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Preface

My dissertation research explores the use of Markov chain Monte Carlo techniques in inference
from allelic and genotype count data from population genetic models. I am mainly concerned with
applying these techniques to natural populations, especially salmon populations. I have made forays
into two main areas: a likelihood-based temporal method for inference on the ratio of effective size
to census size, and, more recently, a Bayesian approach to estimating the contribution of known
and unknown stocks to a mixed fishery. As I have been moving forward with the effective size
project for some time, and because the general exam coincides with several other deadlines for
manuscripts and smaller proposals, Elizabeth Thompson (committee chair) and I determined that
I would benefit most by preparing a document of the sort that you will find in the following pages.
This packet starts with a short CV and a list of course work that I have completed, but then,
rather than a lengthy proposal for future work, I have included a collection of recently completed
and ongoing work in the form of contributed papers and manuscripts, an earlier proposal that
inspired some of this work, and then one chapter which is a proposal for work that is still in its
infancy. This is certainly not to suggest that I am close to completing my work in this area. In
fact, I have been pleased to find challenging terrain around almost every corner in these projects.
Numerous extensions, specific to my applied goals, remain to be made, and occasionally problems
are encountered for which these projects may prove a convenient context for delving deeper into
issues of wider statistical interest.

Chapter 2 is a short contributed paper to an upcoming session of the International Statistics
Institute which describes our efforts at implementing MCMC for the effective size problem. Chap-
ter 3 is a portion of a manuscript that I am preparing as part of a collaborative project with Ellen
Williamson at Berkeley. This may be the most novel piece of work I have done to date; it draws
upon methods for inference from hidden Markov chains and some classical population genetics to
create a block-updating sampler which is a sort of analogue to the M -sampler in pedigree analysis
(Thompson and Heath 1998). This will be the topic which I discuss in the most detail during
my general exam. Chapter 4 is a proposal for work that I am just starting on a Bayesian ap-
proach to mixed-stock fishery problems, using computational methodologies developed within the
last five years. Chapter 5 contains the complete Proposed Research section for an NSF proposal
that I assisted Elizabeth in writing. It provides an extensive literature review and a comprehensive
description of the effective size project. The final chapter (6) describes some preliminary work
I did exploring exact computation of likelihoods for the effective size project and comparing the
performance of different estimators. With some modifications I will probably include it as an early
chapter in the dissertation.

Finally, Chapter 1 is a brief summary of my research and my personal interests in the projects. I
include there references to sections of this document where you may find more detailed information
on specific topics.
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Chapter 1

Summary of Research

Markov chain Monte Carlo (MCMC) methods have been profitably applied to inference problems in
genetics since the early 1990’s. First they were applied to likelihood inference from pedigree data.
More recently they have permitted likelihood inference from genetics models based on Kingman’s
coalescent (Kuhner et al. 1995, 1997). Between these two ends of the genetics modelling spectrum
are a number of classical population-genetic models to which MCMC methods, though they may
prove useful, have not yet been applied. This dissertation proposes to develop, investigate, and
implement MCMC methods for both likelihood-based and Bayesian inference of population genetic
parameters associated with population models related to the Wright-Fisher model.

The data for these sorts of models are sample counts of different alleles and/or genotypes.
The likelihood inference problem considered is that of estimating, from temporally spaced allele
frequency samples, the effective size of a population of constant size, or of estimating the ratio
λ of the effective number of breeding adults to the census number of breeding adults, when the
census number of breeding adults for the generations between genetic samples is known. MCMC
techniques are useful in this context for approximating the enormous sums over latent variables
which appear in the likelihood function.

The Bayesian inference problem considered is one of determining the posterior distribution
of mixture contributions of salmon stocks to a mixed-stock fishery. This approach could yield
posteriors marginalized over the unknown number of contributing populations not represented in the
baseline data, and over the various lumping/splitting possibilities of baseline populations. MCMC
techniques allow sampling from unnormalized posterior distributions, and, in this case, reversible
jump MCMC (Green 1995) allows sampling from parameter spaces of varying dimension (i.e.,
different numbers of populations contributing to the mixture).

1.1 Likelihood estimation of λ

A comprehensive overview of this project can be found in the proposal of Chapter 5. The rationale
for pursuing a likelihood approach is detailed in Sections 5.1, 5.2, 5.4, and 6.1. My interest in
the problem grew from reading (Miller and Kapuscinski 1997), a paper describing the use of
archived fish scales for obtaining allele frequency estimates from a small population of northern pike
over long time periods. The authors used these data to estimate the genetically effective size of that
fish population. Most striking to me in this study, (and apparently an almost ubiquitous feature in
other studies estimating effective size) is that as soon as the authors had estimated the population’s
effective size, they computed the ratio of effective size to observed size of the population. They
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did not however, have a way of estimating that ratio directly. Such a direct estimation scheme
would be useful, I believed, for incorporating uncertainty in the estimate of population sizes into
the precision estimate for the ratio, and also for dealing with populations having overlapping
generations and other complicating life-history features by estimating a quantity we call λ (see
Page 46 of Section 6.1). My interest in the problem grew when I learned of a similar project at
the University of Minnesota investigating two steelhead (Oncorhynchus mykiss) populations in the
Northwest.

The method of maximum likelihood is an obvious choice for estimating this sort of ratio,
but one that had not been previously used. With large amounts of data maximum likelihood
estimators typically outperform other types of estimators. Just as important, it is conceptually
straightforward to apply the method of maximum likelihood to populations with sophisticated life-
history patterns—so long as you can describe in probabilistic terms the stochastic process which
generates the data, you can write down a likelihood for the parameters. (An example of a likelihood
function for a simple population structure may be found in Equation 5.7). The difficulty, however,
comes with trying to compute the likelihood function. In the present case, computing the likelihood
requires performing an enormous summation over latent variables. In most cases exact summation
is completely, computationally infeasible. This summation, however, may be cast as an expectation,
and hence approximated by Monte Carlo. Implementing Monte Carlo methods which actually work
has been the major focus of this project.

We have been pursuing techniques of Monte Carlo likelihood (Thompson and Guo 1991;
Geyer and Thompson 1992) which rely on realization of latent variables from Markov chains
constructed by Metropolis-Hastings methods (Metropolis et al. 1953; Hastings 1970). Chapter 2
describes a component-wise Hastings sampler approach. More recently, following a similar evolution
of MCMC samplers in other fields of statistical genetics (Thompson and Heath 1998) I have
developed a block-updating sampler which uses as its proposal distribution the distribution P ∗N (X)
described in Chapter 3.

