of vertex merge
operations and their associated probabilities. In what
follows, we adopt the following convention:

Convention 1. When a set of vertices merge into a single

vertex, we remove all edges that used to join any pair of

vertices in that set.

Consider the example shown in Fig. 5. The leftmost graph
GP is a pivot graph corresponding to the probability of the
match relation ðx1 � y1Þ ^ ðx2 � y2Þ at time t. Since there are
two vertices in GP each with d-degree greater than 1, we can
perform zero, one or two vertex splits in GP. Shown in the
middle of Fig. 5 is the split graph GS obtained from two
vertex splits in GP. We have given different labels to the
vertices in GS for ease of discussion, but we are not saying
that they necessarily correspond to distinct gametes at time
t� 1. Graph GM1

on the right-hand side of Fig. 5 does
correspond to the case in which all four vertices are associated
with distinct gametes. If more than one vertex in GS in fact
corresponds to the same gamete at time t� 1, then that is
represented by merging those vertices into a single vertex.

Unconstrained mating: Under unconstrained mating,
recall that the same gamete may be sampled twice, and
each of the sampled gametes may transmit genetic material
GP = x y

1

2

GS = w yx z

1

2
2s plits

Vertex Split Ve

time t

Fig. 5. Examples of vertex split and merge operations under unconstrained ma

here. Further, there are other split graphs, obtained from either zero or one v
to its offspring. Hence, going backwards in time, an
offspring gamete splits into two parental gametes as a
consequence of ‘‘recombination’’ and then the latter two
gametes may immediately find a common ancestor in the
previous generation. Analogously, two vertices in GS that
are a split pair (e.g., vertices w and x or y and z in GS in
Fig. 5), may merge into the same vertex. More generally,
following a similar line of reasoning, we see that any set of
vertices in GS may merge into a single vertex under
unconstrained mating. This fact simplifies things consider-
ably since we do not need to keep track of which vertices
are a split pair.
Under unconstrained mating, determining the probabil-

ity associated with a given merge operation on a given split
graph is straightforward. Suppose that a split graph GS

contains n vertices labeled by ½n� ¼ f1; 2; . . . ; ng. Then,
under unconstrained mating, there exists a one-to-one
correspondence between the set of all vertex merge
operations on GS and the set of all partitions of ½n� into
non-empty subsets; each subset of ½n� corresponds to those
vertices that merge. A partition of ½n� into k non-empty
subsets defines a particular case of assigning n labeled
gametes to k distinct unlabeled parental gametes, with each
of those k parents having at least one child. It is easy to see
that the probability of such a choice under unconstrained
mating is given by

f ðn; kÞ:¼
ð2NÞðkÞ

ð2NÞn
, (2)

where zðkÞ denotes the falling factorial zðz� 1Þ � � �
ðz� k þ 1Þ. Hence, the probability of a particular set of
vertex merges in GS such that k vertices remain, is given by
f ðn; kÞ. It is important to note that different sets of merges
can produce graphs that are equivalent. For example,
consider GM2

on the right-hand side of Fig. 5. There are
four different merge operations on GS—namely, merge w

with x, w with z, y with x, or y with z—that produce match
graphs equivalent to GM2

as edge-labeled graphs. Hence,
the probability of obtaining GM2

from GS through merge
operations is 4� f ð4; 3Þ. In contrast, there exists a unique
merge operation that produces GM3

from GS, and therefore
w x y z

1

2

x y z

1

2

x y z

1

x y z

2

GM1 =

GM2 =

GM3 =

GM4 =

0 merge

1 merge

1 merge

1 merge

rtex Merge

time t −1

ting scheme. There are other possible vertex merge operations not shown

ertex split.
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the probability of obtaining GM3
from GS is f ð4; 3Þ. The

same goes true for GM4
.

Note that graphs GM3
and GM4

each contain an isolated
vertex (a vertex with no incident edges). Such a vertex is
not involved in any match relation and therefore can be
ignored. We say that two graphs are i-equivalent, denoted
by �

i
, if they become isomorphic as edge-labeled graphs

after dropping isolated vertices (see Fig. 6 for examples).
Two i-equivalent graphs correspond to the same match
probability. If a graph only contains isolated vertices, then
it defines no match relation, and the associated probability
is defined to be 1.

Perfect monogamy: In the case of perfect monogamy,
vertex merge operations need to be constrained and merge
probabilities modified. One needs to keep track of which
vertices in each split graph are a split pair, to determine
allowed merge operations. So, in drawing a split graph, we
add a new edge labeled ‘‘s’’ between the two vertices in each
split pair. The perfect monogamy condition imposes the
following two constraints on vertex merges:
1.
Fig

equ

gra

Fig

ver
Two vertices joined by an edge labeled ‘‘s’’ may not
merge. (Two gametes sampled under perfect monogamy,
as described in Section 2.1, are necessarily different
gametes, so if the offspring gamete is obtained via
‘‘recombination’’, it must have two different parental
gametes.)
2.
 Vertex merges may not produce a non-cyclic length-2
path with both edges labeled ‘‘s’’. (If two gametes at
time t each have two parental gametes at time t� 1, then
their sets of parental gametes are either disjoint or the
same, i.e., there can be no half-sibs.)

