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INTRODUCTION

The term linkage disequilibrium (LD) is used to
describe a non-random association of alleles between loci
that is the result of shared population history. When a
mutation occurs, the new allele is in complete LD with
every other site on the chromosome. With the meioses of
each following generation genetic recombination breaks
down the ancestral haplotype, reducing the LD between
the mutation and linked alleles. The extent of LD
between the mutation and linked sites in the present
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population is a function of the recombination rate
between them and of the population history. In the
simplest model, the age of a mutation, the size of the
population in which it exists, and the rate at which the
population has grown can provide an estimate of the
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recombination rate between the mutation and a linked
marker given a present-day sample of haplotypes.

The general method of localizing a disease mutation
based on LD has been called linkage disequilibrium
mapping. We propose a likelihood-based method for two-
marker linkage disequilibrium mapping that is an exten-
sion of the single-marker method of Rannala and Slatkin
(1998). The method can be used to compute the
maximum likelihood (ML) location of a disease locus
given a configuration of two-marker disease-bearing
haplotypes and a vector of coalescence times. A funda-
0040-5809/02 $35.00
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mental assumption of the method is that the sample of
chromosomes is known to carry the disease mutation,
limiting the application of the method to fully penetrant
diseases. The greatest advantage of the two-marker
approach over the single-marker approach is that it
allows for interval mapping of the disease mutation. We
compare the performance of the two-marker likelihood
method to a single-marker likelihood and a composite



likelihood (CL) method. We show that using two-marker
haplotype data can reduce the confidence interval of the
ML location of a disease mutation. Examples are given
of when the location of the disease locus cannot be
accurately determined with the marginal data and we
illustrate some of the pitfalls of a CL approach.

EXISTING METHODS FOR LD MAPPING

The first reported application of linkage disequili-
brium mapping that used a statistical model for the
population history was by Hästbacka et al. (1992) in
mapping the diastrophic dysplasia (DTD) mutation in
the Finnish population. Hästbacka et al. (1992) used
Luria–Delbrück theory, originally developed for the
estimation of mutation rates in bacterial colonies, as a
model for the exponential growth of the Finnish popula-
tion in order to estimate the location of the DTD muta-
tion. The frequency of the disease mutation would have
been small in the history of the population and subject to
the influence of drift, not accommodated for in the
Luria–Delbrück model. Kaplan et al. (1995) and later
Kaplan and Weir (1995) showed that a simple determi-
nistic model for LD results in smaller confidence inter-
vals (CI) than a stochastic model incorporating the
evolutionary history. Pritchard and Feldman (1996)
further described the importance of modeling the
variance due to population genetic influences in the
context of allele age estimation.

The existing theoretical approaches for likelihood-
based LD mapping have a common purpose, that is, to
predict the recombination rate between a mutant allele,
M, and a marker or markers from the configuration of
haplotypes in a sample of M-bearing chromosomes. The
approaches differ in two primary ways: how the popula-
tion history of the mutant allele is modeled, or more
specifically, how the coalescence times are generated, and
how the likelihood of the data is computed. The
likelihood is based on a probability model for recombi-
nation and mutation. Kaplan et al. (1995) provided the
first likelihood-based approach that modeled the popu-
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lation history of the disease locus. Their likelihood-based
method modeled the number of copies of the mutant
allele in the population with a discrete-time branching
process. They proposed a rejection sampling method in
which simulated population histories are rejected if they
are not consistent with the total number of current-day
copies of the mutant allele, given the expected population
frequency. From this distribution they could estimate the
probability of the observed configuration of haplotypes.
Rannala and Slatkin (1998) and Graham and Thompson
(1998) both proposed methods that first generate the
coalescent ancestry of the sample of disease alleles and
then place recombination and mutation events along the
lineage according to a probability model. Rannala and
Slatkin (1998) used a continuous-time birth death
process for generating the vector of coalescence times
while Graham and Thompson (1998) use a continuous-
time Moran model. The differences in how the methods
generate the ancestry of the mutant allele are minor with
the larger differences being in how the methods account
for recombination and mutation in the likelihood.
Rannala and Slatkin (1998) used continuous-time
Markov chain theory to compute the probabilities of
transitions between haplotype states given the length of a
lineage and generated configurations of haplotypes at
each coalescent event moving forward in time. They cal-
culated the likelihood from the simulated conditional
distribution of current-day haplotype configurations.
Graham and Thompson (1998) defined a set of sampled
disease haplotypes that descend from a meiosis at which
a recombination event occurred without subsequent
recombination events as a ‘‘recombinant class.’’ The
likelihood is found from the distribution of recombinant
classes.