Many extensions have yet to be made, especially as regards incorporating more complex life
histories and accounting for uncertainty in population census size estimates.

1.2 Bayesian mixed fishery estimation

This project is compactly described in Chapter 4 and I refer the reader there immediately. I only
state here that the mixed fishery problem was one of the first inference problems I encountered
(while having little statistics background at the time) which made me extremely excited about
parameter estimation and mathematical statistics. It is a problem that is still very near to my
heart, and it is (seriously) with immeasurable joy that I work toward making a contribution in the
field.

1.3 Sideshows and future directions

While working on these projects, particularly the Monte Carlo likelihood project, I have encoun-
tered many of the same difficulties that Elizabeth and others have encountered in Monte Carlo
computations on pedigrees, albeit in a slightly different guise. It has been extremely rewarding
for me to see the similarities between these two different fields of statistical genetics. Nonetheless,
I must concede that my Monte Carlo problem is in many ways much simpler. Most notably, the
space of latent variables I deal with (unobserved allele frequencies) is considerably less complex
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than that of the space of genotype assignments to pedigrees or the space of possible coalescent
trees uniting samples of DNA sequences.

In some ways, however, this simplicity is advantageous in making it possible to explore and
apply new computational technologies that do not lend themselves well to more complex latent
variable spaces. As one example, I have successfully applied Coupling From The Past (Propp and
Wilson 1996) to obtain exact samples from the distribution of latent variables conditional on the
data. Though, in its current form, this exact sampling is not particularly useful to my project,
methods for exact sampling from Markov chains may someday prove themselves useful, and fluency
in these emerging techniques may become valuable.

Additionally, since we are interested in estimating a complete Monte Carlo likelihood curve
for λ, we are forced to realize values from a number of different Markov chains, each indexed by
a different parameter. Reweighting those realizations appropriately is difficult. Geyer (1994)
presents a method which is limited by its demands on computer storage. The λ-inference problem
may provide a useful setting to explore alternative reweighting schemes and compare their merits
amongst themselves and to a Bayesian approach.

Finally, I remark briefly on a tantalizing future direction. It seems that some sort of combi-
nation of the Monte Carlo likelihood framework for estimating λ and the Bayesian mixed fishery
problem could lead to an advantageous technique for estimating proportions of admixed populations
(populations in which mixture occurred in the past and one or more generations of reproduction
have taken place since then) as in Long (1991) and Thompson (1973). The key here would be to
recognize as the sufficient statistic the multilocus phenotype of individuals in the samples, rather
than merely the allele frequencies. Especially with linked markers, this technique would derive
information from the linkage disequilibrium resulting from the original mixing of contributing pop-
ulations. Though this may not be part of my dissertation it seems to merit further consideration.
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Chapter 2

ISI paper as submitted

On the following two pages is a brief contributed paper as it was submitted electronically on
April 9, 1999, for the 52nd Session of the International Statistics Institute in Finland. Elizabeth
Thompson will be presenting the paper at the meeting in August.

13



MCMC Likelihoods for Population Genetics

Eric C. Anderson and Elizabeth A. Thompson
Department of Statistics, University of Washington
Box 354322
Seattle, WA 98195 U.S.A.
eriq@stat.washington.edu, thompson@stat.washington.edu

1. The Problem and the Likelihood

It is important to consider the genetic health of small or threatened populations. A
key quantity in this regard is the effective number of breeding adults, Na, each generation.
Population geneticists define Na by comparison to an ideal population in which the genes of
the next generation are sampled with replacement from the current one. Na is usually smaller
than the census number of breeding adults, C. Often C can be measured, and then it is valuable
to know λ = Na/C. It is difficult to measure λ by demographic methods, particularly for some
species of fish and amphibians, which produce thousands of offspring, very few of which survive
to adulthood. Instead, λ may be estimated from temporal changes of allele frequencies sampled
from the population. We present a Monte Carlo approach for approximating the likelihood curve
for λ.

Assume a discrete-generation, semelparous population with Ct haploid individuals repro-
ducing at t, giving rise to Ct+1 individuals at t + 1. We take genetic samples of size S1, . . . , ST

(assume S1 > 0, ST > 0) individuals, and find counts of the k different allelic types at a locus,
Y = (Y 1, . . . ,Y T ) where Y t = (Yt1, . . . , Ytk). The population at t is modelled as bλCtc ideally-
reproducing adults, where bxc is the largest integer ≤ x. Underlying the data are latent allele
counts X = (X1, . . . ,XT ) with X t = (Xt1, . . . , Xtk). {X t, t ≥ 1} is a first-order Markov chain
with transition probabilities Pλ(X t+1|X t) being multinomial with cell probabilities X t/bλCtc
and number of trials bλCt+1c. The genetic data at time t are samples from the gamete pool
produced by the bλCtc adults. Hence, for St > 0, Pλ(Y t|X) = Pλ(Y t|X t) is multinomial
with parameters X t/bλCtc and St. For St = 0, Pλ(Y t|X t) ≡ 1. Summing out the nuisance
parameters X1 over an uninformative prior π(X1) gives the likelihood

L(λ) = Pλ(Y) =
∑
X

Pλ(Y,X) =
∑

x0,...,xT

π(X1)Pλ(Y 1|X1)
T∏

t=2

Pλ(X t|X t−1)Pλ(Y t|X t).

With k = 2, the sum over X may be evaluated exactly. With larger k, however, the huge space
of possible X t’s makes this infeasible.

2. Monte Carlo Likelihood

To obtain an efficient Monte Carlo estimate of L(λ), we consider the likelihood ratios
L(λ)/L(λ0), (Thompson and Guo 1991, Geyer and Thompson 1992)

L(λ)

L(λ0)
=

Pλ(Y)

Pλ0(Y)
=

∑
X

Pλ(Y,X)

Pλ0(Y,X)
Pλ0(Y|X) = Eλ0

(∥
Pλ(Y,X)

Pλ0(Y,X)