In addition to Convention 1, we remove all edges labeled
‘‘s’’ after vertex merge operations are complete. The above
. 6. Examples of i-equivalent graphs. Two graphs are said to be i-

ivalent, denoted by �
i
, if they become isomorphic as edge-labeled

phs after dropping isolated vertices.

GP = x y

1

2

GS = w x y zs
s

1

2
2s plits

Vertex Split Ve

time t

. 7. Examples of vertex split and merge operations under perfect monogamy.

tex merge operations are possible for the given GS . There still are other sp
constraints imply that, under perfect monogamy,
GM2

;GM3
, and GM4

in Fig. 5 cannot be obtained from
GS; i.e., the corresponding merge operations have prob-
ability zero under perfect monogamy. The graphs that can
be obtained from allowed merge operations on GS are
shown in Fig. 7.

For a given split graph GS of a pivot graph GP, label the
vertices in the split graph with ½n�. Let P ¼ fX 1; . . . ;X kg

denote a partition of ½n� into k non-empty subsets
X 1; . . . ;X k. The partition P defines a set of merges in GS,
collapsing all vertices in X i into a single vertex, for each
i ¼ 1; . . . ; k. Let GM denote the graph resulting from those
vertex merges, and define

S:¼fi 2 ½n� j i arose from splitting a vertex in GPg,

T :¼fX 2 P j S \ Xa+g,

U :¼fX 2 P j S \ X ¼+g.

Note that jT j þ jU j ¼ k is the number of vertices in GM ,
before dropping any isolated vertices. The set T corre-
sponds to the vertices in GM that the vertices in S will map
to under the merge operation defined by P, whereas the set
U corresponds to the remaining vertices in GM . Then, as
described in Appendix A, the probability of the set of
vertex merges corresponding to P is given by

1

ð2NÞn�ðjSjþjT jÞ=2

YjT j=2�1
i¼1

N � i

N

 !YjU j
j¼1

ð2N � jT j � j þ 1Þ, (3)

provided that the merges are consistent with the afore-
mentioned two constraints for perfect monogamy. Other-
wise, the probability is defined to be zero. For a split graph
obtained from zero split operation, S ¼+;T ¼+, and
jU j ¼ k; and therefore (3) reduces to (2). (We use the
convention that a product of form

Ql
i¼1 gðiÞ is defined to be

1 if lp0.)

Example. Consider the split graph GS shown in Fig. 7. To
distinguish edge labels from vertex labels, we have labeled
the four vertices in GS with C ¼ fw;x; y; zg instead of
½4� ¼ f1; 2; 3; 4g. Since w; x and y; z are both split pairs in
GS, we obtain S ¼ C;T ¼ P, and U ¼+ for all partitions
w x y z

1

2

x y

1

2

x y

GM1 =

GM2 =

GM3 =

0 merge

2 merges

2 merges

rtex Merge

time t − 1

In GS , an edge labeled ‘‘s’’ joins two vertices that are a split pair. No other

lit graphs, obtained from either zero or one vertex split.
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P of C. The partition P ¼ ffw;xg; fyg; fzgg is not compa-
tible with perfect monogamy (since w;x are a split pair,
they are not allowed to merge). The partition P ¼
ffwg; fxg; fyg; fzgg is compatible with perfect monogamy
and the corresponding merge operation produces GM1

.
Using n ¼ 4; jSj ¼ 4; jT j ¼ 4; jU j ¼ 0 in (3), we obtain
ðN � 1Þ=N for the probability of that merge operation.
The partition P ¼ ffw; zg; fx; ygg produces GM2

and using
n ¼ 4; jSj ¼ 4; jT j ¼ 2; jU j ¼ 0 in (3) produces 1=ð2NÞ. The
partition P ¼ ffw; yg; fx; zgg produces GM3

and, again,
using n ¼ 4; jSj ¼ 4; jT j ¼ 2; jU j ¼ 0 in (3) produces
1=ð2NÞ. More examples can be found in Section 4.3.

3.5. Summary

Schematically illustrated in Fig. 8 is our method of
generating the equation that relates a match probability at
time t to appropriate match probabilities at times t� 1.
Our strategy is to express a pivot graph GP at time t in
terms of GMi

at time t� 1, by considering all allowed
vertex split and merge operations. In this framework, it is
easy to keep track of the combinatorial factors and the
probabilities associated with inheritance patterns and
sharing of parental gametes.

Here is how our graphical framework can be used in
practice: suppose the match probability associated with a
particular graph H is not known. To compute it, we need
to find a closed system E of equations that has H as one of
its unknown variables. Let K denote the set of all graphs
whose associated match probability values have already
been determined. In what follows, G denotes the set of
graphs on which vertex split and merge operations need to
be performed; N the set of new unknown graphs reached
from G via vertex split and merge operations; V the set of
all variables in E. With G ¼ fHg;N ¼+, and V ¼+ as
initialization, our algorithm for constructing E goes as
follows:
1.
Fig

gra

kee

wri
For each pivot graph GP 2 G, consider all possible
vertex split operations, producing a set SGP

of split
. 8. Schematic summary of our graphical approach. For each pivot

ph GP, all allowed vertex split and merge operations are considered,

ping track of the corresponding probabilities. The pivot GP can be

tten as a linear combination of the resulting GMi
.