Xiong and Guo (1997) and Devlin et al. (1996) have
proposed approximations to the likelihood. Xiong and
Guo (1997) calculate the expectation of the likelihood of
the multinomial haplotype data using a Taylor expan-
sion and then use this expectation to calculate the full
likelihood including the population parameters. Devlin
et al. (1996) used simulation to show that the negative
logarithm of their LD statistic was approximately dis-
tributed as a gamma variant when subjected to popula-
tion genetic and sampling affects and proposed a method
to approximate the likelihood using the first two
moments of the distribution.

Extension of a single-marker likelihood to multiple
markers is not straightforward. The problem quickly
becomes computationally intractable; for n diallelic
markers, there are 2n possible haplotypes, each having n-
1 intervals where a recombination event could occur.
Two-marker likelihood models were given as extensions
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to the single-marker models by Kaplan et al. (1995) and
Graham and Thompson (1998). Each of the proposed
models carry assumptions; Kaplan et al. (1995) assumed
no recombination interference and Graham and
Thompson (1998) assumed linkage equilibrium between
the markers. Both of these assumptions seem unlikely in
the context of LD mapping. Graham and Thompson’s
(1998) two-marker likelihood is a simple extension of the
single-locus recombinant class model when the disease



locus lies between the markers but is rather more com-
plicated when the disease locus lies outside the interval.

In order to avoid the computational difficulties asso-
ciated with the likelihood of multiple-marker haplotype
data, Devlin et al. (1996) and Xiong and Guo (1997) have
suggested using CL approaches. The CL is constructed
from a set of conditional or marginal events for which
one can write the log likelihoods, Li(f), i=1 to n. The
composite log likelihood is CL(f)=; i Li(f). In linkage
disequilibrium mapping, the CL is the sum of the
likelihoods computed for the individual markers. CL
does not require that the conditional or marginal log
likelihoods be independent; however, if the terms are
correlated the asymptotic theory of likelihood ratios does
not apply. Twice the log of the composite likelihood ratio
is not distributed as chi-square and there is no natural
definition of a CI. Considering a model with two,
diallelic, markers, the haplotypes contribute the obser-
vations in a 2×2 contingency table; however, the single-
marker model predicts only marginal counts from this
table. The marginal values of the table provide no
information about the interdependence between the
markers. Because the terms of the CL are combined
under an assumption of independence, the evidence can
be overstated when the terms are highly correlated
because the information from the full likelihood is less
than the sum of the marginal values. For example, if two
marker loci were in complete linkage disequilibrium, one
of the markers would provide all of the information
about linkage to a third locus; however, the CL combines
the evidence from both markers, essentially leading to a
doubling of the available evidence. A detailed description
of CL theory is given by Lindsay (1988).