∣∥∣∥∣∥∣∥∣∥Y
)

which may be estimated by 1
m

∑m
i=1 Pλ(Y,X(i))/Pλ0(Y,X(i)) where each X(i) is realized from

Pλ0(X|Y). This is an efficient Monte Carlo estimator of the likelihood ratio provided λ is near
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to λ0. Independent samples of X are not available because Pλ0(X|Y) is known only up to
scale. Instead, X(i) are realized from a Markov chain with limit distribution Pλ0(X|Y) using a
component-wise Metropolis-Hastings algorithm (Hastings 1970): Start with initial values of X;
Select a pair (Xtk, Xt`), k 6= ` at random from X; Propose updating the pair to (X∗

tk, X
∗
t`) =

(Xtk−w, Xt`+w), where w is a random integer drawn with probability q(w; Xtk, Xt`); accept the
proposal with probability min{1, [q(−w; X∗

tk, X
∗
t`)Pλ0(Y,X∗)]/[q(w; Xtk, Xt`)Pλ0(Y,X)]}. After

initial updates for burn-in, X(i)’s are sampled as the state of X at a spacing of u updates.
Estimating a curve for L(λ), the range of λ’s of interest may be large. In such cases it does

not suffice to realize X(i)’s under a single λ0. We sample from several chains, each indexed by a
different λ0, λ0 ∈ Λ. Geyer (1994) describes a reverse logistic regression method for reweighting
the samples from each chain and estimating the whole likelihood surface.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

MCMC Estimate

Exact

,  The Ratio

Li
ke

lih
oo

d 
R

at
io

The figure at left shows the estimated likeli-
hood curve (open circles) from a simulated dataset
for which the exact likelihood curve (filled circles)
can be computed. The data were simulated for
20 loci with k = 2, λ = .4, Ct varying between
90 and 130, St = 200, and X1’s drawn from a
uniform distribution. The estimated curve is the
product of likelihood ratios estimated for each lo-
cus with Λ = {.25, .27, . . . , .61, .63}, m = 10, 000
and u = 1, 000.

Figure 1. Estimated and Exact Likelihoods

We are currently investigating more effective MCMC updates, incorporating uncertainty
in census size estimates, and extending the approach to more complex models, including age-
structured populations with overlapping generations.

This research was supported in part by NSF grants BIR-9256537 and BIR-9807747.
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RÉSUMÉ

Le ratio de l’effectif par rapport au nombre total d’adultes reproducteurs est un paramètre
important dans la structure d’une population. Nous présentons une approche de vraisemblance
de Monte Carlo permettant d’estimer ce paramètre à partir de données génétiques, au niveau
de plusieurs loci multialléliques.
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Chapter 3

Excerpts from “Sequential
Forward-Backward Realization of
Latent Allele Counts for Efficient
Importance Sampling”

These are excerpts from a manuscript in preparation with Ellen Williamson (a postdoc in
Monty Slatkin’s lab in Berkeley) and Elizabeth Thompson. The manuscript describes a method
for realizing latent allele counts by a Baum et al. (1970) algorithm. This is the same sort
of technique used in implementing the M -sampler for MCMC in pedigrees (Thompson and
Heath 1998), though in this case there is a twist; we make several approximations so that we
ultimately do not sample latent variables X exactly from their distribution conditional on the
observed data Y. Nonetheless, this method does sample X’s from a distribution that is close to
being proportional to PN (Y,X).

In this project with Ellen, we cast the problem as one of estimating the effective size N of a
population of constant size by straightforward Monte Carlo from an importance sampling dis-
tribution which is not a Markov chain. However, the extension to estimating λ in a population
of fluctuating, but known, census size is straightforward (as should be the extension to over-
lapping year-classes). Finally, it should be readily evident that the P ∗N (X) constructed below
is practically tailor-made to be a proposal distribution for making multi-component Hastings
updates in an MCMC approach to the problem.

3.1 Background on the Problem

Here we describe the problem as one of inference from a hidden Markov chain, and bring to bear a
number of techniques previously developed for such inference. In particular we describe Baum et al.
(1970)-type algorithms for an importance-sampling-based Monte Carlo method of approximating
the likelihood.

3.2 Inference from a Hidden Markov Chain

A researcher collects genetic samples at r+1 different generations, (t0, . . . , tr, with 0 = t0 < tr = T )
from a discretely-reproducing population. For notational simplicity the following will pertain to
a single observed locus, but the extension to multiple, independently-segregating loci is made by
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X0 X1 X2 · · · X t−1 X t · · · XT

Y t0 Y t1 Y tj Y tr

Figure 3.1: An undirected graph showing the dependencies between components of X and Y. The
Y t’s are observations of a hidden Markov chain.

simply multiplying the likelihoods for each locus together. Amongst all of the samples, there are K
different allelic types observed, indexed by k = 1, . . . ,K. The observed frequencies of the different
allelic types will differ through time. The maximum likelihood approach to estimating N , assumes
that the population can be modelled as a Wright-Fisher population of size N and then finds the
value of N that is most likely given the data.

Let Y t = (Yt0,1, . . . , Ytr,K) be the counts of the K different allelic types in the sample at
time t. Denote the sample size at time t by St. The unobserved population allele counts at time
t are Xt = (Xt,1, . . . , Xt,K). The Xt form a Markov chain in time, with transitions defined by
multinomial probabilities depending on N ,

PN (Xt|X0, . . . ,Xt−1) = PN (Xt|Xt−1) = N !
K∏
k=1

[Xt−1,k/N ]Xt,k

Xt,k!
. (3.1)

Observations at time tj are conditionally independent of everything else, given Xtj , and also follow
the multinomial distribution depending on the parameter N and the known sample sizes Stj :

PN (Y tj |X0, . . . ,XT ) = PN (Y tj |Xtj ) = Stj !
K∏
k=1

[Xtj ,k/N ]Ytj ,k

Ytj ,k!
. (3.2)

This system is a hidden Markov chain. (Figure 3.1 depicts in graph format). The likelihood for N
is the probability of the data Y = (Y 0, . . . ,Y T ) given the parameter N . The nuisance parameters
X0 may be integrated out by assuming a prior π(X0) on them. The probability of Y is the sum
of the joint probability of the data, and the latent variables X = (X0, . . . ,XT ) over the space of
all latent variables

L(N) = PN (Y) =
∑
X

PN (Y,X) =
∑

x0,...,xT

(
π(X0)

T∏
t=1

PN (Xt|Xt−1)

) r∏
j=0

PN (Y tj |Xtj )

 .
(3.3)

For the case of K = 2 and N small the likelihood in (3.3) may be computed exactly. Williamson
and Slatkin (in press) effected the summation in (3.3) in terms of multiplication of transition
probability matrices. We note that the hidden Markov form of the system allows a more efficient
computation of the likelihood by way of the algorithm of Baum (1972). However, as K and N
increase, the number of terms in the sum increases dramatically, and exact evaluation by either
method is infeasible. An alternative is to approximate (3.3) by Monte Carlo.
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3.3 Monte Carlo Evaluation

We want to estimate PN (Y) for a number of different values of N . We can express this probability
as an expectation with respect to the distribution of X.

