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Table 1
Relative Probabilities of the Possible Genotype Combinations in a Family of Two Parents and One Offspring
POPULATION
GENOTYPE COMBINATION PROBABILITY
SEGREGATION

Parent 1 Parent 2 Offspring  Parent 1 ~ Parent 2 PROBABILITY RELATIVE PROBABILITY
AIBI/AZBZ AlBl/A3BZ AIBI/AIBZ 2'7(-11](22 2f11f32 O 0
ABJ/AB, ABJ/AB, ABJ/AB, 2fufu 2fufs 1/4 (Fiofufuf) | (fofafufs: + fufafiofs)
AB/A,B, AB,/AB, ABJ/AB, 2f1if 2fof 51 1/4 (fufafufs) ! (fufafufs: + fubafifs)
AIBZ/AZBI AIBZ/A3B1 AlBl/AlBZ Zfllle 2’f12f31 O O

shown for the case of unrelated individuals (Slatkin and F=1Xg,8;s , (2)

Excoffier 1996), this procedure provides a more reliable
test of linkage disequilibrium, from genotype data in
samples of related individuals, in the sense that a x*
distribution for the likelihood-ratio statistic does not
need to be assumed. We then apply this method to sim-
ulated data, to compare its performance with that of
Fisher’s exact test applied to haplotype data and with
the EM algorithm applied to genotype data from un-
related individuals. We show that, in general, the inclu-
sion of close relatives in a data set does not provide much
additional power, unless both parents and two or more
offspring are included.

Methods

Incorporation of Segregation Probabilities into the
Likelihood Equation

In this paper, we consider simple cases of samples of
related individuals, for which pedigree data are available
for only two generations (parents and offspring) and for
which the families are completely independent (no half-
sibs and no relatedness between the members of the pa-
rental generation). The pairs of loci under investigation
also are assumed to be so close that no recombination
occurs between generations. In this case, a sample is
made up of m independent families, and each family is
represented by at least two individuals. In a previous
study (Slatkin and Excoffier 1996), we considered the
special case for which each family is represented by one
individual. Genetic information consisted of two-locus
genotypes, with the haplotypes for individuals who are
doubly heterozygous unknown. The resolution of dou-
ble heterozygotes into haplotypes is dependent on the
unknown two-locus haplotype frequencies (f =
fishs---sf), and on the family relationships within the
sample. The likelihood of the haplotype frequencies is
proportional to

L(f) =1, E (1)

where F, is the likelihood for family 7. Then, F,is obtained
from

where the sum is over all possible genotype combinations
of the members of the family and where g,; is the prob-
ability of the first parent’s genotype, g,; is the probability
of the second parent’s genotype, and s; is the probability
of Mendelian segregation of the offspring’s genotype
combination j. Here, the unknown haplotype frequen-
cies are introduced only in the probabilities of the pa-
rental genotypes, and the probabilities of the offspring’s
genotypes depend only on the segregation probabilities
of parental haplotypes into the offspring (see table 1).
The number of genotype combinations for each family
is the product of the number of possible genotypes for
each member of the family. If all independent individuals
of the pedigree (the parents) are present in the sample,
the total number of genotype combinations will be rather
small and will depend mainly on the number of double
heterozygotes in the sample. However, if some members
of the parental generation are not sampled, then the
number of possible genotype combinations may be very
large, and this number will depend on the number of
alleles (k) at each locus. For instance, consider the case
in which k& = 5 among the sampled individuals. For each
locus, we have to allow for the presence of a sixth allele
that may be present among the unsampled individuals
of the pedigree but that would have escaped detection
because it would not have segregated, by chance, in one
of the offspring. In this case, there are 6 x 6 = 36 po-
tential two-locus haplotypes and 36 x 37/2 = 666 po-
tential different genotypes for each unsampled individ-
ual. Therefore, in a family in which only full sibs are
sampled, 666 x 667/2 = 222,111 distinct parental ge-
notype combinations are possible, and the compatibility
of all of them must be tested against the offspring’s geno-
types. In practice, a great many parental genotypes may
be eliminated by a prior examination of single-locus in-
compatibilities between parental and offspring geno-
types (e.g., for a description of a simple algorithm, see
Lange and Boehnke 1983). Thus, since the complexity
of the problem increases with approximately the eighth
power of k, we have restricted ourselves to moderately
low levels of polymorphism at each locus, with k < 5.
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Maximization of the Likelihood, by Use of the
EM Algorithm

We used the EM algorithm to find those two-locus
haplotype frequencies maximizing the likelihood given
by equation (1), as described elsewhere (Excoffier and
Slatkin 1995; Slatkin and Excoffier 1996). When k, and
k, alleles at the first and the second locus, respectively,
are assumed, the initial expectation (E) step of the al-
gorithm uses randomly assigned haplotype frequencies,
represented here by the vector f° = (£°, £, ..., ) of size
K = k,k,, to compute the expected frequencies of the
possible K(K—1)/2  parental genotypes ¢°=
(g115812» -+ »&kx)> Where g;=2ff it i #j and g; = 12
otherwise.