THE TWO-MARKER LIKELIHOOD

The two-marker likelihood is an extension to the
model developed by Rannala and Slatkin (1998). The
data are the sample counts of the two-marker haplotypes
in a collection of M-bearing chromosomes (the haplo-
type configuration), where M is a unique, non-recurrent
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mutation having occurred at time t1 generations in the
past. We consider a model with diallelic markers; the two
marker loci A and B are tightly linked and have alleles A1
and A2 and B1 and B2, respectively. Linkage equilibrium
or disequilibrium can exist between the markers on
chromosomes in the population that do not carry the
disease mutation. The frequency of allele A1 among non-
mutant chromosomes is p and the frequency of B1 is q.
The mutation rate from allele i to allele j at marker A is
nij and from allele i to allele j at marker B is mij. The four
possible two-locus haplotypes A1B1, A1B2, A2B1, and
A2B2 are denoted 1 to 4, respectively, and occur with
frequenciesQij, where the subscripts indicate which allele
is present at markers A and B, respectively. The
frequencies of the marker alleles (and haplotypes) among
the non-mutant chromosomes are assumed to have
remained constant since M first arose in the population.
The rate of recombination between the markers is c1, and
between marker A and M is c2. We assume that M is at a
low enough frequency in the population so that the
frequency of individuals that are homozygous for the
disease mutation is negligible; consequently M-bearing
chromosomes are assumed only to recombine with non-
mutant chromosomes. There are three haplotype
orderings that are possible: (1) M–A–B, (2) A–M–B, and
(3) A–B–M. We assume that the recombination rates, c1
and c2, are low enough that map distances are additive.
The distance between marker B and M, c3, can be spe-
cified with c1 and c2 for each of the three possible haplo-
type orderings: for order 1, c3=c2+c1; for order 2,
c3=c1−c2; and for order 3, c3=c2−c1.

The model of the process that generated the observed
configuration of M-bearing haplotypes has two compo-
nents: (i) the genealogical process, and (ii) the process of
recombination between and mutation of the two
markers. In terms of a continuous-time Markov chain,
the two components are: (i) the independent exponential
holding times in the successive states, and (ii) the
embedded Markov chain which describes the sequence of
states that are visited. The genealogical process describes
the distribution of intra-allelic coalescence times of the
sampled M-bearing chromosomes. Our method com-
putes the likelihood given a vector of coalescence times.

The probability of a change in the two-marker haplo-
type on an M-bearing chromosome is a function of the
population haplotype frequencies and the recombination
and mutation rates. Table I gives the infinitesimal tran-
sition probabilities for the three possible marker and
disease locus orderings. The four by four matrix of infi-
nitesimal transition probabilities, V, can be found from
the six general expressions for each ordering given in the
table. Two transition probabilities have zero probability
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under order 2 because it is impossible for them to occur
with a single mutation or recombination event. The
probabilities of transition between mutation-bearing
haplotypes i and j during the lineage of length t, Pij(t),
can be found by solving the system of Kolmogorov
forward equations given by the elements in matrix V. A
description of the Kolmogorov forward equations can be
found in any general text on continuous-time Markov
chain processes; for example, see Ross (1996).
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TABLE I

Transition Probabilities for the Three Possible Orderings of the Disease Mu

Order 1
Transition (M–A–B)

AiBi Q AiBj mij+; j c1Q· j+c2Qij
A iBi Q AjBi nij+c2Qji
A iBi Q AjBj c2Qjj
A iBj Q AiBi mji+; i c1Q· i+c2Qii
A iBj Q AjBi c2Qji
A iBj Q AjBj nij+c1Qjj

Note. The 12 transition probabilities can be found from the six genera

The process of recombination and mutation is
modeled moving forward in time. During the waiting
time between the lth and (l−1)th coalescence events,
there are l−1 independent lineages, each undergoing the
transition process. At the lth coalescent event, one of the
l−1 lineages existing in the genealogy is selected at
random and duplicated. The configuration of haplotypes
in the sample immediately after the (l−1)th lineage is
specified by the numbers of each haplotype type, Yhl−1 ,
where h denotes the haplotype, defined as 1 through 4
above. During the waiting time, tl, between the (l−1)th
and the lth coalescent events some of the haplotypes will
be replaced by other forms. Denoting the number of
haplotypes being replaced by A1B1, A1B2, A2B1, and
A2B2 haplotypes as j, k, r, and s, respectively, the prob-
ability of the observed number of replacements is given
by the multinomial equations,

