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Abstract

In 2004, the term ‘ghost population’ was introduced to summarize the effect of unsampled
subpopulations that exchange migrants with other subpopulations that have been sampled.
Estimated long-term migration rates among populations sampled will be affected by ghost
populations. Although it would be convenient to be able to define an apparent migration
matrix among sampled populations that incorporate the exchange of migrants with ghost
populations, no such matrix can be defined in a way that predicts all features of the coalescent
process for the true migration matrix. This paper shows that if the underlying migration
matrix is symmetric, it is possible to define an apparent migration matrix among sampled
subpopulations that predicts the same within-population and between-population homo-
zygosities among sampled populations as is predicted by the true migration matrix. Applica-
tion of this method shows that there is no simple relationship between true and apparent
migration rates, nor is there a way to place an upper bound on the effect of ghost populations.
In general, ghost populations can create the appearance of migration between subpopula-
tions that do not actually exchange migrants. Comparison with published results from the
application of the program, 

 

migrate

 

, shows that the apparent migration rates inferred with
that program in a three-subpopulation model differ from those based on pairwise homozy-
gosities. The apparent migration matrix determined by the method described in this paper
probably represents the upper bound on the effect of ghost populations.
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Introduction

 

In a species distributed over a wide geographical area, it is
almost never possible to sample all parts of the range, and
hence it is almost never possible to have a complete picture
of the geographical pattern of genetic variation. Instead,
samples are taken from some locations in the hope that those
samples are typical and permit inference about the species
as a whole. The problem that will be addressed in this paper
is the extent to which this hope can be realized when the
goal is to estimate migration rates among locations sampled.

A variety of indirect methods are available to estimate
migration rates from genetic data (Neigel 1997). All methods
rely on population genetic models whose assumptions may
not be satisfied by real populations. Methods based on
Wright’s 

 

F

 

ST

 

 (Slatkin 1993; Rousset 1997) and methods that

rely on an underlying multipopulation coalescent process
(Beerli & Felsenstein 1999; Bahlo & Griffiths 2000; Beerli &
Felsenstein 2001) assume that a long-term genetic equilib-
rium has been attained. Even when these assumptions are
satisfied, inference about migration may depend on which
populations are sampled. Beerli (2004) introduced the term
‘ghost population’ for a population that represents the
collective effect of unsampled populations on estimates of
migration rates among populations sampled. In the Beerli
& Felsenstein (2001) program 

 

migrate

 

, it is possible to
allow for a ghost population when estimating migration
rates among populations sampled. Here I will use the term
more generally to mean any population that is not sampled
but is connected by migration to populations that are
sampled. The goal of this paper is to quantify the effect of
ghost populations on migration rates inferred among popu-
lations that are sampled. It will be clear that, even under
the highly idealized conditions considered in this paper,
the effect of ghost populations is far from simple.
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Multipopulation coalescent model

 

Takahata (1988), Notohara (1990), Wilkinson-Herbots (1998)
and others have developed the coalescent theory applicable
to a set of local, randomly mating populations among
which there is gene flow. For convenience, local populations
will be referred to as demes and the collection of demes
together will be called the population. The species is
monoecious and the population comprises 

 

d

 

 demes with
the 

 

i

 

th deme containing 

 

N

 

i

 

 diploid individuals. There is
random mating within each deme. The migration pattern
among the demes is described by the backwards migration
matrix 

 

m

 

. The 

 

ij

 

th element of 

 

m

 

 for 

 

i

 

 ≠

 

 j

 

, 

 

m

 

ij

 

, is the probability
that a randomly chosen copy of a locus in deme 

 

i

 

 was
derived from a copy in deme 

 

j

 

 in the previous generation.
For later convenience, the diagonal elements of 

 

m

 

 will be
denoted by 1 –

 

 m

 

ii

 

. Because every copy has to be in some
deme in the previous generation.

