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ABSTRACT
An approximate method is developed to predict the number of strongly overdominant alleles in a

population of which the size varies with time. The approximation relies on the strong-selection weak-
mutation (SSWM) method introduced by J. H. Gillespie and leads to a Markov chain model that describes
the number of common alleles in the population. The parameters of the transition matrix of the Markov
chain depend in a simple way on the population size. For a population of constant size, the Markov chain
leads to results that are nearly the same as those of N. Takahata. The Markov chain allows the prediction
of the numbers of common alleles during and after a population bottleneck and the numbers of alleles
surviving from before a bottleneck. This method is also adapted to modeling the case in which there are
two classes of alleles, with one class causing a reduction in fitness relative to the other class. Very slight
selection against one class can strongly affect the relative frequencies of the two classes and the relative
ages of alleles in each class.

STRONG balancing selection can result from over- approximation of Gillespie (1984, 1991). This approxi-
mation leads naturally to a Markov chain for the numberdominance in fitness or from disassortative mating of

the kind created by self-incompatibility systems in plants. of common alleles in a population and provides a way
Models of balancing selection are difficult to analyze to compute the rates of gain and loss of common alleles
completely because of the large number of alleles pres- when population size varies. Our approximation is the
ent, so numerous approximations have been used to pro- same as that used previously by Sasaki (1989, 1992),
vide some quantitative understanding of how a balance and our results for a population of constant size are the
is achieved between mutation, selection, and genetic same as his.
drift. Approximations that have been used—including The Markov chain can be further approximated by
those of Wright (1939), Kimura and Crow (1964), an ordinary differential equation for the expected num-
Sasaki (1989, 1992), Takahata (1990), and Vekemans bers of alleles and thus can provide a rough prediction
and Slatkin (1994)—have all assumed that a stochastic of the rate at which alleles are gained and lost because
equilibrium was reached in a population of constant of a bottleneck. We verify that our method provides an
size. Yet many applications, such as the estimation of accurate approximation by comparing our predictions
the ancestral population size of modern humans (Klein with computer simulations. Our results are very similar
et al. 1993; Ayala 1995), are to populations that have to and consistent with those of Takahata (1990) for
been variable in size. Of particular concern in this and populations of constant size and with those of Taka-
other applications is the effects of a bottleneck in size. hata (1993) for a bottleneck in population size.
The problem is to obtain quantitative results without
resorting to extensive computer simulations. Simula-
tions are important and useful, but they cannot usually ONE SELECTIVE CLASS OF ALLELES
show how a model’s behavior depends on simple combi-

Analytic theory: Throughout, we consider a singlenations of parameters.
autosomal locus in a randomly mating diploid popula-In this article, we introduce an approximate analytic
tion in which the population size, N(t), may vary withtheory that allows us to obtain relatively simple results
time. We assume that mutations occur at rate u and thatfor populations of variable size and to generalize models
every mutation is to an allele not previously found inof balancing selection to allow for slight differences in
the population—the infinite alleles model of Kimurarelative fitness of different classes of alleles. Our approx-
and Crow (1964). We let i be the number of commonimate method is based on the strong-selection weak-
alleles in the population at any time, where a commonmutation (abbreviated as SSWM and pronounced “swim”)
allele is one with a frequency near its deterministic equi-
librium frequency, as described later. We assume over-
dominance in fitness, in which every heterozygote has
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(1990), who assumed every homozygote has a fitness in a population of constant size N, where S 5 2Ns and
1 2 s relative to every heterozygote. In the diffusion m 5 F, the homozygosity. Equation 3 assumes that Ns
limit (large population size and small s), on which both is large and i is relatively small. When those conditions
Takahata’s and our theories depend, there is no differ- are not satisfied, as can be the case immediately after
ence in the parameterizations. A value of s in Takahata’s an extreme reduction in population size, (3) no longer
parameterization corresponds to s/( 1 2 s) in ours. provides a good approximation and t(x) must be com-