P(k, r, s, Y1l−1 −k−r−s | Y1l−1 )

=
Y1l−1 !

k! r! s! (Y1l−1 −k−r−s)!
(P12(tl))k (P13(tl)) r (P14(tl)) s

×(1−(P12(tl)+P13(tl)+P14(tl)))Y1l−1 −k−r−s (1)

P(j, r, s, Y2l−1 −j−r−s | Y2l−1 )

=
Y2l−1 !

j! r! s! (Y2l−1 −j−r−s)!
(P21(tl)) j (P23(tl)) r (P24(tl)) s

×(1−(P21(tl)+P23(tl)+P24(tl)))Y2l−1 −j−r−s (2)

P(j, k, s, Y3l−1 −j−k−s | Y3l−1 )
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=
Y3l−1 !

j! k! s! (Y3l−1 −j−k−s)!
(P31(tl)) j (P32(tl))k (P34(tl)) s

×(1−(P31(tl)+P32(tl)+P34(tl)))Y3l−1 −j−k−s (3)

P(j, k, r, Y4l−1 −j−k−r | Y4l−1 )

=
Y4l−1 !

j! k! r! (Y4l−1 −j−k−r)!
(P41(tl)) j (P42(tl))k (P43(tl)) r

×(1−(P12(tl)+P13(tl)+P14(tl)))Y4l−1 −j−k−r (4)
on and Markers A and B

Order 2 Order 3
(A–M–B) (A–B–M)

mij+; j (c1−c2) Q· j mij+(c2−c1) Qij
nij+; j c2Qj· nij+; j c1Qj·+(c2−c1) Qji

0 (c2−c1) Qij
mji+; i (c1−c2) Q· i mji+(c2−c1) Qii

0 (c2−c1) Qji
nij+; j c2Qj· nij+; j c1Qj·+(c2−c1) Qjj

rms shown.

The number of each haplotype immediately before the
lth coalescent event is Y −1l−1=Y1l−1+; l−1 j, Y

−

2l−1=
Y2l−1+; l−1 k, Y

−

3l−1=Y3l−1+; l−1 r, and Y −4l−1=Y4l−1+
; l−1 s. The probabilities of each of the Y −hl−1 are given by
the product of Eqs. (1) to (4) summed of all possible
values j, k, r, and s that are consistent with Yhl−1 and
Y −hl−1 .

Rannala and Slatkin (1998) showed the probability of
a current-day configuration of mutation-bearing haplo-
types, Y0, for their single-marker model and noted that
the exact evaluation of the probability was intractable for
sample sizes greater than 10 chromosomes; therefore,
they proposed a Monte Carlo estimator for the proba-
bility. We have used a Monte Carlo algorithm similar to
Rannala and Slatkin’s (1998) to compute the likelihood
for the two-marker haplotype case. We define a vectors
of parameters: h={V, Q, t1, n, w}, where t1 is the age of
the mutation, n is the total number of M-bearing haplo-
types in the sample, and w is a vector of demographic
parameters used to generate the coalescence times. In the
birth–death model described in Rannala and Slatkin
(1998), w would include f, the fraction of the population
sampled, and t, a parameter for the combined effects of
population growth and selection. The Monte Carlo
estimator ofP(Y0 | h) is obtained as

P(Y0 | h) %
1
R

C
R

k=1
P(Y0 | Ỹn(k), t̃(k); V),

where the sum is evaluated over RMonte Carlo realiza-
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tions of the random variables Ỹn(k) and t̃(k). The vector
of random variables t̃(k) is the vector of coalescence
times. Ỹn(k) are simulated by generating random
variables j, k, r, and s from the multinomial distributions
given in (1) through (4), conditional on the configuration
at the previous step. The probability is computed by
simulating up to the configuration Ỹ −n(k) and taking the
sum of all possible multinomial probabilities that are
consistent with Ỹn(k).
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TABLE II