We assume that genetic material is obtained from indi-
viduals in a geographically dispersed species and that
genotypes at numerous effectively unlinked genetic loci
are determined. Differences in allelic states are determined
by whatever means is appropriate for the kind of loci
surveyed, e.g. SNPs, microsatellites, allozymes or RFLPs
(restriction fragment length polymorphism). The coalescent
(without recombination) is a Markov process that models
the genetic state of the sample. The important idea in the
coalescent is that the ancestry of the sample is analysed
separately from the mutation process that determines
genetic state (Hudson 1990). For convenience of discussion,
I will refer to each copy of a locus in the sample as a gene.
The term gene seems slightly preferable to allele because
the latter term suggests identity of genetic state. Assume
that 

 

c

 

(

 

t

 

) is a 

 

d

 

-vector that describes the ancestry of the
genes at a locus at time 

 

t

 

 in the past. The elements of 

 

c

 

(

 

t

 

),

 

c

 

i

 

(

 

t

 

), are the numbers of ancestral lineages present in deme

 

i

 

 at 

 

t

 

, and the 

 

c

 

i

 

(0) are the numbers of genes sampled from
each deme. Under the assumption that the 

 

N

 

i

 

 are large and

 

m

 

ij

 

 are all small, the ancestry of the sample can, to a good
approximation, be described by a continuous-time Markov
chain for which the nonzero transition probabilities are as
follows. The probability that 

 

c

 

i

 

(

 

t

 

) decreases by one and the
others are unchanged in a time interval of length 

 

dt

 

 is,

which represents the effect of a single coalescent event. The
probability that 

 

c

 

i

 

(

 

t

 

) decreases by one and 

 

c

 

j

 

(

 

t

 

) increases by
one (representing migration from deme 

 

j

 

 to deme 

 

i

 

, 

 

j

 

 ≠ 

 

i

 

) is

Pr(

 

c

 

i

 

 

 

→

 

 

 

c

 

i

 

 

 

−

 

 1, 

 

c

 

j

 

 

 

→

 

 

 

c

 

j

 

 

 

+

 

 1) = 

 

c

 

i

 

m

 

ij

 

dt

 

These transition probabilities completely specify the
coalescent process and allow us to solve in principle for
the joint probability distribution,

 

p

 

(

 

c

 

1

 

(

 

t

 

) . . . ,

 

 c

 

d

 

(

 

t

 

))

given the initial conditions. In practice, an analytic solution
cannot be found for samples larger than two copies, except
in very simple cases (Takahata & Slatkin 1990). The process
can be efficiently simulated, however, and it forms the basis
for likelihood and Bayesian methods for estimating migra-
tion rates (Beerli & Felsenstein 1999; Bahlo & Griffiths 2000;
Beerli & Felsenstein 2001; Nielsen & Wakeley 2001).

For understanding how ghost populations affect esti-
mates of elements of the migration matrix, assume that
samples are taken only from the first 

 

n

 

 of the 

 

d

 

 demes. That
is, 

 

c

 

i

 

(0) = 0 for 

 

i

 

 > 

 

n

 

. The genetic state of the sample is
determined by the gene genealogy of the sample and the
locations of mutations on the branches (Hudson 1990).
Mutations occur independently of geographical location
so the likelihood of the data depends on the migration
matrix through the distribution of gene genealogies gener-
ated by the coalescent process. To incorporate the effect of
gene flow with ghost populations into an apparent migra-
tion matrix for the 

 

n

 

 deme sampled, it would have to be
possible to define a matrix with elements 

 

µ

 

ij

 

 in such a way
that gene genealogies generated by the coalescent process
for the 

 

n

 

 demes sampled have the same probability distri-
bution as gene genealogies from the true coalescent process
for the 

 

d

 

 demes in the population. It is not possible, how-
ever, to define an apparent migration matrix which has this
property because there are more states of the Markov chain
for the coalescent process for the full population than for
the subset of demes sampled. Although samples are taken
only from 

 

n

 

 demes, ancestors of the copies sampled may be
in any of the 

 

d

 

 demes, so the complete set of configurations
must be accounted for, and that set of configurations
requires the 

 

d

 

 × 

 

d

 

 migration matrix, not an 

 

n

 

 

 

× 

 

n

 

 submatrix.
This conclusion does not mean that in particular cases, an

apparent migration matrix cannot be found that approxi-
mately incorporates ghost populations, but there is no under-
lying principle that ensures such a matrix exists or that its
elements are independent of both the sample size from each
deme and the method used to estimate apparent migration
rates. In other words, there is no underlying set of parameters
(

 

µ

 

ij

 

) to which estimates obtained from different methods
would be expected to converge in the limit of large sample sizes.