Fig

ma

fac

rec

sin
graphs. Record the probability of obtaining each split
graph.
2.
 For all GP 2 G, in any order, carry out the following
steps:
(a) For each graph in SGP

, consider all allowed vertex
merge operations, again keeping track of the
associated probabilities. Let MGP

denote the set of
all graphs obtained after considering the entire SGP

.
Now, GP can be written in terms of the graphs in
MGP

, with appropriate coefficients determined by
split, merge and mutation probabilities.

(b) Update N by setting N  N [MGP
nðG [KÞ.
. 9.

tch p

tor

urren

gle is
3.
 Set V  V [ G.

4.
 If Na+, set G N and N  +. Then, go back to

step 1. If N ¼+, then a closed system of equations has
been obtained for the graphs in V and it can be solved.

Some explicit examples are provided in the following
section.

4. Examples of closed systems of equations

In this section, we consider some simple examples to
elucidate the graphical framework described in the
previous section. We adopt the following notational
convention when discussing two-locus examples:

Convention 2. For two loci, there are only two edge types.
So, to simplify notation, we adopt the convention of drawing

edges for locus 1 (respectively, locus 2) as arcs above

(respectively, below) vertices.

4.1. Simplest example

Most mating schemes have the same expression for the
probability of xi � yi, a one-locus match relation involving
two gametes. As illustrated in Fig. 9, the recurrence
equation for Pðxi � yiÞ and its solution at stationarity
can easily be obtained using the graphical approach
described above.

4.2. Unconstrained mating example

We consider two-locus examples in the remainder of this
section. Assuming stationarity and unconstrained mating,
The equilibrium equation satisfied by the one-locus haplotypic

robability Phðxi � yiÞ. Here, f ðn; kÞ is defined as in (2) and the

ð1� miÞ
2 arises as explained in Section 3.2. In deriving the

ce equation, one needs to recall that a graph consisting of a

olated vertex has probability 1.
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Fig. 10. A closed system of coupled equations under unconstrained mating. We use G1;G2 and G3 to refer to the graphs on the left-hand side of the first,

the second, and the third equation, respectively. These equations should be compared with the equations for perfect monogamy in Fig. 11.
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it is straightforward to obtain the system of coupled linear
equations shownn in Fig. 10. Let G1;G2, and G3 denote the
graphs on the left-hand sides of those three equations,
respectively, from top to bottom. Note that G1 does not
contain any vertex with d-degree greater than 1, so no
vertex split is possible. Modulo ð1� m1Þ

2
ð1� m2Þ

2, the
expression on the right-hand side of the equation for G1 is
obtained from considering all possible merge operations on
G1. The same combination of terms, denoted O1, also
appear in the equation for G2, since G1 can be obtained
from a vertex split operation on G2 and there are no
constraints on vertex merges. The remaining terms,
denoted O2, arise from performing all possible vertex
merges in G2 without any vertex split. Note that O1 and O2

appear in the equation for G3, corresponding to perform-
ing two and one vertex splits, respectively, in G3, followed
by all possible vertex merges. Notice the factor of 2 in
2rð1� rÞO2; it comes from the fact that the two possible
ways of applying a single vertex split in G3 produces
equivalent split graphs.

For m1 ¼ m2 ¼ 0, all match probabilities are equal to 1,
and indeed the right-hand side of each equation in Fig. 10
sums to 1 in that case. Such consistency conditions are
useful for checking that coefficients in recurrence equations
have been determined correctly. Since the one-locus match
probability Phðxi � yiÞ can be determined as shown in Fig.
9, the equations in Fig. 10 form a closed system of coupled
equations that can be solved for G1;G2, and G3.

4.3. Perfect monogamy example

We now consider the same three graphs G1;G2;G3 under
the perfect monogamy model. For each graph, we need to
consider the same set of vertex split operations as in the
unconstrained mating scheme. However, vertex merges are
constrained under perfect monogamy, and the allowed
merges carry probabilities different from the corresponding
merges under unconstrained mating. Using the allowed
vertex merges described in Section 3.4 for perfect mono-
gamy and the merge probability given in (3), at stationarity
we obtain the set of equations shown in Fig. 11. For
m1 ¼ m2 ¼ 0, the right-hand side of each equation correctly
sums to 1 when all match probabilities are set to 1. As in
the unconstrained mating case, these equations form a
closed system of coupled equations, and we can solve it for
G1;G2, and G3.
5. Match probabilities

Given two gametes h ¼ h1h2 . . . hL and h0 ¼ h01h
0
2 . . . h

0
L

randomly sampled without replacement, we define Phðh �
h0Þ as the L-locus haplotypic match probability. The
product rule probability is given by

QL
i¼1Phðhi � h0iÞ, where

Phðhi � h0iÞ is the one-locus match probability for locus i.
We are interested in studying the following ratio:

RhðLÞ ¼
Phðh � h0ÞQL

i¼1Phðhi � h0iÞ
.