Description of 10 Data Sets Analyzed Using the Two-Marker (2-mrkr) and

Marginal Recombination
Frequencies Rates Haplotype Freq

Data set pA pB c1 c2 Q11 Q12

1 0.05 0.05 0.0005 0.0005 0.0025 0.0475
2 0.10 0.10 0.0005 0.0005 0.01 0.09
3 0.50 0.50 0.0005 0.0005 0.25 0.25
4 0.05 0.50 0.0005 0.0005 0.025 0.025
5 0.50 0.05 0.0005 0.0005 0.025 0.475
6 0.05 0.05 0.001 0.001 0.0025 0.0475
7 0.05 0.05 0.0005 0.001 0.0025 0.0475
8 0.05 0.05 0.001 0.0005 0.0025 0.0475
9 0.05 0.50 0.002 0.0005 0.025 0.025

10 0.50 0.50 0.0005 0.0005 0 0.50

The likelihood is conditional on the recombination
rate between the markers, c1. The method depends on the
markers being tightly linked and it may not be possible to
get a very accurate estimate of the distance between
them. Figure 1 shows the likelihood curves computed
using the same data but with five different values of c1.
The sample consisted of 30 disease-bearing chromo-
somes: 26 A1B1, 2 A1B2, 0 A2B1, and 2 A2B2 haplotypes
having non-disease population frequencies of 0.05, 0.15,
0.15, and 0.65, respectively. Coalescent times were gen-
erated using parameter values corresponding to the DTD
mutation in Finland (see Rannala and Slatkin, 1998 for
details). The true recombination rate between the
markers was 0.001. The ML location of the disease
mutation was at a recombination rate of 0.0013 from the
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FIG. 1. Two-marker likelihoods computed for five different values
of c1. The location of marker A on the plot is at 0.000 with the location
of marker B being at the various values of c1 to left of marker A. The
maximum likelihood location of the disease mutation is c2=0.0013 and
is indicated by the dashed line.
le-Marker (A and B) Methods and the Resulting Confidence Intervals

Sample Haplotype
cies Configuration Confidence Intervals

Q21 Y11 Y12 Y21 Y22 2-mrkr A B

0.0475 46 2 0 2 0.002 0.0023 0.0032
0.09 46 2 0 2 0.0019 0.0024 0.0034
0.25 47 2 0 1 0.0025 0.0033 0.0055
0.475 47 1 1 1 0.0019 0.0023 0.0044
0.025 46 3 0 1 0.0022 0.0033 0.0032
0.0475 42 4 0 4 0.0029 0.0032 0.0048
0.0475 44 2 0 4 0.0028 0.0032 0.004
0.0475 44 4 0 2 0.0019 0.0022 0.004
0.475 44 4 1 1 0.0019 0.0023 0.0077
0.50 47 2 1 0 0.0025 0.0032 0.0044

proximal marker. A large bias in the location estimate
was observed only when the estimate of c1 was consid-
erably less than the true value. From this simple inves-
tigation, the method appears to be robust to small errors
in the c1 parameter; however, a more extensive study
would be required to explore this aspect of the method in
detail.

COMPARISON WITH A SINGLE-MARKER

LIKELIHOOD

Haplotype configurations were generated by first
simulating a vector of coalescence times based on a set of
demographic parameters and the age of the disease
mutation using the birth–death model described by
Rannala and Slatkin (1998). The transition process was
then modeled moving forward in time with the probabil-
ities Pij(t) being dependent on the specified recombina-
tion rates and haplotype frequencies. The probability of
mutation at the diallelic markers was assumed to be 0.
The age of the disease mutation was assumed to be 2000
years (t1=100) and to have a frequency of 0.8%. The
demographic parameters used to generate the coales-
cence times were set to correspond to the DTD mutation
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in the Finnish population; f=1.125×10−3 and
t=0.085. Table II shows the CIs for the two-marker and
the single-marker ML recombination rate estimates with
10 different sets of data. Likelihoods were computed
from 50,000 Monte Carlo realizations. The sample size
was 50 M-bearing chromosomes for all data sets and the
disease mutation was assumed to have originally
occurred on a haplotype having A1 and B1 alleles. The
order of the loci was M–A–B for all of the data.