 

Pairwise homozygosities

 

Relationship between migration matrix and pairwise 
coalescence times

 

There is a close relationship between expected coalescence
times of pairs of genes and the homozygosity within and
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between demes (Slatkin 1991; Slatkin 1993). Let 

 

H

 

ij

 

 be the
probability of identity in state of two genes, one drawn
from deme 

 

i

 

 and the other from deme 

 

j

 

, and let 

 

P

 

ij

 

(

 

t

 

) be the
probability distribution of the coalescence times of
those two genes. For the infinite alleles model of mutation
(meaning that each mutant is new),

(1)

where 

 

µ

 

 is the mutation rate (Hudson 1990). Equation 1 can
be understood intuitively as meaning that two genes are
identical in state if they coalesce before there is a mutation
on either lineage. If the mutation rate is small, meaning
that 1/

 

µ

 

 is much larger than any of the coalescence times
in the model, the right hand side of Equation 1 can be
expanded in a Taylor series to obtain,

(2)

to order 

 

µ

 

 (Slatkin 1991), where 

 

t

 

ij

 

 is the average coalescence
time between genes drawn from demes 

 

i

 

 and 

 

j

 

. Note that

 

t

 

ij

 

 = 

 

t

 

ji

 

 because it does not matter which deme is regarded
as 

 

i

 

 or 

 

j

 

. Although the 

 

H

 

ij

 

 can estimate 

 

F

 

ST

 

 for each pair of
populations (Slatkin 1993), the analysis here is easier if the

 

H

 

ij

 

 themselves are used.
There is a further simplification if the migration matrix

is symmetric, 

 

m

 

ij

 

 = 

 

m

 

ji

 

, and if it is aperiodic and irreducible.
Under these restrictions,

 

t

 

ii

 

 = 4

 

N

 

T

 

independently of the migration matrix, where,

is the total number of individuals in the population (Strobeck
1987; Hey 1991). A further simplification is obtained by
noting that the coalescence of two genes sampled from
different demes occurs in two phases (Slatkin 1991). The
first phase is between the time the sample is taken and the
first time in the past the ancestral lineages are in the same
deme, and the second phase is before the ancestral lineages
are first in the same deme. The expected length of the
second phase is 4

 

N

 

T

 

 independently of the migration matrix,
and the expected length of the first phase, denoted by 

 

u

 

ij

 

,
depends on the migration matrix. Therefore,

 

t

 

ij

 

 = 4

 

N

 

T

 

 + 

 

u

 

ij

 

. (3)

The 

 

u

 

ij can be found by applying the standard theory of
Markov chains, summarized by Ewens (2004). The first entry
of the two ancestral lineages into the same deme is defined
to be absorption, and the expected times to absorption can be
found by solving the system of d(d − 1)/2 linear equations,

(4)

for n ≥ i > j ≥ 1, where the sum is over all k = 1, … , d, except
for k = i and k = j. Equation 4 is an approximation that
assumes all the off-diagonal elements of the migration
matrix are small, an assumption made in the full coalescent
model as well.

This set of d(d − 1)/2 equations is a linear system for
d(d − 1)/2 unknowns, the uij; the general theory of Markov
processes ensures that there is always a unique solution
with uij > 0. Therefore, given the backwards migration
matrix, we have a straightforward way to predict the uij
and hence the Hij for all i and j.