To study genotypic match probabilities, we consider two
pairs of gametes sampled without replacement. Each pair of
gametes defines an individual’s genotypic sequence. Let
g ¼ g1g2 . . . gL and g0 ¼ g01g

0
2 . . . g

0
L denote the two geno-

typic sequences so obtained. We are interested in the ratio

RgðLÞ ¼
Pgðg � g0ÞQL

i¼1Pgðgi � g0iÞ
,

with Pgðg � g0Þ being the L-locus genotypic match prob-
ability and Pgðgi � g0iÞ the one-locus genotypic match
probability for locus i.
In what follows, the superscript ‘‘U’’ is used to refer to

the unconstrained mating scheme, whereas ‘‘M’’ is used to
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Fig. 11. A closed system of coupled equations under perfect monogamy. We use G1;G2 and G3 to refer to the graphs on the left-hand side of the first, the

second, and the third equation, respectively. These equations should be compared with the equations for unconstrained mating in Fig. 10.

Fig. 12. The match graph corresponding to the two-locus haplotypic

match probability, using Convention 2.

Table 2

Ratios of the two-locus match probability to the product of one-locus

match probabilities for N ¼ 10; 000, r ¼ 1
2
, and m1 ¼ m2 ¼ u

u Haplotypic Genotypic

RU
h RM

h RU
g RM

g

1� 10�1 2:1691� 102 4:3279� 102 2:3535� 104 9:3698� 104

2:5� 10�2 1:6747� 101 3:2492� 101 1:4097� 102 5:2933� 102

1� 10�2 3:6058 6:2113 7:0176 1:9858� 101

5� 10�3 1:6590 2:3179 1:8782 3:1949

1� 10�3 1:0266 1:0532 1:0270 1:0547

1� 10�4 1:0003 1:0005 1:0003 1:0005

1� 10�5 1:0000 1:0000 1:0000 1:0000
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refer to the perfect monogamy model. The one-locus
haplotypic match probability Phðhi � h0iÞ for unconstrained
mating is equal to that for perfect monogamy. Similarly,
the one-locus genotypic match probability Pgðgi � g0iÞ for
unconstrained mating is equal to that for perfect mono-
gamy. Hence, it follows that

RM
h ðLÞ

RU
h ðLÞ

¼
Phðh � h0Þ for perfect monogamy

Phðh � h0Þ for unconstrained mating
,

RM
g ðLÞ

RU
g ðLÞ

¼
Pgðg � g0Þ for perfect monogamy

Pgðg � g0Þ for unconstrained mating
,

and these ratios capture the effect of monogamy on the L-
locus match probability. At the end of this section, we
conjecture sharp upper bounds on these ratios.

5.1. Two-locus haplotypic match probability

As a warm-up exercise, we first consider the two-locus
haplotypic match probability. Given a random pair of
gametes h ¼ h1h2 and h0 ¼ h01h

0
2, we are interested in

comparing the two-locus haplotypic match probability
Phðh � h0Þ with the product Phðh1 � h01ÞPhðh2 � h02Þ. In our
graphical framework, Phðh � h0Þ is as shown in Fig. 12.
Hence, we can compute Phðh � h0Þ for unconstrained
mating and for perfect monogamy using the systems of
coupled equations shown in Figs. 10 and 11, respectively.
Recall that Phðh1 � h01Þ and Phðh2 � h02Þ are as shown in
Fig. 9. Hence, the ratios RU

h and RM
h can easily be

computed. With m1 ¼ m2 ¼ u, some numerical values of RU
h

and RM
h are shown on the left-hand side of Table 2 for

N ¼ 10; 000 and r ¼ 1
2
. The shown values of RU

h agree
exactly with that of Laurie and Weir (see Table 2 of their
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paper), thus confirming the correctness of our graphical
framework. Note that both ratios RM

h and RU
h can be

substantially larger than 1, and that RM
h XRU

h for all u. For
two loci, mutation rates need to be rather high for the
effect of monogamy to be noticeable. As we discuss later in
Section 5.4, the effect of monogamy increases with the
number of loci.

5.2. Two-locus genotypic match probability

Let w ¼ w1w2 and x ¼ x1x2 denote two gametes forming
a genotypic sequence g ¼ g1g2, and let y ¼ y1y2 and z ¼
z1z2 denote two other gametes forming another genotypic
sequence g0 ¼ g01g02. There are four possible ways, illu-
strated in Fig. 13, that the genotypic match g � g0 can
happen. These possibilities are not mutually exclusive,
and to compute the probability of any one of them being
true—that is, the probability of g � g0—we invoke the
inclusion–exclusion principle. First, we need to introduce a
new definition. Given a set of fully labeled graphs
H1;H2; . . . ;Hk with the same labeled vertex sets, we define
H1 	 � � � 	Hk as the graph obtained by the following two
steps:
1.
Fig

ano

gra
Let H denote the match graph obtained by taking a
union of the edges in Ha, a ¼ 1; . . . ; k.
2.
Fig. 15. One-locus genotypic match probability Pgðgi � g0iÞ. Every edge

shown here should be labeled i.
In H, if xi � yi is implied by transitivity of match
relations but there is no edge labeled i between vertices x

and y, then add such an edge. (By transitivity of match
relations, we mean that xi � zi and zi � yi together
imply xi � yi.)