New mutations arise and if they become common, puted numerically from the equation given on p. 2420
they persist in the population as common alleles for a of Takahata (1990). We found that, in agreement with
long time. This situation is suitable for Gillespie’s Sasaki (1992, Equation 8), for very large values of S a
(1984, 1991) SSWM approximation. We treat i, the num- better analytic approximation is given by (3) without
ber of alleles, as a random variable for which transitions the 2 under the square root. But for values of S of
from one time to the next can be modeled by a Markov practical interest in models of human populations (50
chain. In fact, the Markov chain we use when there is one to 200) a number between 1 and 2 provides a better
class of alleles is of a particularly simple kind because it approximation (Takahata 1993; N. Takahata, per-
allows for an increase or decrease in i by only one. sonal communication).
Consider a population with i common alleles and as- When i alleles are equally frequent, F 5 1/i. Equation
sume that they are at the deterministic equilibrium with 3 differs from Takahata’s equation because time is mea-
each having a frequency 1/i. Now suppose that a new sured in generations and not in units of 2N generations.
allele appears by mutation. Let the frequency of the When S is large, common alleles are held relatively close
new mutant be z. The change in z is approximately to their expected frequency, x 5 1/i, with only a weak

force of genetic drift pulling them toward the boundary
Dz 5 sz 11i 2 z2 > sz

i
(1) (x 5 0). This stochastic process is similar to that de-

scribed by Newman et al. (1985), in which the transition
when z is small. That is, the advantage that a rare mutant from being common to being lost occurs in a very short
gains because of overdominance decreases with i be- time. In that case, it is reasonable to approximate the
cause the proportion of the population that is heterozy- process of loss of a common allele as a Poisson process
gous increases with i. We assume that the probability occurring with an instantaneous rate 1/t(x).
that a new mutant increases from one copy to become When population size varies with time, it is still reason-
common is the same as the probability of fixation of a able to use the assumption that loss of an allele occurs
new advantageous mutant with a fixed selection coeffi- instantaneously with the probability of loss per genera-
cient. With a selection coefficient of s9, the fixation tion determined by N(t), provided that 2N(t)s is large
probability is z2s9 if N is large. Hence, the probability enough that the selection dominates genetic drift. In
that a new mutant becomes a common allele is approxi- that case, the instantaneous rate of loss is still 1/t(x)
mately 2s/i. This approximation ignores the decrease with S replaced by 2N(t)s. Because there are i alleles
in the frequencies of the other common alleles that that are liable to be lost by drift, the probability of loss
must occur as the new mutant becomes common. per generation is

With a mutation rate u per generation, there are on
average 2N(t)u mutations per generation, so the proba-

mi(t) 5
1

2N(t)i
e22N(t)s/i 2![2N(t)s]3

2p
(4)

bility per generation that a new mutant appears and
becomes common is

once we replace x by 1/i. The probability per generation
that i does not change is 1 2 mi(t) 2 li(t).li(t) 5

4N(t)us
i

, (2)
We can compare our approximation with Takahata’s

(1990) by assuming a constant population size N andwhich is the probability per generation that i increases
finding the value of i for which mi 5 li. The result isto i 1 1. In using the population size at t to determine

li(t), we are assuming that if a mutant is to become
common, it does so instantaneously on the time scale î 5 !2S/ln1 S

32pM 22 , (5)
of interest. If an allele does not become common, we
assume that it is lost from the population so quickly that

where M 5 Nu. This expression differs from Taka-it can be ignored.
hata’s (1990, Equation 5) only by having 32 instead ofWe also need the probability of loss of a common
16 in the denominator of the logarithm, and it differsallele. Takahata (1990, Equation 6) found that in a
only slightly from the comparable result of Sasakipopulation of constant size, the average time to loss of
(1989, 1992). Numerically, the difference between Ta-an allele in frequency x is approximately
kahata’s and our approximate results is very small, thus
supporting the idea that our method based on a Markovt(x) 5 2NeSm2! 2p