Equation 4 can be also regarded as a set of linear equa-
tions for mij in terms of the uij. As such, they provide a way
to estimate the mij from estimates of the Hij. Equations 2
and 3 imply,

(5)

where H0 = Hii is the within-deme homozygosity (which is
the same for each deme under the assumptions of this
model), µ is assumed to be known, and the carat (^)
indicates estimated values of uij. By substituting the uij for
uij in Equation 4, estimates of mij are obtained. The total
population size, NT, can also be estimated:

(6)

This analysis does not mean that the Hij provides the
best way to estimate NT and the mij from real data sets.
They do not. Likelihood methods of kind developed by
Bahlo & Griffiths (2000), Beerli & Felsenstein (2001)
and Nielsen & Wakeley (2001) use all the data, not only
within and between-population homozygosities, and there-
fore should provide better estimates. But if a very large
amount of data were available and the model’s assumptions
were exactly satisfied, estimates based on maximum likeli-
hood and the Hij should converge to the true values of NT
and mij.

Because Equation 4 is a linear system of equations for the
d(d − 1)/2-values of mij as functions of uij, a unique solution
will always exist provided that the determinant of the co-
efficient matrix is nonzero. But the theory of linear equations
does not ensure that all mij ≥ 0, which is necessary for
biological reality. In fact, it is easy to choose values of uij
for which Equation 4 implies that one or more of the mij
are negative. For example, if d = 3, u21 = u31= 1000 and u32 =
2000, then Equation 4 implies that m21 = m31 = 0.001
and m32 = −0.00025. A set of uij for which the solutions to
Equation 4 are non-negative will be called feasible. A set for
which one or more mij is negative will be called infeasible.
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Apparent migration matrix

The preceding theory provides a way to define an apparent
migration matrix among a subset of demes sampled. Assume
that d is the true number of demes and mij (i ≠ j) are the true
off-diagonal elements of the migration matrix. Then the
solution to Equation 4 for uij provides set the ‘true’ absorption
times that determine the expected values of the Hij. Now
assume that the number of demes sampled, n, is smaller
than d. Because these n demes are part of the larger set of
demes, the uij and hence the expected values of Hij are
determined by the true d × d migration matrix. However,
they are in general not the solution to the corresponding
system of n(n − 1)/2 equations for the demes sampled.
To be specific, assume that the first n of d demes are
sampled, and that uij are the solutions to Equation 4 for the
true migration matrix mij. The elements of the apparent
migration matrix, the µij, among the demes sampled are
the solutions to

(7)

for n ≥ i > j ≥ 1. The apparent migration rates depend on
the true migration rates and population sizes through the
solutions to the two systems of Equations 4 and 7. There
appears to be no simple relationship between mij and µij
and no intuitive way to characterize the effect of ghost
populations.

We have already seen that a set of values of uij may be
infeasible. It is possible, then, that the uij associated with
the true migration matrix may be infeasible for the apparent
migration matrix. That situation, however, appears to be
very unlikely. I generated symmetric d × d migration matrices
with off-diagonal elements having values randomly chosen
within specified limits, computed uij from Equation 4 and
then tested the feasibility of uij for every subset representing
from n = 3 to n = d − 1 demes sampled. In running thousands
of sets of replicates, no infeasible subsets of uij were found.
It is possible to find a counter example, however, and
one is presented in succeeding discussions. It appears to
represent an unusual situation that arises only if migra-
tion is very restricted, as it is in a one-dimensional stepping-
stone model. In most cases, an apparent migration matrix
with non-negative elements can be computed for each sub-
set of populations.

The within-population homozygosity is also affected by
the presence of ghost populations. As Equation 6 shows,
the total population size, NT, rather than the number of
individuals in the demes sampled is estimated by H0. If we
were attempting to use this method to estimate the average
deme size, N, then our estimate would be too large by a
factor d/n, because N would be estimated by NT/n but NT
would actually be dN.