PN (Y) =
∑
X

PN (Y,X) =
∑
X

PN (Y|X)PN (X) = EN

(
PN (Y|X)

)
. (3.4)

In this form the expectation is taken over the marginal probabilities of X, and can be estimated
by Monte Carlo as

PN (Y) ≈ 1
m

m∑
i=1

PN (Y|X(i)) (3.5)

for large m, with X(i) being the ith realization from the marginal distribution of X. The X(i) may
be realized by drawing X0 from the prior distribution, then realizing X1 given X0 by (3.1), then
X2 given X2 and so forth to XT . Doing so, however, will almost always yield X’s that bear no
resamblance to the data, or are simply incompatible with it. For example, suppose that on a given
realization Xt,k = 0 but Y tj ,k > 0 for some tj > t. Then, PN (Y|X) = 0 and that realization
contributes nothing to our Monte Carlo sum. Williamson and Slatkin (unpublished data) avoided
the problem of zero contributions to the Monte Carlo sum by first realizingX0 from its distribution
conditional on Y ) and then ensuring that alleles could not go extinct in the simulated X if they
appeared in future samples, and then reweighting the summand in (3.5) appropriately. Though
this eliminates the zero contributions, it does not address the problem that PN (Y,X) is still very
small for all but a tiny fraction of the X’s realized—a situation that leads to huge Monte Carlo
variance; indeed, Williamson and Slatkin (unpublished) simulated X’s for 30 days on one dataset,
and still did not observe adequate convergence of their Monte Carlo estimate.

Here, we pursue a more refined importance sampling (Hammersley and Handscomb 1964)
scheme. We may express PN (Y) as an expectation with respect to some other distribution of X,
say P ∗N (X). Then the term after the second equals sign in (3.4) may be rewritten so that:

PN (Y) =
∑
X

PN (Y|X)PN (X)
P ∗N (X)

P ∗N (X) (3.6)

which is equal to the expectation

PN (Y) = E∗N

(
PN (Y,X)
P ∗N (X)

)
(3.7)

where E∗N indicates that the expectation is over X’s weighted by the distribution P ∗N (X). The
expectation (3.7) may be approximated by Monte Carlo. Hence,

PN (Y) ≈ P̃N (Y) =
1
m

m∑
i=1

PN (Y,X(i))
P ∗N (X(i))

(3.8)

for suitably large m where X(i) is the ith realization of X drawn from P ∗N (X). The Monte Carlo
variance of the estimator P̃N (Y) will be minimized by choosing a P ∗N (X) which is exactly propor-
tional to PN (Y,X). Of course that distribution would be PN (X|Y). However, if we could compute
PN (X(i)|Y) for any X(i), then we could compute PN (Y) = PN (Y,X(i))/PN (X(i)|Y) and would not
need Monte Carlo at all! Since this is obviously not the case, we take up the task in the following
section of constructing a distribution P ∗N (X) that is close to proportional to PN (X|Y), is easily
sampled from, and for which P ∗N (X(i)) can be quickly computed.
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3.4 Sampling from P ∗N(X) by a Forwards-Backwards Method

We could obtain a realization exactly from PN (X|Y) by employing an exact version of the Baum
et al. (1970) algorithm. Unfortunately doing so would require more computation than computing
PN (Y) outright. However, by assuming that the X and the Y follow an approximate multivariate
normal distribution with special treatment for the parts of that distribution that fall beyond the
bounds of 0 or N , we have developed a computationally cheap method for generating X’s from a
distribution that is very close to PN (X|Y). We describe below the computational procedures which
gives us realizations from P ∗N (X) and allow us to compute P ∗N (X(i)) while doing so.

The method we use is a “forward-backward” method assuming a normal approximation to
genetic drift and sampling in each generation. We realize each of the K alleles sequentially. To
describe this, we introduce several more pieces of notation. First, we will consider the possibility
that the size of the population changes from generation to generation so we haveN = (N0, . . . , NT ).
When we are simulating from P ∗N , we will set the population sizes constant at N , i.e., N =
(N, . . . , N), for realizing the first allele, but then will update N based on our realization for the
first allele. Also, denote by X(k) the vector (X0,k, . . . , XT,k) of latent counts of the kth allele from
time t = 0 to t = T . Similarly we define Y (k) = (Yt0,k, . . . , Ytr,k), and we let S = (St0 , . . . , Str).
Finally, we introduce two new terms which will be used to ensure that we don’t realize any X’s for
which PN (Y,X) = 0. Let δt,k = 1 denote that the realized value of Xt,k must be greater than zero
while δt,k = 0 implies that Xt,j may be greater than or equal to zero, and let κt,k be the number of
alleles with subscripts ` : k < ` ≤ K for which Ytj ,` > 0 for at least one tj ≥ t.

The method for obtaining a realization for X(k)—the latent counts of the kth allele through all
the generations—given an N , an S, and the data Y is described below. With a multiallelic locus,
one works through the alleles sequentially, first realizing X(1) then setting N ← N −X(1) and
S ← S − Y (1), and then realizing X(2), and so forth. To pursue this method, it is easiest to deal
not with X(k) and Y (k) directly, but rather with the corresponding angularly-transformed allele
frequencies. Thus our sample information about allele 1 at time t when a sample exists becomes the
random variable φt,k = sin−1(Yt,k/St)1/2, and the latent variable corresponding to the first allele at
time t is θt,k = sin−1(Xt,k/Nt)1/2.

Following Cavalli-Sforza and Edwards (1967), if θt−1,k is normally distributed with mean
µt−1 and variance σ2

t−1 then, after a generation of genetic drift, θt,k will be approximately normal
with mean µt−1 and variance σ2

t = σ2
t−1 + 1/(4Nt). If there happens to be data φt,k at time t, then

φt,k has an approximate normal distribution with mean θt,k and variance 1/(4St), so, given that
θt,k ∼ N (µt, σ2

t ), the conditional distribution of θt,k given φt,k will also be normally distributed
(like the Bayesian posterior distribution given a normal prior and normal data). These relations
form the basis of the forward step in the Baum et al. (1970) algorithm which works as follows:

3.4.1 The Forward Step:

For t = 0 we assume that the uniform prior on X0 is equivalent to a diffuse prior on θ0,k, so
θ0,k|φ0,k ∼ N (µ0, σ

2
0) with µ0 = φ0,k and σ2

0 = 1/(4S0). With that as a starting point, we work
forward in time assigning values at time t:

µt ←− µt−1 (3.9)
σ2
t ←− σ2

t−1 + 1/(4Nt) (3.10)
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to account for drift. If there are genetic data at time t, then the values of µt and σ2
t are updated

to reflect that before moving on to t+ 1, i.e.,

µt ←−
µt/(4St) + σ2

t φt,k
1/(4St) + σ2

t

(3.11)

σ2
t ←− σ2

t /(4St)
1/(4St) + σ2

t

. (3.12)

Carrying this process on to t = T gives values for the approximate (i.e., assuming the normal
approximation to genetic drift and genetic sampling) mean and variance of θT,k given φt0,k, . . . , φtr,k.
In fact, for each t, it gives us the parameters of the assumed normal distribution for θt,k conditional
on φtj ,k for all tj ≤ t. We are thus in a position to realize the θt,k’s in the “backward” step and
transform those θt,k’s back into Xt,k’s.