The maximization (M) step then is performed as a
reevaluation of the haplotype frequencies from the rel-
ative probabilities of the combinations of parental and
offspring genotypes. For example, let us consider a sim-
ple family with two parents and one offspring, in which
the two-locus phenotypes of the two parents are
AA,B.B, and A A;B,B, and that of the offspring is
A,ABB,. The different genotype combinations are
listed in table 1, with their relative probabilities, for
which both the parental population probabilities and the
offspring segregation probabilities are involved, follow-
ing equation (2). These genotype relative probabilities
are used as weights associated to the haplotypes involved
in the genotypes. A simple counting procedure then ex-
plores all genotype combinations and adds up the
weights of the haplotypes present in the parents, to pro-
duce new sets of haplotype frequencies, f', which are
used in a new E step. The E and M steps are repeated
until convergence of haplotype frequencies is reached.
In practice, because the EM algorithm does not neces-
sarily lead to the global optimum solution but merely
to a local maximum (Excoffier and Slatkin 1995; Long
et al. 1995), the EM algorithm is performed several
times, with each repetition starting from different initial
haplotype frequencies.

Testing for Linkage Disequilibrium, by Use of
Pedigree Information

As initially discussed by Hill (1974), if L* denotes the
likelihood derived under the hypothesis of linkage equi-
librium, where haplotype frequencies are the products
of allele frequencies, —2log(L/L) should asymptotically
follow a x? distribution with (k, — 1)(k, — 1) df, under
the hypothesis of linkage equilibrium, where &k, and k,
are the number of alleles present at the two loci. How-
ever, this asymptotic behavior is only valid for a small
number of alleles, and the use of a x* test can lead to a
large number of false-significant results in situations of
practical interest (Long et al. 19935; Slatkin and Excoffier
1996). Therefore, in practice, it seems necessary to gen-
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erate the null distribution of L and to use the tail prob-
ability P(random L > L) as the test probability. Ap-
proximate null distributions can be generated for
samples of unrelated individuals by random permutation
of alleles, at one locus, between individuals (Slatkin and
Excoffier 1996). This procedure is not applicable to sam-
ples of related individuals, because random permuta-
tions of alleles between individuals can lead to incom-
patible segregation patterns between parents and
offspring.

In order to overcome this difficulty, we propose a new
procedure using a parametric bootstrap allocation of
haplotypes to independent individuals, to generate new
random samples of related individuals, under the link-
age-equilibrium hypothesis. In more detail, the random
samples are generated as follows: The maximum-like-
lihood allele frequencies at each locus are first obtained
by use of the procedure described above, with the in-
dividuals’ relatedness taken into account, as described
in the study by Boehnke (1991). When all parental geno-
types are sampled, this step can be replaced by a mere
gene-counting procedure, because the offspring’s geno-
types are not necessary for computation of the allele
frequencies. However, this procedure is necessary when
one or more independent individuals have been omitted
by the sampling process or when there are recessive al-
leles in the sample. A pool of linkage-equilibrium hap-
lotype frequencies is generated as the product of the
allele frequencies. A pair of haplotypes is randomly as-
signed, by bootstrap, to each independent individual,
sampled or not. The independent individuals then are
randomly mated to produce their observed offspring.
Then, the unobserved independent individuals are finally
excluded, in order to produce a sample having exactly
the same properties as the original, in terms of size and
family relationships. Finally, the likelihood ratio of this
sample is evaluated by use of the EM algorithm, as de-
scribed above. Many samples then can be generated by
use of this bootstrap procedure, to approximate the null
distribution of the likelihood ratio.