Examples

Three-deme models

To illustrate the preceding results, I consider several exam-
ples. The simplest nontrivial case is with d = 3 and n = 2. If
m31 = 0, the three populations can be thought of as being in a
line with deme 2 in the middle. In this case, Equation 4
reduces to a 3 × 3 system of equations, that can be written in
matrix form as

(8)

and that has the solution

(9)

If only two of the three demes are sampled, then Equation 7
implies

(10)

for whichever two demes are sampled. For example, if
m21 = m and m32 = wm, then if w = 5,

µ21 = 36m/50 = 0.72m, µ31 = 90m/139 � 0.65m, and 
µ32 = 90m/29 � 3.1m

A second three-deme model corresponds to a case exam-
ined by Beerli (2004). He considered several models in
which the demes sampled exchanged migrants with one or
more unsampled demes. In his scenarios D and E, there is
symmetric migration between the two demes sampled and
a third deme denoted ‘world’. In my notation, both scenarios
can be parameterized as m21 = m and m31 = m32 = wm, where
demes 1 and 2 are the ones sampled and deme 3 is the
world. Beerli’s scenario D corresponds to w = 1 and his
scenario E corresponds to w = 10. Specializing the general
model to this case implies,

u21 = 5/[2m(3 + 2w)]

and hence,

(11)
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Therefore, µ21 = m for w = 1 and µ21 = 4.6m for w = 10.
Beerli’s (2004) Fig. 4, parts B1 and B2, shows that for scenario
D, migrate infers the correct migration rate between demes
1 and 2, which is consistent with the result here. For
scenario E, migrate infers that the migration rate is
roughly 2.5 times the correct rate, which is slightly more
than half of the result predicted here.

The reason for the difference between the apparent
migration rates computed by the two methods is that
migrate also estimates the deme size scaled by the
mutation rate, Θ = 4Nµ. Beerli’s (2004), Fig. 3, parts B1 and
B2 shows that estimates of Θ are roughly correct for scenario
D and about 50% too large for scenario E. The present
method behaves differently. As discussed above, H0 would
estimate the apparent deme size to be 3N/2. The effect of
ghost populations on estimates of the apparent Θ and m21
obtained from migrate depends on the extent of immigra-
tion from the ghost population. With w = 1, there is no effect
on the estimates of Θ or m21. With strong gene flow with the
ghost population, w = 10, the results are comparable to
those here: Θ is increased by 50% and m21 is increased by
about a factor of 2.5, which is close to (2/3)4.6 = 3.07, the
value obtained with the method developed here when the
effect of the ghost population on the estimate of deme size
is taken account of.

This example illustrates the fact that different methods for
estimating apparent migration rates give different answers.
This difference results from the fact that migrate uses the
full coalescent process, in which the rate of coalescent
events within populations is proportional to ci(ci − 1). With
a large sample from each deme, coalescent events are
occurring so frequently that immigration from the ghost
population has little effect unless the immigration rate
is large. In Beerli’s scenario D 4Nm31 = 4Nm32 = 1, so the
within-deme coalescent process dominates and correct
estimates are obtained. In scenario E, 4Nm31 = 4Nm32 = 10,
so immigration from the ghost population dominates and
the ghost population affects the estimate of both N and m21
roughly to the same extent as predicted by the theory pre-
sented here. This kind of intuitive argument can help explain
results from migrate and similar programs but cannot
substitute for a thorough analysis of a particular data set.

Stepping-stone models

The linear stepping stone model is one used in many theor-
etical studies as an extreme case in restricted migration.
Assume that the d demes are arranged in a circle and that
migration is only between adjacent demes at rate m/2 per
generation. The pairwise coalescence times depend on k,
the number of steps separating two demes,

(12)

(Slatkin 1991). If d is an integer that is a multiple of n and
the demes sampled are evenly spaced (i.e. d/n − 1 demes are
unsampled between each pair of demes sampled), we can
find the apparent migration rate without using the general
formulation. Between adjacent demes sampled, Equation 12
implies

(13)

Therefore, for adjacent sampled demes, Equation 13
reduces to Equation 12 if n replaces d and µ = mn2/d2

replaces m. The apparent migration rate is reduced by the
square of fraction of demes sampled.