Then, by the principle of inclusion-exclusion, we obtain

Pgðg � g0Þ ¼
X4
i¼1

Gi � ðG1 	 G2 þ G1 	 G3 þ G1 	 G4

þ G2 	 G3 þ G2 	 G4 þ G3 	 G4Þ

þ ðG1 	 G2 	 G3 þ G1 	 G2 	 G4

þ G1 	 G3 	 G4 þ G2 	 G3 	 G4Þ

� G1 	 G2 	 G3 	 G4.
. 13. Four possible ways of having two-locus genotypic match. Conventio

ther. Note that G1�G4 and G2�G3, where � denotes equivalence as edge-

phs.

Fig. 14. Two-locus genotypic match pr
Under random mating, this expression simplifies to the
graphical representation shown in Fig. 14, where we have
dropped vertex labels and used the equivalence described in
Section 3.1. In a similar vein, it is straightforward to show
that the one-locus genotypic match probability Pgðgi � g0iÞ

for locus i is as illustrated in Fig. 15. The only difference
between Pgðg1 � g01Þ and Pgðg2 � g02Þ is in their correspond-
ing mutation rates m1 and m2.

For m1 ¼ m2 ¼ u, numerical values of the genotypic
ratios RU

g and RM
g are shown on the right-hand side of

Table 2. As mentioned before, our computation of the
haplotypic ratio RU

h agrees exactly with that of Laurie and
Weir (2003). However, for uo2:5� 10�2, there is a slight
difference between our computation of the genotypic ratio
RU

g and that reported by Laurie and Weir (see Table 1 of
their paper). We found that the difference could be
attributed to a minor error in the Maple code used to
obtain their results. After correcting that error, we verified
that their program produces exactly the same results as
ours.
Note that RM

g XRU
g for all u. Illustrated in Fig. 16 are

plots of RU
g and RM

g for N ¼ 10; 000 and 100; 000. (The
human effective population size before expansion into
Europe has been estimated to be between 10; 000 and
100; 000. See Harding et al., 1997; Harpending et al., 1998;
Takahata, 1993; Ayala, 1995. Note that Laurie and Weir,
2003 also used N ¼ 10; 000 and 100; 000 in reporting
numerical results.) Although both RU

g and RM
g significantly

increase as N increases, Fig. 17 shows that the ratio
RM

g =RU
g does not depend as much on N, especially for large

mutation rates. For low mutation rates, as u increases,
RM

g =RU
g increases at a faster rate for larger N. Fig. 17

suggests that the ratio RM
g =RU

g is bounded from above by a
finite number. We return to this topic in Section 5.6.
n 2 is used here. Gametes w and x form one genotype, and y and z form

labeled graphs. However, the 	 operation is defined on Gi as fully labeled

obability, adopting Convention 2.
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Fig. 16. Ratios of two-locus genotypic match probabilities to the product of one-locus match probabilities, assuming m1 ¼ m2 ¼ u. As these plots show, the

ratio RM
g for perfect monogamy can be much higher than the ratio RU

g for unconstrained mating. Both RU
g and RM

g significantly increase as N increases.

Fig. 17. Ratio of the two-locus genotypic match probability RM
g for

perfect monogamy to the probability RU
g for unconstrained mating, with

m1 ¼ m2 ¼ u. The ratio RM
g =RU

g seems to approach an integer (namely, 4)

as u approaches 1 from below. See Section 5.6 for further discussion.

Table 3

Approximate two-locus match probability ratios for N ¼ 10; 000, r ¼ 1
2
,

and m1 ¼ m2 ¼ u

u Haplotypic Genotypic

RU
h RM

h RU
g RM

g

1� 10�1 2:1691� 102 4:3279� 102 2:3529� 104 9:3691� 104

2:5� 10�2 1:6747� 101 3:2492� 101 1:4093� 102 5:2928� 102

1� 10�2 3:6058 6:2113 7.0162 1:9856� 101

5� 10�3 1:6590 2:3179 1.8780 3.1947

1� 10�3 1:0266 1:0532 1.0270 1.0547

1� 10�4 1:0003 1:0005 1.0003 1.0005

These results were obtained using truncated systems of equations, ignoring

terms with coefficients of Oð1=N3Þ. Comparing this table with Table 2

shows that the proposed approximation method produces very accurate

answers.
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5.3. 1=N Expansion

In the L-locus case, a graph that arises in the haplotypic
match probability computation can contain up to 2L

vertices, while a graph in the genotypic case can contain up
to 4L vertices. Let n denote the number of vertices in a split
graph. For nX12, the total number of partitions of the set
½n� ¼ f1; . . . ; ng—that is, the Bell number BðnÞ—can be very
large (e.g., Bð12Þ ¼ 4; 213; 597;Bð13Þ ¼ 27; 644; 437, and
Bð14Þ ¼ 190; 899; 322). (Recall that a set partition of ½n�
defines a particular vertex merge operation on a split graph
with vertices labeled by ½n�.) Hence, to handle many loci,
we propose an approximation scheme that truncates the
equations at certain order in 1=N, where N is assumed to
be substantially large.