3.4.2 The Backward Step:

In undertaking the backward step, we first realize θT,k from a N (µT , σ2
T ) distribution. Then we

convert that to a realized value of XT,k Here we encounter a difficulty; a special rule is required to
convert any realized value of θt,k to the realized value for Xt,k. The simple inverse transformation
Xt,k = Nt sin2 θt,k will not work, first because Xt,k must be an integer, and second because θt,k
may take values which would then yield Xt,k’s less than zero or greater than Nt. Thus, though
we realize each θt,k from a N (µt, σ2

t ) distribution, we then convert that to a realization of Xt,k

by the many-to-one mapping M that sends real numbers to integers between δt,k and Nt − κt,k
inclusive. M has the effect of folding and translating parts of the distribution of θt,k so that it is
bounded between 0 and π/2, and then discretizing θt,k into appropriate values of Xt,k. A complete
description of M is found in Section 3.5.1.

After realizing XT,k you work backward, updating µT−1 and σ2
T−1 based on the realized value

of θT,k. This process is repeated until X),k has been realized. The probability of realizing each Xt,k

can come computed as detailed in Section 3.5.2. So long as the sequence of alleles is followed for
realizing X(k)’s each time, the product of R’s gives the desired probability of realizing X, P ∗N (X).
(That last section is a bit hasty.)

3.5 Details of M and R
3.5.1 The Map M
Let M(θ; δ, κ,N) : <1 → (δ, . . . , N − κ) be the many-to-one map that takes a realization of θ ∈
(−∞,∞) to the corresponding realization of the integer X such that δ ≤ X ≤ N − κ. (Should
note somewhere that δ ∈ {0, 1} and κ ∈ {0, 1, . . . , N − δ}.)) M may be described by the following
pseudocode. We first define the quantities L = sin−1(.5/N)1/2 and

H =

{
sin−1[(N − κ+ .5)/Nt]1/2 , κ ≥ 1
sin−1[(N − .5)/N ]1/2 , κ = 0.

Then, given a realized value of θ we map it to an X as follows:

if (L ≤ θ < H) then X ←− bN sin2 θ + .5c

else if (θ < L)
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and if (δ = 0) then X ←− 0

else if (δ = 1) then θ(L) ←− 2L− θ (this is reflection around θ = L), and then

if (L ≤ θ(L) < H) then X ←− bN sin2 θ(L) + .5c
else we know θ(L) ≥ H, and we consider the sequence θ(i) = i(L−H)+θ(L), i = 1, 2, . . .,

and we assign X ←− bNt sin2 θ(i∗) + 1/2c where i∗ is the least i such that L ≤ θ(i) <
H. (The sequence θ(i) represents successive translation leftward).

else if (θ ≥ H)

and if (κ = 0) then X ←− N
else if (κ ≥ 1) then θ(H) ←− 2H − θ (this is reflection around θ = H), and then

if (L ≤ θ(H) < H) then X ←− bN sin2 θ(H) + .5c
else we know θ(H) < L and we consider the sequence θ(j) = j(H − L) + θ(H), j =

1, 2, . . ., and we assign X ←− bNt sin2 θ(j∗) + 1/2c where j∗ is the least j such that
L ≤ θ(j) < H. (The sequence θ(j) represents successive translation rightward).

3.5.2 The probability Rµ,σ2(x; δ, κ,N) of realizing X = x

If θ is realized from a N (µ, σ2) distribution, then the probability that the corresponding realization
of X = x can be expressed using the notation from the above section. First, Rµ,σ2(x; δ, κ,N) = 0
for x < δ or x > N − κ, and Rµ,σ2(δ; δ, κ,N) = 1 when δ = N − κ (VERIFY THIS, ERIC!).
Otherwise, for x = 0 and x = N we have

Rµ,σ2(0; 0, κ,N) = P (−∞ < θ < L) (3.13)
Rµ,σ2(N ; δ, 0, N) = P (H ≤ θ <∞).

For values of x between 0 and N − κ, defining a = sin−1[(X − 1/2)/N ]1/2 and b = sin−1[(X +
1/2)/N ]1/2,

Rµ,σ2(x; δ, κ,N) = P (a ≤ θ < b) (3.14)

+ I{δ = 1}P (a ≤ θ(L) < b) + I{κ > 0}P (a ≤ θ(H) < b)

+ I{δ = 1}
∞∑
i=1

P (a ≤ θ(i) < b) + I{κ > 0}
∞∑
j=1

P (a ≤ θ(j) < b)

where I{·} is an indicator function and P (a ≤ θ < b) is the probability that a normal ran-
dom variable with mean µ and variance σ2 is between a and b, namely

∫ b
a (2πσ2)−1/2 exp{[−(θ −

µ)2]/(2σ2)}dθ. In practice, the infinite sums are approximated by summing the first several terms
of the series, until the contribution of the next term is very small (e.g., < .0000001).