L) a
ax
FIG. 2. Plot of the means and standard deviations of two-marker (2
data set. The dashed lines give the locations of markers A and B. The m
distance of 0.002 to the left of marker A.

The obvious advantage of two-marker LD mapping
over a single-marker approach is that the information
from two markers allows for interval mapping. This
advantage comes at the costs of needing haplotype data
for two markers, increased computational time, and the
having to know the recombination rate between the two
markers. Comparing the CIs under the two methods
assessed the amount of information that is gained by
using the two-marker ML over the single-marker ML,
ignoring the interval information. The two-marker
likelihood described here was compared to the single-
marker likelihood method of Rannala and Slatkin
(1998).

The CIs for the single-marker and the two-marker ML
increase as recombination between the markers and the
disease mutation increases. The two-marker CI was less
than the single-marker CI for all data sets. Data sets 1–5
show that the frequency of the disease-associated marker
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allele affects the size of the difference between the CIs of
the two methods. The difference in the CIs increases as
the frequency of the disease-associated marker allele
increases. Data sets 6–9 show the effect of the distance to
the disease mutation on the size of the single- and two-
marker CIs. For low-frequency alleles, the difference in
the CIs of the two methods is small; however, the differ-
ence can be relatively large when the disease-associated
allele frequency is higher. In general, the size of the single-
nd composite (CL) likelihoods calculated from 20 replicates of the same
imum likelihood location of the disease mutation is at a recombination

marker CI increases in relation to the two-marker CI as
the marker allele frequency and distance to the disease
mutation increase.

COMPARISON TO A COMPOSITE

LIKELIHOOD

Figure 2 shows the two-marker and composite
likelihood plots for a data set having 26 A1B1, 2 A1B2,
1 A2B1, and 1 A2B2 mutation-bearing chromosomes with
frequencies of 0.10, 0.30, 0.30, and 0.30, respectively, in
the non-disease population. The age of the mutation and
demographics of the population were assumed to be
those for the DTD mutation in Finland as described
above. The two-locus and composite likelihoods of the
data were computed 20 times, each from a different
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random seed and 50,000 Monte Carlo replicates, at each
location shown and the mean and standard deviation
were calculated. Figure 2 shows that there is almost no
variation in the two-locus likelihoods around the
maximum; however, there is considerable variation
among the replicates in the intervals were the disease
mutation does not exist. There is very little variation in
the composite likelihood replicates regardless of the dis-
tance from the maximum.



r D

L

TABLE III

Haplotype and Allele Frequencies for Nine Models Used to Generate
Haplotype Configurations

Model Q11 Q12 Q21 Q22 p q DŒ

1 0.0025 0.0475 0.0475 0.9025 0.05 0.05 0
2 0.05 0.0 0.0 0.95 0.05 0.05 1
3 0.0125 0.0375 0.2375 0.7125 0.05 0.25 0
4 0.05 0.0 0.20 0.75 0.05 0.25 1
5 0.0125 0.2375 0.0375 0.7125 0.25 0.05 0
6 0.05 0.20 0.00 0.75 0.25 0.05 1
7 0.06 0.24 0.14 0.56 0.30 0.20 0
8 0.20 0.10 0.00 0.70 0.30 0.20 1
9 0.01 0.29 0.19 0.51 0.30 0.20 0.83

Data were simulated as described in the previous
section with the following exceptions. Two-marker
haplotype data were simulated under two generating
models defined by the order of the loci. For order I, the
location of the disease mutation was simulated to be in
the interval between markers A and B, and for order II,
the mutation was simulated to be outside of the markers
and proximal to marker A. For both orders the data were
simulated under one of nine possible population haplo-
type frequency models with varying linkage disequilib-
rium (models 1–9, Table III). The recombination rate
between markers A and B, c1, was 0.0005. We have used
a CL of the single-marker likelihood model described by
Rannala and Slatkin (1998). Likelihoods were computed
at 24 locations (intervals of 0.01cM) across a 0.25-cM
region spanning the markers. The three intervals, outside
of marker A, between markers A and B, and outside of
marker B, are denoted 1, 2, and 3, respectively.