Consider the vertex merge operation corresponding to a
partition of ½n� into k non-empty subsets, merging all
vertices within each subset into a single vertex (k
corresponds to the number of vertices after merges). Under
unconstrained mating, the probability of such a merge
operation is of order 1=Nn�k, as can be seen in (2). Hence,
in generating the required systems of equations, if we want
to keep only those terms with coefficients of order 1=Nm

where mp2—call this order-2 truncation—then we only
need to consider those partitions of ½n� with kXn� 2 non-
empty subsets. So, the total number of merge operations
we need to consider will be TðnÞ:¼Sðn; nÞ þ Sðn;
n� 1Þ þ Sðn; n� 2Þ, with Sðn; kÞ being the Stirling number
of the second kind. Note that TðnÞ is substantially smaller
than the Bell number BðnÞ for nX10. For example,
Tð12Þ ¼ 1772, Tð13Þ ¼ 2510, and Tð14Þ ¼ 3459. Compare
these numbers with the corresponding BðnÞ shown above.
Truncation in the perfect monogamy model is a bit more

subtle. In that case, some partitions with k ¼ n� 3 or n� 4
have probabilities proportional to 1=N2. Therefore,
to obtain those terms with coefficients of order 1=Nm

where mp2, we need to consider the partitions of ½n� with
kXn� 4 non-empty subsets that are consistent with the
conditions of the perfect monogamy model (described in
Section 3.4).
Shown in Table 3 are two-locus match ratios computed

using order-2 truncation. Comparing that table with
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Table 2, we conclude that the proposed approximation
scheme produces very accurate answers. The haplotypic
ratios RU

h and RM
h in Table 3 are identical to that in

Table 2, and we have noticed that even for more loci, RU
h

and RM
h obtained from order-2 truncation are very close to

the exact values. Regarding genotypic match ratios RU
g and

RM
g , comparing Table 3 with Table 2 shows that the

accuracy of order-2 truncation decreases with increasing
mutation rate, but still is quite high (about 99.99%).

5.4. Multi-locus haplotypic match probabilities

To compute the L-locus haplotypic match probability
Phðh � h0Þ, we need to solve for the graph shown in Fig. 18.
Taking that graph as a pivot graph, we need to perform all
possible vertex split and merge operations, and then iterate
the procedure on newly arising graphs, until we obtain a
closed system of equations which we can solve. (See Section
3.5 for details. We remark that no two edges have the same
label in any haplotypic match graph.) Under unconstrained
mating, the same split graph GS may arise from different
pivot graphs. We found that using dynamic programming,
which allows one to avoid performing the same vertex
Table 4

L-locus haplotypic match ratios for N ¼ 10; 000 and mi ¼ u for all i ¼ 1; . . . ;L

u 2-locus

RU
h RM

h RM
h =R

1� 10�1 2:1691� 102 4:3279� 102 1.995

2:5� 10�2 1:6747� 101 3:2492� 101 1.940

1� 10�2 3.6058 6.2113 1.723

5� 10�3 1.6590 2.3179 1.397

1� 10�3 1.0266 1.0532 1.026

1� 10�4 1.0003 1.0005 1.0003

u 4-locus

RU
h RM

h RM
h =R

1� 10�1 1:6479� 108 1:3145� 109 7.977

2:5� 10�2 7:6574� 105 6:0701� 106 7.927

1� 10�2 2:0755� 104 1:6247� 105 7.828

5� 10�3 1:3677� 103 1:0481� 104 7.663

1� 10�3 4.0398 2:0942� 101 5.184

1� 10�4 1.0027 1.0082 1.0056

All loci are assumed to be pairwise unlinked. For ease of reference, we repeat h

exact computation for all other cases.

Fig. 18. The L-locus haplotypic match probability Phðh � h0Þ.
merge operations on GS more than once, can considerably
speed up the computation. Further, for both unconstrained
mating and perfect monogamy, k-locus graphs, for
k ¼ 2; 3; . . . ;L� 1, will appear in the L-locus computation,
so one may again employ dynamic programming and carry
out the computation sequentially in increasing number of
loci.
The one-locus haplotypic match probability Phðhi � hiÞ

for locus i is shown in Fig. 9. For Lp5, RU
h and RM

h are
shown in Table 4. For two and three loci, the RU

h values
shown in that table agree with the corresponding results in
Table 2 of Laurie and Weir (2003). To speed up the
computation, we used order-2 truncation (described in
Section 5.3) for the 5-locus case. Several conclusions can be
drawn from this study. First, for a given mutation rate u,
both RU

h and RM
h increase with the number of loci; the

higher the mutation rate, the faster the increase. Second,
the effect of monogamy increases with the number of loci,
i.e., the ratio RM

h =RU
h increases with the number of loci.