3.6 The Performance of our P ∗N(Y)

I have assessed how well this scheme works in two ways. First, for a diallelic locus, it is possible to
compute, by a different sort of Baum algorithm, the marginal probabilities of each Xt given the
above scheme for realizing them. Comparing this to the exact marginal probabilities of each Xt

given Y shows that the approximation is quite good. I have also visually inspected the realizations
from our P ∗N (X) with some real-time graphics displays I have coded up. It does produce realizations
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that are close to the desired distribution. Predictably it works best when all the alleles at a locus
have been found at intermediate frequencies in the samples. In loci with many (say ≥ 6) alleles,
some of which are at low frequency (< .05,, say), P ∗N (X) doesn’t perform quite as well. However,
it does generate enough reasonable realizations that it should be an excellent proposal distribution
in a Metropolis-Hastings framework.
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(a) δ = 1, κ = 1, x = 13
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(b) Reflections and Translations
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(c) κ = 0, x = n
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(d) δ = 0, x = 0

Figure 3.2: Figures representing the action of the map M. The normal curve is the density for θ.
(a) When δ = 1 and κ = 1 recall that x is constrained so that x ∈ {1. . . . , N − 1}. In this case,
N = 20; the shaded regions correspond to the probability that M(θ, 1, 1, 25) = 13. (b) A diagram
of reflections and translations implicit inM(θ, 1, 1, N). Long-dashed lines represent the curve after
reflection through L or H, while the short-dashed lines represent the reflected curve after one or
more successive translations. (c,d) Shaded areas show values of θ for which M returns an x of N
or 0 respectively.
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Chapter 4

A Proposal for Fully-Bayesian Mixed
Stock Fishery Analysis Using
Reversible Jump MCMC

This is a general outline of a project I am pursuing in Dr. Julian Besag’s Stochastic Modelling
course (STAT 518). I initiated this project only recently, but have been looking forward to it
since Peter Green’s talk in Biostatistics last year. I have not worked out the exact details on the
pairs of reversible jump moves. Nor have I yet given enough thought to the many advantageous
ways of post-processing the output, but this will be a primary focus during the spring quarter.

4.1 General Introduction and Overview

Managing the salmon populations of the West coast in the face of the many competing interests
which impact their well-being is an outstandingly difficult problem. Crucial to appropriate man-
agement is the recognition that salmon populations are (typically) reproductively-isolated, distinct
populations, and their management should reflect that fact (Ricker 1972). Commercial harvest
of salmon is a major source of mortality in some populations, but one which may be regulated
through policy. However, an obstacle to regulating fishing from a population-based management
perspective is that salmon are typically caught in the ocean (or the mainstems of rivers) where fish
from many different populations are intermingled. It is therefore difficult to monitor the impact of
certain commercial fisheries on specific salmon populations. Fortunately, genetic data from different
salmon populations of interest, in conjunction with statistical techniques, allow salmon managers
to determine the relative contributions of different salmon populations to the mixture of fish being
caught in a fishery.

Beginning in the early 1980’s, electrophoretically-detectable allozyme polymorphisms and max-
imum-likelihood, mixed-stock fishery analysis (Milner et al. 1981; Fournier et al. 1984; Millar
1987; Smouse et al. 1990) have been used to assist managers in estimating the proportion of catch
coming from different source populations from which “baseline” genetic data have previously been
collected. Smouse et al. (1990) extended such analyses to include the possibility that one or more
populations for which no baseline data were available, were contributing to the mixture. Though
Millar (1987) suggested the infinitesimal jackknife as a way of assessing uncertainty in estimates
from genetic stock identification, bootstrap methods are typically used today (Pella and Milner
1987).
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I propose to deal with the contribution of unsampled stocks to the mixture by methods for
fully-Bayesian mixture analysis with unknown number of components as detailed by Richardson
and Green (1996) using Reversible Jump Markov Chain Monte Carlo (RJMCMC). Such an ap-
proach should provide a more useful, Bayesian criterion for model selection (where different models
correspond to different numbers of populations contributing to the mixture), and might alleviate
the need for an extensive “testing cascade” as pursued by Smouse et al. (1990). In addition, the
output from the RJMCMC should provide direct insight into issues traditionally of importance in
genetic stock identification: the question of whether different sources with similar baseline genotype
frequencies should be split or lumped for the purposes of the analysis, the question of which loci are
the most informative, and classifying individual fish in the mixture sample as to their population of
origin. The MCMC approach should provide a natural framework for summing over latent variables
at isoloci (proteins which are coded for at duplicate loci in the genome). The Bayesian nature of
the approach will allow incorporation of prior knowledge (for example, if one population is many
times larger than another, you might expect, a priori that it will make a greater contribution to
the mixture), and should provide a flexible tool for decision-making fisheries managers.

4.2 Salmon and Genetics Background

Salmon have a remarkable talent for returning to the stream from whence they were born.1 We
call an assemblage of fish that all reproduce in the same river a salmon “population.” This means
different salmon populations have different evolutionary histories. In fact, many populations show
evidence of adaptation to the physical characteristics of their home rivers. Each of these populations
is, in effect, a unique entity with its own heritage; the populations vary with respect to their size
and their resilience to fishing pressure, weather cycles, etc. Fishing pressure on salmon must be
regulated so as to not drive to extinction populations of salmon which are at risk of being lost.
However, fishing typically occurs in the ocean where it is impossible to tell if a netted salmon is
from one population or another. It is, however, possible and practical to estimate the proportion
that each of a number of populations contribute to the catch of commercial fishers in the ocean.
This is done by exploiting the genetic differences between the populations.

Because each salmon population has its own evolutionary history, each will have different
frequencies of genetic types. Typically the genetic markers used are neutral, electrophoretically-
detectable, allozyme polymorphisms. These polymorphisms are coded for at different sites (loci)
on the chromosomes of the fish. At a particular locus, the value of the two different alleles (one
maternal in origin, the other, paternal) will determine the fish’s genotype at that locus. The full
complement of single-locus genotypes present in a fish, over all the loci assayed, and the relative
dominance of alleles over one another (as well as the presence of isoloci) determines the fish’s
multilocus phenotype (MP).2 Each salmon population will possess distinct allele frequencies which,
in turn, leads each population to have different proportions of MP’s. It is these differences that
allow the contribution of different populations to the mixture to be estimated.

Crucial to making this scheme useful is the fact that allele frequencies from some salmon pop-
ulations which might contribute to the mixture have been estimated from samples of fish spawning

1A salmon’s homing to its natal stream is not perfect—if it were, none of the rivers in the Northwest would have
salmon in them after the last Ice Age—nonetheless, for wild populations of some species, homing is quite good.

2I use the phrase “multilocus phenotype” instead of multilocus genotype because some loci have alleles that
may not be scored individually, i.e., the heterozygote of two alleles, may appear as a homozygote of one of them.
Additionally, “multilocus genotype” in the human genetics context implies knowledge of the phase (maternal or
paternal origin) of each of the alleles, and this is not the case here.
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in their natal streams (or from samples of their outmigrating offspring). This sampling contributes
several terms to the likelihood (a refinement introduced by Smouse et al. (1990)) allowing for
uncertainty in the baseline estimates. The problem we wish to solve is that of estimating the
proportion of fish from different source populations, given the estimates of allele frequencies in
those source populations and a sample of fish taken from the mixture. If there are populations in
the mixture which were not sampled previously (i.e., for which no baseline data exist) then this
becomes a mixture problem with unkown number of components. In that context, one wishes also
to estimate the number of unknown populations contributing to the mixture, their contributions
to the mixture, and the allele frequencies in those populations.