Assessment of the Effect of Different Family Types on
the Estimation of Linkage Disequilibrium

In order to assess the effect, on the linkage-disequi-
librium test, of different amounts of additional infor-
mation from relatives in the sample, we studied several
simulated samples of 50 diploid individuals, for which
we previously had found a discrepancy between the re-
sults of an exact test of linkage disequilibrium (described
in Slatkin 1994) and those of the test based on the con-
ventional EM algorithm (Slatkin and Excoffier 1996).
We arbitrarily selected two cases for which we had sig-
nificant results with the exact test but nonsignificant re-
sults with the EM-based test (i.e., SN results) or for
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Table 2
P Values for the Linkage-Disequilibrium Test for the Case of k = 2
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P P VALUE (CV), BY FAMILY TYPE®
V?(I)‘EE 0 Parents and No. of Off-
EXACT 2 Parents and No. of Offspring of 1 Parent and No. of Offspring of spring of
CASE* TEST 0 1 2 3 4 2 3 4 2 3 4
NS:
A 167 011 077 105 112 114 156 177 131 136 .039 .006 .000
(.914) (.576) (.318) (.243) (1.151) (.998) (.738)  (.548) (1.585) (3.969) (7.035)
B 538 .028 332 433 418 435 .566 .302 .732 711 .336 221 157
(.656) (.440) (.375) (.234) (.548) (.462) (.300) (.275) (.632) (.631) (.632)
SN:
C .023 .190 .069 .038 .033 .025 179 105 .075 .041 .188 .093 .064
(656) (.802) (.490) (412)  (880) (1.216) (1.065) (.846)  (856)  (.755)  (.806)
D .008 175 .020 012 .008 .006 180 .099 118 .072 .021 .001 .000
(1.073)  (.848) (.543) (.628)  (.999)  (978) (1.108) (886) (2.264) (3.968) (7.035)

NOTE.—Values that gave a significance result (5% level) opposite to that of the exact test are underlined.

* NS = results not significant for the exact test but significant for the EM-based test on unrelated individuals; and SN = results
significant for the exact test but not significant for the EM-based test on unrelated individuals. Cases A and B were chosen at random
from among the NS cases of a previous study (Slatkin and Excoffier 1996); and cases C and D were chosen at random from among the

SN cases of the same previous study.
> CV = coefficient of variation.

which we had the opposite results (i.e., NS results), with
both £ =2 and k = 5 alleles per locus. These results
were compared with the results obtained for 11 types
of samples of related individuals. Each type of sample
comprised 25 families in which the parental generation
consisted of the same 50 individuals used in the previous
study (Slatkin and Excoffier 1996), but the composition
of the sampled members of the families differed among
the sample types. The 11 family types were as follows:
families with two sampled parents, plus either one, two,
three, or four offspring; families with only one sampled
parent, plus either one, two, three, or four offspring;
and families with zero sampled parents but with two,
three, or four full siblings. Since the haplotypes present
in the parents and used to produce the offspring were
identical to those used for the exact test and the con-
ventional EM algorithm, the amount of independent in-
formation was kept constant over all analyses. However,
the sample size, as measured by the number of sampled
individuals, could have varied, of course, in accordance
with family size and composition.

For each family configuration, the potential resolution
of the parental gametic phase depended on the offspring
genotypes. For this reason, we generated for each con-
figuration 100 different reference samples, keeping the
same 50 parental genotypes but producing different sets
of offspring, by random segregation of parental haplo-
types. A null distribution of the likelihood ratio then
was obtained empirically for each of these 100 samples
of related individuals. Each null distribution was based

on either 100 or 1,000 bootstraps (depending on the
total required computing time). Thus, the final EM P
values (shown in tables 2 and 3 and in figs. 1-4) are the
P values averaged over these 100 null distributions.
Comparisons between average P values obtained from
null distributions based on 100 or 1,000 replicates did
not reveal appreciable differences from the mean (results
not shown), but the variance was reduced when a larger
number of bootstrap replicates were used.

In order to have a more quantitative assessment of
the utility of our approach and of its behavior relative
to the exact and conventional EM tests, we applied this
double-resampling scheme to a larger number of cases.
Thus, we randomly selected 100 samples based on 50
independent individuals, for the k = 2 and k = 5 cases
from our earlier study (Slatkin and Excoffier 1996).
Only five family configurations (two parents and one
offspring, two parents and four offspring, one parent
and one offspring, one parent and four offspring, and
zero parents and three offspring) were studied for these
samples, because of the prohibitive computing time re-
quired to analyze all 11 configurations described above.