S 3m4
(3)

chain is similar in accuracy to Takahata’s. Both approxi-
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Figure 2.—Accuracy of predictions for a range of (con-
stant) population sizes (for all cases, s 5 0.1, u 5 0.00001).
Solid squares are from simulations (1000 replicates), open
circles from Markov chain prediction. Error bars represent
two standard deviations. The dashed line shows a different

Figure 1.—Equilibrium distribution of the number of com- approximation to the mean number of common alleles (from
mon alleles in a population of constant size. Cross-hatched Takahata 1990).
bars represent results from 1000 simulated populations (N 5
5000, u 5 0.00001, s 5 0.1). The solid bars are the expected
equilibrium distribution of the Markov chain (light gray) and
an approximation of this distribution (dark gray) fitted to a in allele frequencies given the allele frequencies andnormal distribution using mean ı̂ (Equation 5) and variance

selection parameter. Then random mating was modeledı̂ 3/(2S) (see text).
by randomly drawing 2N new alleles from a multinomial
distribution with allele frequencies given by the values
after selection. We began each simulation with the popu-

mations provide a good fit to simulation results (shown lation initially fixed for one allele and waited until a
later in Figure 2). stochastic equilibrium was reached before recording

We can use the Markov chain to predict the stationary summary statistics. The waiting time depended primarily
probability distribution of i in the population, ai. Be- on the mutation rate and was always ,1/u generations.
cause of the simple form of the chain, we can use stan- In the simulations, we recorded the numbers of com-
dard theory to find ai mon alleles at each time. We used Takahata’s (1990)

threshold for a common allele, his value d 5 1/(4Nsm),
ai 5 a1

l1 . . . li21

m2 . . . mi

, (6) where m 5 F 2 u/s and F is the homozygosity. We
found that the exact value of this threshold made little
difference. Figure 1 shows some typical results for thewhere a1 is chosen so that the ai sum to 1 (Ewens 1979,
distribution of i, the number of common alleles acrossp. 74). Equation 6 provides a good fit to the simulations
replicates, compared to normal distribution with the(presented later in Figure 1). Figure 1 also shows that
mean and variance computed from the Markov chainai is very close to the values of a normal distribution
approximation. The fit is close although not perfect.with mean equal to ı̂ and variance equal to ı̂ 3/(2S).
There are slightly more common alleles found thanThus, it is not necessary to use (6) for most practical
predicted. Figure 2 shows the average number of com-purposes.
mon alleles as a function of N. These results show thatSimulation results: To test the accuracy of our analytic
there is little difference between the predictions ofapproximation, we developed a computer simulation
Equation 5 and Takahata’s (1990) result (his Equationof our model. We assumed a population of N diploid
5) and that both provide good approximations to theindividuals. A generation consisted of mutation, viability
simulated results. Although in Figure 2 the results fromselection, and random mating. Beginning with N zy-
the Markov chain are slightly closer to the simulationgotes, the program generated a Poisson distributed ran-
results, that is not always the case for other combinationsdom number of mutations with mean 2Nu. For each
of parameters.mutation, one of the 2N copies was chosen at random

to mutate to an allele not found in the population. It
was possible for the same copy to mutate more than once,