Table IV summarizes the comparison between the ML
and CL location estimates. There were 780 replicates
analyzed under order I and 368 under order II. The large
difference in the number of replicates analyzed under the
two models is due to the larger amount of time required

TABLE IV

Comparison between Two-Marker Maximum and Composite Likelihoods fo

Disequilibrium Mapping for Two-Marker Haplotypes
Order n Correlation (m

likelihood location Max L

I 780 0.96 0.89 13.4
(0.71)

II 368 0.88 0.83 7.0
(3.10)

Note. The D interval columns show the number of times that the compos
maximum likelihood location.
ata Generated under Two-Marker and Disease Locus Orderings

ocations

to compute the likelihoods for haplotype configurations
generated under order II. Twenty-two replicates were dis-
carded because the maximum and composite likelihood
estimates were at the edge of the test range. The Pearson
correlation coefficients between the maximum and compo-
site likelihood location estimates of the disease mutation
were 0.89 and 0.83 for orders I and II, respectively. The
composite and maximum likelihood locations were in dif-
ferent intervals for 64 replicates under order I. In all cases,
the maximum likelihood location of the disease mutation
was in interval 2 and the composite likelihood location was
in interval 3. This discrepancy was associated with unin-
formative markers having low population allele frequen-
cies. In 19 of the replicates of order II, the composite and
maximum likelihood locations were in different intervals.

Figure 3 shows the two-locus and composite likelihood
plots for a replicate in which the maximum likelihood
location of the disease mutation was in interval 2 and the
composite likelihood location was in interval 3. The data
were a configuration of 89 A1B1, 4 A1B2, 6 A2B1, and
1 A2B2 disease-bearing haplotypes, with the population
frequencies of the non-disease haplotypes being 0.05, 0.0,
0.0, and 0.95, respectively. Because there are no A1B2 and
A2B1 haplotypes in the population, a transition from a
MA1B1 haplotype to a MA2B1 haplotype requires two
recombination events to occur. Similarly, a transition
from an A1B1M haplotype to an A1B2M haplotype
requires two recombination events. However, a transi-
tion from an A1MB1 haplotype to an A1MB2 or A2MB1
haplotype requires only a single recombination event.
There are four A1B2 and six A2B1 M-bearing haplotypes
in the sample so that, given the parameters of the model,
the most likely order is A–M–B. The haplotype
frequency information is not found in the marginal,
single-locus data so the composite likelihood does not
take the population frequency of the A1B2 and A2B1
haplotypes into account and the composite likelihood
location for the disease locus lies in interval 3.
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ean/SD) Different D interval

Comp L location 0 1 2

13.5 10% 716 64 0
(0.76)
6.29 61% 346 17 2

(3.79)

ite likelihood places the disease locus one or two intervals away from the



FIG. 3. Two-marker (2L) and composite (CL) likelihoods across a
recombination distance of 0.005. The dashed lines give the locations of
markers A and B. A recombination rate of 0.0005 separates the two
markers. The maximum likelihood location of the disease mutation is
between the markers and the maximum composite likelihood location
lies outside of the markers.

The nine generating models (models 1–9, Table III)
were coded as an independent class variable with nine
levels and a generalized linear model was used to test
whether the generating model had a significant effect on
the distribution of differences in the ML and CL location
estimates. A significant effect was observed for order I
but not for order II. The ML and CL locations were
more similar under models 5 through 9; these models are
characterized by lower disease-associated allele frequen-
cies for marker A (the marker proximal to the disease
mutation). For all of the cases in which ML and CL
locations were different for order I, at least one of the
markers was not informative (had no recombinants in
the sample).