Results

Estimation of Linkage Disequilibrium for Samples of
Different Family Types, in a Few Test Cases

In table 2 we report the results of the tests of linkage
disequilibrium for samples of different types of families,
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Table 3

P Values for the Linkage-Disequilibrium Test for the Case of k = 5
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P P VALUE (CV), BY FAMILY TYPE
Vlf\OL;JE 0 Parents and No. of Off-
ExacT 2 Parents and No. of Offspring of 1 Parent and No. of Offspring of spring of
CASE TEST 0 1 2 3 4 1 2 3 4 2 3 4
NS:
A .101 .036 .031 .030 .029 .029 .146 .099 .088 .092 204 .096 .039
(.013) (.012) (.009) (.007) (.889) (.769) (.583) (.503) (.832) (.894)  (1.300)
B 283 .003 144 129 134 126 257 218 .307 338 241 175 .098
(.196) (.173) (.162)  (.090) (.784) (.708) (.418) (.311) (.848) (.920) (.935)
SN:
C .0008 342 .003 .001 .001 .001 .052 .034 .090 .056 .080 .019 .008
(777)  (1.013)  (.901) (.960) (1.574)  (.774)  (353) (479) (1.116) (1.844) (1.933)
D .001 .100 .001 .001 .001 .001 .035 .012 .005 .005 .046 .016 .006
(1.079)  (1.163) (1.025) (.997) (1.598) (1.709) (1.833) (1.957) (1.369) (2.399) (2.208)

NoTE.—See footnotes to table 2.

for k = 2. In general, the use of information on relatives
improves the results obtained from samples of unrelated
individuals, when the results from the exact test are used
as the standard of comparison. Improvement is greater
when both parents are included in the sample. In this
case, the accuracy of the test improved mostly by ad-
dition of one offspring, in the sense that the likelihood-
ratio test led to conclusions similar to those from the
exact test. Addition of a second offspring then led to P
values that were closer to those of the exact test, whereas
addition of additional offspring did not lead to as much
improvement. There were, however, a steady increase in
the accuracy of the test probability, when the number
of offspring was increased, and a reduction in the co-
efficient of variation. This trend is not as clear in samples
comprising families with only one sampled parent or in
samples comprising full sibs only. When as many as three
offspring were added to the single-sampled-parent fam-
ilies, cases C and D did not reach significance. Addition
of a fourth offspring restored significance for case C but
not for case D. In families comprising full sibs only,
consideration of four offspring did not seem to be
enough to lead to P values close to those of the exact
test. The P values also had a much larger variance for
the sample configurations with zero parents.

In table 3 we report the results obtained for k& = 5.
Results were also globally better than those of the con-
ventional EM-based test, except for those for case A
when two parents were sampled and those for case C
when one parent was sampled. Case A led to especially
odd results, since one would have expected results closer
to those of the exact test when two parents and some
offspring are included in the sample than when one or
two parents are missing (for a possible explanation of
this apparent discrepancy, see the discussion of fig. 4

below). The P values obtained with two sampled parents
per family always had a smaller variance than those
obtained when one or both parents were missing from
the sample. This is accounted for by the fact that many
parental genotype combinations may be compatible with
the offspring’s genotypes, when one or two parents are
not sampled.

From the small number of cases presented in tables 2
and 3, it appears difficult to recommend a definitive
sampling strategy that would optimize both laboratory
efforts and testing accuracy. However, compared with a
situation in which only independent individuals are sam-
pled, sampling of additional offspring does lead to im-
proved results, and the more offspring that are sampled,
the more accurate the results, for a fixed number of
sampled parents. However, gathering of samples of full
sibs only does not seem to be a good overall strategy,
because of the difficulty of correctly inferring the gametic
phase of the unsampled parents.

Detailed Comparison of the EM Approach and the
Exact Test

In figure 1 we show 100 linkage-disequilibrium P val-
ues obtained from the EM-algorithm approach, taking
into account family relationships, plotted against exact-
test P values for k& = 2. For comparison purposes, the P
values obtained by the EM algorithm, from 50 inde-
pendent individuals without relatives, are also reported
for each case and are shown as unblackened circles. Sam-
ples of two parents and one offspring led to P values
that were in much closer agreement than those of the
unrelated-individual case. The correlation for the results
of the exact test is stronger (the square of the correlation
coefficient [R?*] = .88 ) than that for the conventional
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EM-based test of 50 unrelated individuals (R* = .48).
Samples of families with two parents and four offspring
led to results virtually identical to those of the exact test
(R* = .99), with the points nicely aligned along the di-
agonal. Samples of families with one parent and one
offspring led to results better than those for samples of
independent individuals, in the sense that there was a
closer linear relationship between the EM P values and
the exact-test P values (R? = .76). The overall correla-
tion increases when families of one parent and four off-
spring are considered (R* = .94). In contrast to results
for samples in which some parents were included, results
for families with three full sibs were worse than those
for the independent-individual case (R* = .10 vs. R* =
.48), with no clear relationship between the EM P values
and the exact-test P values.