POPULATION BOTTLENECK
but because 2Nu was one or less in our simulations,
double mutations were extremely rare. Viability selection We can use our method to predict the response to

changes in population size. These predictions can bewas modeled by computing the deterministic change
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Figure 3.—Accuracy of Markov chain approach under dy- Figure 4.—Boundary conditions for behavior of alleles un-namic conditions. At time 0, the initial (equilibrium) popula- der a population bottleneck. The initial probability of losingtion of size N 5 100,000 (u 5 0.000001, s 5 0.01) experiences an allele from a recently bottlenecked population is showna bottleneck of size Nbot 5 10,000 lasting for 50,000 genera- (original size Ninit 5 100,000, u 5 0.000001, s 5 0.01), whichtions, at which point the population size rebounds instantane- varies according to the size of the bottleneck. The solid lineously to the initial size. The solid curve shows the average represents an exact integral representation of this probability,number of common alleles in (100) simulated populations the dashed line a closed-form approximation to this integralundergoing this simple bottleneck, the heavy dashed curve (Takahata 1990). For small bottlenecks, overdominant al-shows the Markov chain prediction for the expected number leles behave approximately as if neutral (dotted line), andof alleles over the same time course. The light dashed line there is a transition zone in which neither the closed-formrepresents a linear approximation to the rate of allele loss, approximation nor the neutral expression can adequately pre-which is based on the probability of loss in the first generation dict the probability of allele loss.of the bottleneck.

obtained in two ways. The first is to use the solution to with the initial increase or decrease in i. If there were
the equation that treats i as a deterministic variable a bottleneck in population size, meaning that N1 ! N0,
with li and mi as the deterministic rates of increase and then the population size would have to be reduced for at
decrease. That is, we use the equation least T generations for a substantial number of common

alleles to be lost. We found that if N1 is small enough,di(t)
dt

5 li(t) 2 mi(t) Equation 3 cannot be used to compute m and numerical
analysis is necessary.

The second and more accurate way to predict the
5

4N(t)us
i

2
1

2N(t)i
e22N(t)s/i 2!4N 3(t)s 3

p
, (7) effect of a change in population size is to iterate the

Markov chain using the time-dependent values of li and
which does not appear to have a simple analytic solution mi. Figure 3 compares the simulation results with the
for arbitrary N(t). We can get an idea of the time scale results from iterating the Markov chain and with the
of response to changes in population size by assuming linear approximation, Equation 9.
that the population is initially at size N0 and that i is at In many discussions of the effect of a population
its equilibrium given by (5) with N 5 N0. We call that bottleneck on variability at an overdominant locus, an
value of i, i0. Then the population size changes abruptly important question is how rapidly are alleles lost as a
to N1, which may be larger or smaller. The initial rate result of the bottleneck. Our results support the conclu-
of increase or decrease in i is given by the right-hand sions of Takahata (1993). Figure 4 shows the probabil-
side of (7) with N(t) 5 N1 and i 5 i0. That is, ity of loss of an allele per generation, comparing the

exact result based on the evaluation of t(x) by numeri-di(t)
dt

> li(i0, N1) 2 mi(i0, N1), (8) cal integration with values based on assuming no selec-
tion and values based on Equation 3. We can see that

where li(i0,N1) and ml(i0,N1) are the values at i 5 i0 and the probability of loss under selection is always smaller
N 5 N1. For small t this approximate equation has the than under neutrality, as expected. Overdominant selec-
solution tion retards the loss of common alleles. The analytic

approximation, Equation 3, is quite accurate for a re-
i(t) 5 i0 1 [li(i0, N1) 2 mi(i0, N1)]t 5 i0 6

t
T

, (9) duction in size by a factor of two but not for a larger
reduction. The neutral approximation is accurate if the
reduction is by a factor of five or more.where T is introduced to define a time scale associated
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Takahata (1993) discusses the quantitative effects enough to analyze. The method we have developed
allows us to test the robustness of results based on assum-of a bottleneck in population size on the number of

common alleles and discusses the survival of allelic lin- ing homogeneity of selection on heterozygotes and ho-
mozygotes. We explore the possibility that there is het-eages from before the bottleneck. Our results are consis-

tent with Takahata’s. The probability of loss of a lineage erogeneity in selection and show that relatively small
differences in fitness can lead to large differences fromfrom before the bottleneck to any later time is, as Taka-