4.3 The Likelihood

We begin by reviewing the likelihood solution to the problem, and then extend that into a Bayesian
framework. Let there be k populations contributing to the mixture, and let us have baseline data
from k∗ of these.3 These baseline data come from samples of size ni fish from each of the baseline
populations. They are the set of yi`—the multilocus phenotype of the `th fish from the ith source
population—with i = 1, . . . , k∗ and ` = 1, . . . , ni. From the mixture, a sample of n(m) fish are
drawn. The data from the mixture are the y(m)`, ` = 1, . . . , n(m). All of the data are denoted
by y = {yi` : i = 1, . . . , k∗; ` = 1, . . . , ni} ∪ {y(m)` : ` = 1, . . . , n(m)}. The allele frequencies at
each locus in each of the k source populations are parameters in this context. We denote these
parameters for the ith source population as xi and let x = (x1, . . . , xk). The probability of finding
a fish of a particular multilocus phenotype depends on the allele frequencies, the assumptions
of Hardy-Weinberg equilibrium at individual loci and independent segregation between different
loci, and then dominance and isolocus considerations. Accounting for these factors is relatively
straightforward, but for notational convenience, now, we just express the probability of finding
multilocus phenotype j in the ith source population, given its allele frequencies as g(j, xi). If the
`th fish from the ith source or from the mixture has multilocus phenotype j, we say that yi` = j
or y(m)` = j, respectively. Finally the parameter vector w = (w1, . . . , wk) is the vector of mixture
proportions that populations 1 through k contribute to the mixed stock fishery.

The likelihood for x and w given the data is:

L(w, x|y) = p(y|w, x) = C ·
n(m)∏
`=1

(
k∑
i=1

wig(y(m)`, xi)

) · k∗∏
i=1

ni∏
`=1

g(yi`, xi) (4.1)

where C is the product of several multinomial coefficients. The contribution of the samples from
each of the baselines when all alleles are codominant and there are no isoloci factorizes into a
multinomial probability for counts of different allelic types (rather than MP’s). Thus the number
of factors may be reduced considerably when computing (4.1).

This likelihood may be maximized by an EM-algorithm as detailed in Smouse et al. (1990).
To do so, one must create a complete-data specification by assigning to each fish in the mixture
sample an allocation (random) variable which indicates which source that fish is from. Such a
latent allocation variable will also be very useful in the Bayesian approach. For the `th fish from

3Note that, in reality, some of the baseline populations may not contribute at all to the mixture, so k∗ might
be greater than k. Primarily because I haven’t come up with a decent notation for expressing such a situtuation, I
assume here that k∗ < k and that the stocks sampled in the baseline are a subset of the stocks contributing to the
mixture. This assumption will be relaxed as the project proceeds.
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the mixture, we denote by z` the latent allocation variable which takes values between 1 and k,
indicating the population of origin of the fish. We denote all the allocation variables by z =
(z1, . . . , zn(m)

).
Smouse et al. (1990) treated the problem of unsampled stocks contributing to the mixture

(k∗ < k), and the desirability of lumping versus splitting of baseline populations by considering a
series of non-nested models in which stocks were either split or lumped, and excluded or included,
and in which either one or more unsampled stocks were in the mixture. The various models
were compared on the basis of the increase in maximum log-likelihood, relative to increase in
the number of free parameters, but the authors note that the models are not nested, so the log-
likelihood differences are not necessarily asymptotically chi-square distributed. They suggest using
the increases in log-likelihood as rough guidelines only.

4.4 A Bayesian Formulation

With priors for w and x and the likelihood in (4.1), a Bayesian formulation of the problem when k
is constant would give the joint distribution

p(w, x, y) = p(w)p(x)p(y|w, x). (4.2)

Furthermore we can consider the number of components, k, in the mixture to be a random variable
with prior p(k), and we may consider the allocation variables z in our model. Then we may write
the joint density as

p(k,w, x, z, y) = p(k)p(w|k)p(x|k)p(z|w, k)p(y|x, z). (4.3)

This factorization obtains because w and x have dimensionality depending on k, the prior for z
(when the multilocus phenotypes are not known) depends on w (with k included there since the
support of z depends on k), and finally, the data y are conditionally independent of w given x
and z.

For greater flexibility one may wish to include some hyperparameters with appropriate hyper-
priors. I will investigate this as I proceed. For now, we specify priors p(k), p(w|k), and p(x|k).

The priors p(w) and p(x) shall be Dirichlet distributions. The Dirichlet prior is suitable for x on
the grounds of population genetics theory. The allele frequencies at a single locus will presumably
not be too far from existing in “drift-mutation” equilibrium such that they should follow a Dirichlet
distribution (Wright 1937). Thus the components of xi from a single locus would follow a Dirichlet
distribution with number of variables equal to one less than the number of distinct allelic types
found at that locus in all the baselines and the mixture.4 Empirical evidence of allele frequencies in
salmon populations supports this assumption; a histogram of allele frequencies for at least 50 loci
in 177 chinook populations follows a classic, upward-facing, beta-distribution “U” shape (Waples
1990a). Such data from many salmon populations may be useful for determining the parameters
of Dirichlet priors. Alternatively, it may be preferable to adapt “uniform” Dirichlet priors for each
locus.

The weights w of the different populations are proportions and may also follow a Dirichlet
prior. Often, a uniform prior may be appropriate, however, surely if one population is of size 40,000
individuals, and another population is of size 1,000 individuals, then there is some prior information

4It may be desirable to allow for allelic types that were not sampled at all, giving a Dirichlet prior with one extra
component having very little weight. This will be explored.
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about the sorts of relative contributions those two populations might make to a mixture. One way
of deriving a prior for these weights given estimates of population sizes Ni, i = 1, . . . , k, is to define
the prior as

w ∼ Dirichlet(QN1/N, . . . , QNk/N) =⇒ p(w) = CD(w1)
QN1
N · · · (wk)

QNk
N (4.4)

where
∑
wi = 1, N =

∑k
i=1Ni, and CD is the normalizing constant for this Dirichlet distribution,

and Q ≥ 0 is a factor which expresses the strength we choose to impart to the prior on w. In effect,
this prior arises by imagining that without population size information there would be a uniform
prior on w, but that we draw an ideal sample of size Q well-labelled fish from the mixture and
find that the fish in the sample are in the proportions expected from their population sizes. The
posterior distribution for w from this thought experiment then becomes the prior distribution for
w for the mixed fishery analysis. Larger Q implies that we give more weight to the population size
data. Choice of Q could depend upon many things.