In figure 2 we show the results obtained for & = 5,
for family relationships equivalent to those used to ob-
tain the results shown in figure 1. The results are very
similar to those for the & = 2 case, except with regard
to two important points. For samples of families in
which both parents were sampled, in the presence of
four offspring per family, the EM P values and the exact-
test P values were less correlated than those for the
k = 2 case, and we observed some false-positive tests,
as well as a quite scattered distribution of points around
the diagonal (R* = .83 vs. R* = .99, for k = 2). On the
other hand, samples of families comprising three full sibs
presented results that improved on those for samples of
independent individuals (R* = .74 vs. R* = .49), sug-
gesting that, because of the larger number of alleles,
parental haplotypes were better resolved than those in
the k = 2 case.

The slope of the regression of the EM-based P values
against that of the exact-test P values also was different
between the two-parent case and the other cases (fig. 2).
It clearly approached 1 for the two-parent cases and was
less steep for the cases of one sampled parent or zero
sampled parents. It had an unexpected effect on the be-
havior of the test, because it introduced more false-sig-
nificant results for the two-parent cases than for the one-
parent cases, even though the P values were globally
better estimated for the two-parent cases than for the
one-parent cases. This is explained by the overall relative
lack of power of the one-parent cases.

Ability of the EM Approach to Recover the
Parental Gametic Phase

For the k = 5 case, the relative lack of fit between the
EM and the exact-test P values, when families of two
parents and four offspring were sampled, deserved fur-
ther investigation. For this purpose, we compared the
exact-test P values with the likelihood-ratio P values,
obtained by using the information on the gametic phase
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of the parents, available from our simulated samples. In
fact, complete information on the gametic phase of the
parents theoretically would be obtained with an infi-
nitely large number of offspring, so that these latter EM
P values can be seen as the limit that could be obtained
by an increase of the family size. Plots of these com-
parisons are reported in figure 3, for the £k = 2 and the
k =5 cases. Whereas a tight linear relationship (R* =
.99) was found between the exact-test and the likeli-
hood-ratio P values for k = 2, the distribution for k =
5 was more scattered (R*> = .82). This suggests that the
lack of fit shown in figure 2 is not attributable to the
inability to resolve the parental phase but, rather, to a
fundamental difference between the two testing proce-
dures: the exact test of linkage disequilibrium is only
based on haplotype and allele frequencies, whereas the
likelihood-ratio test also assumes Hardy-Weinberg equi-
librium (HWE). Therefore, the P value of a likelihood-
ratio test will depend not only on the extent of linkage
disequilibrium between the two loci but also on possible
departure from HWE at either of the two loci or at the
haplotype level. Thus, even though the amount of link-
age disequilibrium cannot be recovered perfectly, the fact
that the P values obtained from samples of families with
two parents and four offspring were virtually identical
to the P values computed with known gametic phase
(results not shown) implies that the gametic phase and
the haplotype frequencies can be recovered efficiently by
use of the current approach, for samples of nuclear
families.

The impact of departure from HWE was examined
further for the k£ = 5 case, by the performance of exact
tests of HWE (Guo and Thompson 1992), at both the
locus and the haplotype levels. In figure 4, we have su-
perimposed the results of these tests for the 100 cases
considered in figure 3 (right-hand panel). The cases
showing departure from HWE are indicated by black-
ened markers. We can see that the cases for which the
hypothesis of HWE was rejected at the 5% level are
spread over the whole distribution and are not only those
cases that are far from the diagonal or that resulted in
false positives. Thus, departure from HWE was not re-
sponsible alone for the false-significant cases in the
lower-right quadrant. This result suggests that the dis-
crepancies between the exact test and the
likelihood-ratio test were not solely because of depar-
tures from HWE but also resulted from interaction be-
tween Hardy-Weinberg disequilibrium and linkage dis-
equilibrium. In figure 4 we also show that case A, for
which discrepant results are given in table 3, was pre-
cisely a case for which the hypothesis of HWE did not
hold at the haplotype level, suggesting that the likeli-
hood-ratio test was found to be significant because of
the departure from HWE and the departure from linkage
disequilibrium. However, note that HWE was observed
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Figure 3 Likelihood-ratio P values obtained from the EM-algorithm approach, under the assumption that the gametic phase of the parents

is known, plotted against the P values obtained from the exact test.