Third, for a given number of loci, the effect of monogamy
increases with the mutation rate.

5.5. Three-locus genotypic match probability

We now consider the three-locus genotypic match
probability. Let w ¼ w1w2w3 and x ¼ x1x2x3 denote
two gametes forming a genotypic sequence g ¼ g1g2g3,
and let y ¼ y1y2y3 and z ¼ z1z2z3 denote two other
gametes forming another genotypic sequence g0 ¼ g01g02g

0
3.

There are eight possible ways that the genotypic
match g � g0 can happen, as illustrated in Fig. 19. As in
the case of two loci, these possibilities are not mutually
exclusive and we need to use the inclusion–exclusion
3-locus

U
h RU

h RM
h RM

h =RU
h

1:7799� 105 7:1055� 105 3.992

3:2277� 103 1:2812� 104 3.969

2:1811� 102 8:5372� 102 3.914

2:9387� 101 1:1058� 102 3.763

1.2927 2.0111 1.556

1.0010 1.0025 1.0014

5-locus

U
h RU

h RM
h RM

h =RU
h

1:5604� 1011 2:4855� 1012 15.93

1:8809� 108 2:9735� 109 15.81

2:0627� 106 3:2122� 107 15.57

6:8626� 104 1:0426� 106 15.19

3:3603� 101 4:1157� 102 12.25

1.0060 1.0252 1.0191

ere the results for two loci. We used order-2 truncation for five loci and the
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Fig. 19. Eight possible ways of having three-locus genotypic match. Gametes w and x form one genotype, and y and z form another. Edge labels are

omitted here to avoid clutter; solid arcs above vertices are for locus 1, dotted lines are for locus 2, and solid arcs below vertices are for locus 3. Note that

G1�G8, G2�G7, G3�G6, and G4�G5, where � denotes equivalence as edge-labeled graphs. Recall that the 	 operation is defined on Gi as fully labeled

graphs.

Table 5

Genotypic match ratios for N ¼ 10; 000 and mi ¼ u for all i ¼ 1; . . . ;L, with all loci assumed to be pairwise unlinked

u 2-locus 3-locus

RU
g RM

g RM
g =RU

g RU
g RM

g RM
g =RU

g

1� 10�1 2:35� 104 9:37� 104 3.98 7:92� 109 1:26� 1011 16.0

2:5� 10�2 1:41� 102 5:29� 102 3.76 2:61� 106 4:12� 107 15.8

1� 10�2 7.016 1:986� 101 2.840 1:20� 104 1:84� 105 15.3

5� 10�3 1.878 3.195 1.701 2:21� 102 3:10� 103 14.1

1� 10�3 1.027 1.055 1.027 1.210 1.861 1.538

1� 10�4 1.0003 1.0005 1.0003 1.0009 1.0020 1.0011
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principle to compute the probability of any one of them
being true. More precisely,

Pgðg � g0Þ ¼
X

X
f1;2;...;8g

ð�1ÞjX jþ1
M
i2X

Gi

 !
,

where X denotes a non-empty subset of f1; 2; . . . ; 8g and the
	 operation is defined as in Section 5.2. This expression
simplifies to an expression involving 14 inequivalent edge-
labeled graphs, not shown here. As in the two-locus case,
the one-locus genotypic match probability Pgðgi � g0iÞ for
locus i is as shown in Fig. 15.

Shown in Table 5 are the ratios RU
g and RM

g for
N ¼ 10; 000, with mi ¼ u for all i ¼ 1; . . . ;L. Two-locus
results are repeated there for ease of comparison.
Comparing these genotypic results with the haplotypic
results in Table 4, we see that for two loci, RU

g XRU
h and

RM
g XRM

h for any given mutation rate. For three loci,
however, these inequalities are violated for low mutation
rates (say, mt1:2� 10�3). As in the haplotypic case,
RM

g XRU
g for any given mutation rate. The results in Table

5 show that, as in the haplotypic case, the effect of
monogamy grows with the number of loci; i.e., the ratio
RM

g =RU
g increases with the number of loci.

5.6. Sharp upper bounds on the effect of monogamy

Tables 4 and 5 suggest that the L-locus ratios
RM

h ðLÞ=RU
h ðLÞ and RM

g ðLÞ=RU
g ðLÞ stay bounded by a finite

number (dependent on L) as the common mutation rate u
increases. We have checked numerically that this property
still holds for mutation rates higher than 1� 10�1. Based
on this empirical observation, we make the following two
conjectures regarding sharp upper bounds on the effect of
monogamy:

Conjecture 1. Let h ¼ h1h2 . . . hL and h0 ¼ h01h02 . . . h
0
L denote

L-locus haplotypic sequences, and recall that RM
h ðLÞ=RU

h ðLÞ

is equal to the ratio of the L-locus haplotypic match

probability Phðh � h0Þ under perfect monogamy to that

under unconstrained mating. Suppose that mi ¼ u for all

i ¼ 1; . . . ;L. Then,

lim
u"1

RM
h ðLÞ

RU
h ðLÞ

¼ 2L�1,

and RM
h ðLÞ=RU

h ðLÞp2L�1 for all u.