hata (1993) argues, the integral of t(x) over that time the results previously obtained. We use a fitness scheme
that leads to relatively simple algebra, but other assump-period. Because all common alleles are equivalent in

survival probability, the probability distribution of the tions about heterogeneity in fitness can be analyzed
in the same way. Satta (1997) carried out computernumber of lineages surviving from before the bottleneck

is a binomial distribution with the probability being the simulations of a different model of heterogeneity in
fitness (her asymmetric balancing selection model), inprobability of survival of a single lineage and the sample

size being the number of lineages immediately before which the relative fitness of a heterozygote increased
with the number of codons that differed between twothe bottleneck. The distribution of the number of new

lineages is then obtained by subtraction. alleles.
We assume that there are two classes of alleles, withBoth Takahata’s (1993) and our models of a bottle-

neck in population size assume a diffusion limit in which i different alleles in class A and j different alleles in class
a. The relative fitnesses areat most one common allele can be lost per generation.

That assumption is appropriate if a bottleneck is not
AkAk: 1;too sudden or small, and it appears to be appropriate
AkAl: 1 1 s, k ? l;for modeling the history of human populations. If the
akak: 1 2 2r ;reduction in population size is extreme and rapid as
akal: 1 1 s 2 2r, k ? l;might happen in the colonization of an island or other
Akal: 1 1 s 2 r ; (10)isolated region, then many alleles could be lost in a

single generation. In that case, a single generation of where Ak represents an allele in class A and ak represents
random sampling would have to be included in the an allele in class a. That is, alleles in class a carry an
analysis to allow for the loss of several alleles in one intrinsic disadvantage that reduces fitness additively by
generation. r. This reduction in fitness could be caused by differ-

These results support the discussions of Takahata ences in pleiotropic effects of alleles in the two classes.
(1990) and Ayala (1995) that for a bottleneck to lead We first investigate the deterministic theory of this
to a substantial reduction in the number of alleles the selection model. We let x be the equilibrium frequency
ratio of the length of time during which the bottleneck of each allele in class A and y be the equilibrium fre-
occurs and the size during the bottleneck must exceed quency of each allele in class a (ix 1 jy 5 1). It is
one, provided that the reduction in size is sufficiently relatively easy to show that at equilibrium
great that the neutral approximation can be used. When
the neutral approximation is not valid, the rate of loss x 5

s 1 jr
s(i 1 j)

, y 5
s 2 ir

s(i 1 j)
, (11)

is somewhat smaller and more alleles survive the bottle-
neck than expected on the basis of neutral theory. Al- which implies that r , s/i for class a alleles to be pres-
though the differences between the rates of loss for ent at all. In fact, r must be much smaller than this
neutral and overdominant alleles appear small in Figure critical value for each a allele to be in high enough
4, the rate for neutral alleles is two to three times that frequency for the SSWM approximation to be valid.
for overdominant alleles. Using the same approach as in the previous section,

We have not been able to obtain a simple criterion for we assume that the population contains i class A alleles,
the ranges of parameter values for which the asymptotic each in frequency x, and j class a alleles, each in fre-
approximation for strong selection, Equation 4, applies quency y, and then find the change in frequency of a
and when the asymptotic approximation for neutral new mutant of each type. It is straightforward to show
alleles applies. The exact result depends in a complex that if zA is the frequency of a new class A mutant and
way on i. The integral is easy to evaluate using a mathe- za is the frequency of a new class a mutant, then
matical algebra program, so that is the best way to deter-

DzA > zA (Fs 1 jyr) 5 szAmAmine whether either of the asymptotic approximations
Dza > za (Fs 2 ixr) 5 szama, (12a)can be used in any case.

where
TWO SELECTIVE CLASSES OF ALLELES mA 5 F 1 jy

r
s
, ma 5 F 2 ix

r
s
, (12b)