The relationship between the amount of LD between
the markers on the sampled M-bearing chromosomes
and the difference between the ML and CL location
estimates was assessed by linear regression. LD was
measured as the difference between the M-bearing A1B1
haplotype frequency calculated from the sample and the
product of the A1 and B1 allele frequencies in the popu-
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lation. Samples of M-bearing chromosomes with lower
LD tended to show larger differences between the ML
and CL location estimates under order II. In general, as
the degree of LD decreased a bias in the CL location
estimate toward larger distances from the proximal
marker was observed. No significant relationship was
observed under order I, this is likely due to the lower
simulated recombination rates under the model, resulting
in higher LD among the M-bearing chromosomes.
CONCLUSIONS

We present a two-marker, likelihood-based method
for LD mapping. The two-marker approach is an
improvement over the single-marker likelihood because
the information provided by the second marker deter-
mines the position of the disease locus in relation to the
markers (i.e., it allows for interval mapping) and the
location estimate has smaller confidence intervals. Our
method is an improvement over existing two-marker
methods for several reasons. Our method does not
assume linkage equilibrium between the markers and the
disease locus or between the markers. The maximum
likelihood estimate of the location of a disease locus is
computed from the sample of disease-bearing haplotype
data and the location can be either outside of the markers
or between them. Because our method uses the full
haplotype data, all of the available information is being
used. The coalescent ancestry of the disease allele is gen-
erated independent of the likelihood calculation so that
the vector of coalescence times can be generated under
any demographic model. Our two-marker method
cannot be extended to an arbitrary number of loci;
however, it can accommodate multiallelic markers with
non-negligible mutation rates.

For the two-marker method one needs two poly-
morphic sites in a small genomic region, estimates of the
population haplotype frequencies, and a good estimate
of the genetic distance between the markers. These costs
can be outweighed by a substantial reduction in the
candidate interval for the disease mutation. For markers
having ideal characteristics for linkage disequilibrium
mapping (e.g., low associated allele frequency, small
genetic distance to disease mutation) the two-marker
maximum likelihood had a confidence interval that was
0.03 cM or 30 kb smaller on average than the single-
marker confidence interval. As markers become less
ideally suited to mapping, the difference between the
single-marker and two-marker confidence intervals
becomes greater.

We show that the composite likelihood can be biased
toward increased estimates of the distance between the
disease mutation and the markers and that the bias
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increases as the LD between the markers on the M-
bearing chromosome decreases. The correlation between
the composite and maximum likelihood estimates was
higher when the disease locus was between the marker
loci; when the genetic distances were smaller and LD was
greater among the M-bearing chromosomes. Because the
composite likelihood uses information only from the
marginal values it provides no information regarding
how the data fit the specified marker map. The effect of



using only the marginal information can be a false infer-
ence of the location of the disease locus or ambiguity in
its location. When there are no single-marker recom-
binants observed in the sample, the single-marker
likelihood surface is determined by the marker allele
frequencies; non-informative marker loci can lead to bias
in the composite likelihood but presumably they would
not be included in the analysis. Markers that are not
informative for single-marker or composite likelihood
analysis do provide information in the two-marker
maximum likelihood. The single-marker and two-marker
maximum likelihoods have statistically interpretable
confidence intervals while the composite likelihood does
not.

This report shows that two-marker haplotype data
provide more information for linkage disequilibrium
mapping than single markers and the composite statistic
used here; however, there are questions that remain to be
investigated. If one wishes to map a disease locus using
two-marker haplotype data, which pairs of markers
should one use? One could use all marker pairs but
clearly some pairs will be better suited to LD mapping
than others given the population history of the disease
locus and the markers. We have tested the method in
ideal circumstances (a rare, fully penetrant disease
mutation) and the utility of this method and others like it
for mapping mutations involved in disease of a more
complex nature needs to be investigated.

A computer program for carrying out the likelihood
calculations described in this paper has been written in
the C language and is available from the corresponding
author (C.G.).
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