Because of the symmetry of the model and the choice
of demes sampled, the sampling scheme does induce
apparent migration among sampled demes that are not
apparently adjacent. That can be shown by demonstrating
that Equation 7 implies µij = 0 unless |i − j| ≤ 1. In other
words, the geometric structure of migration is preserved,
although its apparent magnitude is altered. That is not
true in general, however. Consider the same model but
assume that the demes sampled are not evenly spaced. For
example, suppose that m = 0.01, d = 20, n = 4, and the four
demes sampled are 1, 3, 5 and 17. The off-diagonal elements
of the apparent migration matrix are

(14)

The negative values are not the result of rounding
error or of using such a large value of m that the linear
approximation on which Equation 7 is based is not valid.
Reducing m by one or two orders of magnitude reduces
the elements of µ proportionally. This result shows that
a feasible set of uij can be infeasible for a subset of demes
sampled. That appears to be the case for all choices of
demes sampled from a linear stepping-stone model with n
> 2 unless they are evenly spaced, although I could not find
a general proof.

A two-dimensional stepping stone model is analysed in
the same way. For simplicity, I will consider only a model
on a d1 × d2 ‘torus’ of populations and assume that d1 and
d2 are even. Given that two genes are sampled from demes
i steps apart in one direction and j steps apart in the other,
the expected time until the ancestors of those genes are in
the same population is,

(15)
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fkl = [1 − m(1 − cos(2πk/d1))]2[1 − m(1 − cos(2πl/d2))]2

otherwise. These expressions correct typographical errors
in Equation 8 of Slatkin (1993). The calculations done in
that paper were based on the correct equations.

Equation 15 can be used to find the average absorption
times for a set of demes sampled and then Equation 7 can
be used to find the elements of µ. To illustrate, assume
d1 = d2 = 50 and that five adjacent demes in a line are
sampled. The symmetry of the model ensures that it does
not matter which five. If m = 0.01, then the off-diagonal
elements of the apparent migration matrix are,

Two features of this result are worth noting. First, the
two-dimensional stepping-stone model creates the appear-
ance of migration between nonadjacent populations.
Second, the apparent level of migration between adjacent
populations is more than two orders magnitude smaller
than the actual level, m = 2.5 × 10−3 as compared to 1.37 ×
10−5 and 1.53 × 10−5. In other words, much lower levels of
migration in a two-dimensional stepping-stone model
result in the same degree of differentiation as in a one-
dimensional model.

Discussion and conclusions

The problem of describing the effect of ghost populations
on estimates of migration rates among sampled popula-
tions appears not to have a general solution in the sense
that there is no definition of an apparent migration matrix
among sampled populations that will predict all properties
of genetic samples. The underlying coalescent process for
the true population necessarily requires a larger configuration
space than a coalescent model for only the subpopulations
sampled. Consequently, it seems impossible in general to
quantify the effect of ghost populations on estimated migra-
tion rates among populations sampled. Even for a particular
population, different sample sizes and different methods
of inference can lead to different estimates.

For a more restricted problem, that of symmetric
migration and estimates of migration rates based on homo-
zygosities within and between populations, it is almost
always possible to find an apparent migration matrix that
summarizes the effect of ghost populations. Cases in which
an apparent migration matrix cannot be found appear to be
exceptional and require that the true pattern of migration
be quite restricted, as in the linear stepping-stone model.

The results in this paper are intended to clarify the theor-
etical relationship between the true pattern of migration
among local populations and the apparent pattern among

populations sampled. Even if the model’s assumptions are
satisfied, it is obviously not possible to work backwards
and infer properties of the true migration matrix from the
apparent migration matrix; even the true number of local
populations (d) is unknown. Instead, the theory can be
used to explore the relationship among models and to
guide interpretation of results obtained from estimates of
pairwise migration rates. The apparent migration matrix
obtained using pairwise homozygosities probably repres-
ents an upper bound of the effect of immigration from
unsampled populations because pairwise homozygosities
give the most weight to migration relative to coalescence.
As seen in the comparison with Beerli’s (2004) results, appar-
ent migration rates obtained using Beerli & Felsenstein’s
(2001) migrate are less than predicted by considering
pairwise homozygosities.
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