lotype frequencies and to test for significant departures
from linkage equilibrium. As expected, the inclusion of
close relatives does help resolve the genotypic phases of
double heterozygotes, but that effect does not always
lead to a substantial increase in the accuracy of the re-
sults. When both parents from a family are already rep-
resented in a sample, inclusion of some of their offspring
always helps. There is less of an improvement when only
one parent per family is represented in a sample, and
there is no real improvement when only full siblings are
sampled. When both parents are not sampled, the un-
certainty about the genotypes of the missing parent or
parents substantially reduces the parental-phase infor-
mation that, in principle, is provided by the offspring
sampled. Thus, an overall good strategy appears to be
to try to accumulate samples of nuclear families com-
prising independent individuals plus several children.
However, families in which only one parent is sampled
should not be discarded, since they still improve on the
cases in which only unrelated individuals are considered.

For this paper, we investigated simple pedigree struc-
tures, but the present method could be extended to ac-
commodate more-complex pedigrees, involving, for in-
stance, one additional generation and half-sibs. The
resulting likelihood function to be maximized would be
more complex, involving additional genotype combi-
nations per family, but certainly would be manageable,
up to a reasonable level. For simplicity, we also assumed
no recombination between generations. In principle, re-
combination fractions can be incorporated into the like-
lihood function, and likelihood ratios can be computed
for different amounts of recombination. In these cases,
the resampling procedure would have to allow specifi-

cally for recombination when offspring from independ-
ent individuals are created. However, the potential in-
terest of population studies that infer genetic linkage is
the possibility of using recombination events that have
occurred in the ancestry of a sample of genes and not
to focus on the last few generations. In this sense, pop-
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Figure 4 EM P values, obtained under the assumption that the

parental gametic phase is known, plotted against the exact-test P val-
ues, for & = 5. This plot is partly similar to that shown in the right-
hand panel of figure 3, except that those cases for which the hypothesis
of HWE is rejected (at level .05) are shown as blackened markers.
Unblackened circles indicate cases for which the hypothesis of HWE
is accepted, whereas blackened squares indicate those cases for which
HWE is rejected for one or both loci separately, and blackened triangles
indicate those cases for which HWE is rejected at the haplotype level.
The position of case A from table 3 is shown by an arrow.
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ulation studies would be most helpful for the detection
of linkage disequilibrium between tightly linked mark-
ers, when practically no recombination would be ob-
served in any generation. Our current resampling scheme
assumes very tight linkage and, thus, is best applied to
pairs of loci that are thought to be closely linked.

Although, in this study, we concentrated on cases for
which only a relatively low number of alleles were pres-
ent, our approach can easily handle markers with k>
5. In this study, the limit of & < 5 was imposed by the
computation burden, since we needed to compute
10,000 null distributions for each type of family indi-
cated in figures 1 and 2. This proved to be particularly
computer intensive for the cases including only full sibs,
despite the use of the parental genotypic exclusion al-
gorithm provided by Lange and Boehnke (1983). How-
ever, when only a few null distributions need to be com-
puted, markers with a larger number of alleles could be
accommodated, especially if parents are included in the
sample.

One of the implications of our study is the recognition
of the importance of a slight departure from HWE in
tests of linkage disequilibrium based on genotype data,
leading to the rejection of our likelihood-ratio test even
in the absence of linkage disequilibrium (as for case A
in table 3 and fig. 4). This effect exists irrespective of
whether related individuals are incorporated into the
sample and appears to be more pronounced with an
increase of the number of alleles per locus. This suggests
that departure from HWE can be detected more easily
with a larger k (as was the case for linkage disequilibrium
based on haplotype data [see Slatkin 1994]). It follows
that the linkage-disequilibrium test based on genotype
data does not asymptotically tend to an exact test, con-
trary to observations by Hill (1974) for k = 2, unless
there is perfect random association of gametes. However,
even if the association between the exact test and the
current procedure is not perfect and false significance
can be observed (figs. 1 and 2), an extremely low P value
is unlikely to occur in the absence of linkage, for samples
of nuclear families (fig. 2). In order to overcome the
interference of the HWE assumption, one might be
tempted to use only those individuals of the sample
whose phase could be unambiguously inferred from the
pedigree data. However, it appears difficult to recom-
mend this procedure as a rule, since it would introduce
a bias in the estimation both of haplotype frequencies
and of linkage disequilibrium, but the extent of the bias
remains to be quantified.
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