Our analysis of overdominant selection follows a long
tradition of assuming equal fitnesses of all homozygotes F 5 ix 2 1 jy 2 is the homozygosity and s and r are assumed

to be small. Therefore, the probability that a new classand all heterozygotes. Even that case has proved difficult
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Figure 6.—Ratio of average ages of two selective classes ofFigure 5.—Prediction of allele number in two selective
overdominant alleles. The ratio of the average age of type Aclasses. The number of common alleles (in 100 simulation
alleles to the average age of type a alleles is plotted as aruns) of type A (open squares) and a (closed circles) 62 SD,
function of the selective difference (r/s) between the twoplotted for a range of selective differences (r/s) between the
classes (for all cases, N 5 10,000, u 5 v 5 0.000001, s 5 0.05).two classes and compared to the theoretical prediction of
The curve is the ratio predicted by the model, and the pointsEquation 15 (dashed line, type A; solid line, type a; N 5 10,000,
represent sample simulation results, each point representingu 5 0.000001, v 5 0.00001, s 5 0.05).
100 simulation runs. For each type, the average allele age was
computed as the mean average age across all (polymorphic)
simulated populations, and average age within populations
was weighted by copy number.A or class a allele becomes common is approximately

2smA and 2sma. If the mutation rate to new class A alleles
is u and the rate to class a alleles is v, then the probabili- tion program was the same as described above except for
ties of i and j increasing by one are approximately the modifications necessary to account for two classes of

alleles. As shown in Figure 5, the average numbers ofl(A)
i 5 4N(t)usmA, l(a)

j 5 4N(t)vsma. (13)
alleles are as predicted by the analytic theory.

The expected time to loss of a class A allele initially at If the population is constant in size, the average time
frequency x, tA(x), is given by Equation 3, where now x to loss of alleles in the two classes is approximately the
takes the value in Equation 11 and m is replaced by mA, average allele age. The average ages of class A and a
and the expected time to loss of a class a allele initially alleles can be quite different, even for relatively small
at frequency y defined in (11), ta(x), is given by (3) with values of the ratio r/s. By substituting into (3), we find
y replacing x and ma replacing m. The probabilities per
generation that i and j are reduced by 1 are then tA(x)

ta(y)
5

y 2e S/x 2

x 2e S/y 2 , (16)

mi
(A) 5

i
2N

e22Nsm2
A!(2Ns)3m4

A

2p
(14a) where x and y are given by (11). The exponential depen-

dence on 1/x 2 and 1/y 2 makes this ratio sensitive to
small differences in x and y. Figure 6 shows the ratio of

mj
(a) 5

j
2N

e22Nsm2
a!(2Ns)2m4

a

2p
, (14b) average ages as a function of r/s.

Figure 6 also shows the ratio of allele ages found in
where the possible time dependence of N is not shown. the simulations. For relatively small values of r/s the

If the population size is constant, we can estimate the Markov chain accurately predicts the ratio of average
equilibrium numbers of alleles in both classes by solving ages (and both average ages as well), but for larger r/s
the pair of equations, the ratio of ages is even larger than predicted because

alleles in the a class are so rare that their loss is no longer
li

(A) 5 mi
(A), lj

(a) 5 mj
(a) (15)

slowed by overdominant selection. Note that even very
small values of r/s can result in ratios of average agesfor i and j. There seems to be no analytic solution,

but they are easily solved using a mathematical algebra of five or larger.
program. If r 5 0, then mA 5 ma 5 F, so (15) is solved
by (4) with u replaced by u 1 v and i replaced by i 1

DISCUSSION
j and i/(i 1 j) 5 u/(u 1 v). Figure 5 shows the depen-
dence of the solutions to (15) on r/s for one pair of We have shown that the SWMM approximation of

Gillespie (1984, 1991) provides a simple, accurate waymutation rates.
We tested the accuracy of the Markov chain approxi- to predict the numbers of common alleles when there

is strong overdominant selection. This approach allowsmation for the case of two classes of alleles. The simula-
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