Conjecture 2. Let g ¼ g1g2 . . . gL and g0 ¼ g01g02 . . . g
0
L denote

L-locus genotypic sequences, and recall that RM
g ðLÞ=RU

g ðLÞ

is equal to the ratio of the L-locus genotypic match

probability Pgðg � g0Þ under perfect monogamy to that

under unconstrained mating. Suppose that mi ¼ u for all

i ¼ 1; . . . ;L. Then,

lim
u"1

RM
g ðLÞ

RU
g ðLÞ

¼ 22L�2,

and RM
g ðLÞ=RU

g ðLÞp22L�2 for all u.

The above conjectures are independent of N. However,
the larger the N, the faster the rate at which RM

h ðLÞ=RM
h ðLÞ
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and RM
g ðLÞ=RM

g ðLÞ approach their respective upper bounds
as u increases. This property is illustrated in Fig. 17 for the
two-locus genotypic case. Since RM

h ðLÞ and RM
g ðLÞ are for

perfect monogamy (i.e., the most extreme level of mono-
gamy), the upper bounds shown in the above conjectures
are also upper bounds for all intermediate levels of
monogamy.

We believe that there may exist a simple combinatorial
explanation for the upper bounds 2L�1 and 22L�2 appearing
in Conjectures 1 and 2, respectively. It would be interesting
to study the asymptotic behavior analytically. Further, it
would be worthwhile to study the dependence of
RM

h ðLÞ=RU
h ðLÞ and RM

g ðLÞ=RU
g ðLÞ on the mutation rate u,

especially for small u. As Fig. 17 indicates, it seems that
interesting dynamics can happen within a small window
of u.
6. Discussion and conclusions

The goal of this paper is to provide a framework within
which probabilities that two unrelated individuals have the
same genotype at several loci can be analyzed in a relatively
simple manner. Although the analysis of models involving
two or more loci is necessarily complicated because of the
many ways in which identity and non-identity propagate
from one generation to the next, the graphical method
introduced here makes the combinatorial structure of the
problem clear and the analysis as simple as possible, and it
leads to a method for automatic generation of the
appropriate recurrence equations that minimizes the
chance of human error. The graphical method takes
advantage of the underlying symmetry of the inheritance
of unlinked loci and can be adapted to the analysis of
similar models.

We have shown that the qualitative conclusion of Laurie
and Weir (2003) is correct under a wider range of
conditions than they were able to consider with their
method. In a randomly mating population, the product
rule provides a very close approximation to the probability
that two unrelated individuals have the same genotype
provided that mutation rates are not too large. If the
population size is 10,000, then u ¼ 0:0001 corresponds to a
heterozygosity of 80%, which is typical of CODIS loci
(Budowle et al., 2001). For that value of u, the ratio R is
very close to 1 even for the haplotypic match probability at
5 loci and even if there is complete monogamy (see
Table 4).

One limitation of our study, as well as that of Laurie and
Weir (2003), is that we assume an infinite-alleles model of
mutation. Consequently, identity in allelic state implies
identity by descent. We do not allow for independent
origins of the same allele, as can happen with microsatellite
loci. Our results show, however, that there is no substantial
increase in the joint probability of identity by descent
because of shared genealogies in a finite population. That
conclusion is true for other mutation models as well.
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Appendix A. Derivation of (3)

We briefly describe here how the probability shown in (3)
is obtained. The same notation introduced at the end of
Section 3.4 is used here. A set partition P ¼ fX 1; . . . ;X kg

of ½n� defines a particular case of assigning n labeled
gametes to k distinct unlabeled parental gametes, with each
of those k parents having at least one child. The elements in
T and U correspond to the parents. Suppose that the merge
operation defined by P is consistent with perfect mono-
gamy. Then, jT j is even, since two vertices in each split pair
in the split graph map to two distinct subsets X i;X j, and
two different split pairs map to either the same pair of
subsets or two disjoint pairs of subsets. In the perfect
monogamy model, recall that there are N pairs of parental
gametes. Each split pair can choose a particular pair of
parents with probability 1=N. Two split pairs w;x and y; z
can choose the same pair of parents in two ways: either w

collides with y and x collides z, or w collides with z and x

collides with y. Each possibility has probability 1=ð2NÞ.
Putting all these things together, we conclude that the
probability of surjectively assigning jSj=2 split pairs to
jT j=2 disjoint pairs of parents is

1

ð2NÞjSj=2�jT j=2

YjT j=2�1
i¼0

N � i

N
.

The remaining n� jSj vertices in the split graph choose
parents such that each parent in U has at least one child,
and the associated probability is

1

ð2NÞn�jSj

YjU j
j¼1

ð2N � jT j � j þ 1Þ.

Eq. (3) now follows from putting the above two
probabilities together.
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