The prior on k could follow a Poisson distribution, or some other distribution deemed appro-
priate on the basis of knowledge of the number and sizes of populations for which no baseline data
are available, but which may nonetheless contribute to the mixture.

4.5 MCMC Techniques

There will be three standard MCMC moves, and two pairs of reversible-jump type moves. The
three standard moves are 1) updating w, 2) updating the allocation vector z, and 3) updating x,
which may be done in three different Gibbs steps, the computations for which resemble those in the
EM algorithm for finding the maximum likelihood estimate. The full conditional distribution for
w is Dirichlet by conjugacy, since knowing z gives multinomial data depending on w (one merely
classifies and counts all fish in the mixture according to z). Hence, if p(w|k) is Dirichlet(δ1, . . . , δk)
then the full conditional for w is Dirichlet(δ1 + #{z` = 1}, . . . , δk + #{z` = k}), where #{z` = i} is
the number of fish in the mixture sample having allocation variable equal to i. We sample Dirichlet
random variables by realizing independent gamma random variables with appropriate parameters
and then scaling them so they sum to one.

Next we update z from its full conditional distribution. The full conditional for each z` can be
found with Bayes’ rule,

P (z` = i| · · ·) =
wig(y(m)`, xi)∑k
i=1wig(y(m)`, xi)

, i = 1, . . . , k (4.5)

and then easily sampled from by drawing a Uniform(0, 1) random variable. Finally, the allele
frequency parameters need to be updated. The full conditionals for these parameters will be
Dirichlet distributions for each locus within each population. This obtains because, conditioning
on the z`, it is possible to assign fish from the mixture into the appropriate baseline samples, and
then count the number of allelic types in all of those “combined samples.”

Either the presence of null alleles or isoloci in the data could complicate the update steps
for z and x. However, it seems plausible that the convenient conjugacy could be maintained in
each situation by introducing some new variables. For example, in the null allele case, one could
introduce a variable indicating the allelic type of the “masked” allele (either a null allele or another
copy of the dominant allele) at the locus. These new variables could then be updated from their full
conditionals (which would probably be multinomial in form) in separate steps during each sweep.
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For the moves that are specifically of a reversible-jump nature, i.e., the split-combine or the
birth-death updates to the sources of the mixture, I will use the methodology developed by (Green
1995). I haven’t figured out the specifics of how these moves will be done, and which variables will be
allowed to undergo them. Since some of the sources have baseline data, and hence are permanently
labelled, while sources for which no baseline data are available may appear and disappear in the
sampling, and be “different” source populations each time, I must still do a little thinking about
how to best approach this.

4.6 Using the Output

Most importantly, one gets samples from the posterior for w, marginalized over the unkwown
number of stocks contributing to the mixture. Of course, one can also look at posterior distributions
conditional on the values of other variables. Exploring these possibilities will be an important part
of the project. Dr. Robin Waples from the National Marine Fisheries Service has kindly provided
a dataset from the Columbia River in 1980 and 1981 as a good test case. It is the same data that
he and others treated in Smouse et al. (1990).
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Chapter 5

Proposed Research Statement
Excerpted From NSF Grant
#BIR-9807747, “Computational
Methods for Inference of Population
Parameters,” (PI: E.A. Thompson)

This is the “proposed research” section from the grant proposal that Elizabeth Thompson
and I wrote in December 1997. The proposal was submitted to the Computational Biology
program at the National Science Foundation, and a three-year grant was awarded in September
1998. This grant is my primary funding source for the remainder of my student years at the
University of Washington.

5.1 The genetic monitoring of populations

In conservation, much of the methodology of genetic management has focused on very small captive
or semi-captive species or populations, the members of which are individually identified (Lacy
et al. 1995). However, in the monitoring of natural populations, and in the reestablishment of
wild populations of endangered species, it may be neither feasible nor appropriate to identify each
individual and the detailed pedigree structure of the population (Ballou et al. 1995). Instead,
there may often be information on population size and age structure, and genetic samples may be
obtainable. In order to conserve the population or to provide successful population management,
for example by providing migration corridors or by moving subpopulation groups, it is necessary
first to be able to estimate well the relevant population parameters (Foose et al. 1995).

The effective population size Ne (Wright 1931) is the most fundamental parameter of a
population from the perspective of its genetic characteristics, affecting both the rate of inbreeding
and of loss of genetic variability in the population. The variance effective size determines the
increase of gene frequency variance in future generations, while the inbreeding effective size affects
the increase in gene identity by descent. In some cases these two effective sizes take different
values (Crow and Morton 1955), but in others they are comparable (Charlesworth 1980).
Conservation geneticists must establish a population’s Ne as a measure of its genetic risk; inbreeding
due to small effective size greatly increases the probability of population extinction in typically
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outbreeding species (Frankham 1995b), and small effective population size over prolonged periods
may lead to “mutational meltdown,” resulting in the eventual loss of the population due to the
load of deleterious recessive mutations (Lynch et al. 1995).

Effective size, Ne, is determined by N , the number of potentially reproducing adults in a
population, and by a number of intergenerational factors such as sex-ratio, reproductive success,
and family size distribution. Conservation biologists may often readily estimate N , for example by
aerial surveys of herd species (such as bison, Wolfe and Kimball 1989) or weir counts of returning
salmon (Smith et al. 1997). Thus, a key quantity in assessing genetic risk is λ, the ratio of the
effective number of reproducing individuals to the census number of adults potentially contributing
to a cohort of offspring. Knowing λ and the age-class sizes of a population, a biologist could make
informed predictions of the expected loss of genetic variability in future years. An important feature
of this perspective is the separation of multigenerational factors such as fluctuating population size
from the factors affecting the distribution of family sizes in a single season of reproduction. In a
population with non-overlapping generations and no age-structure, λ is the ratio Ne/N , but this
definition does not prevail in populations with more complex structure.

Frankham (1995a) reviews 192 published Ne/N ratios from 102 species. The ratio varies
widely among species and even among different populations of the same species. Much of this
variation is attributable to the different life histories of the organisms studied, but it is also a
reflection of the inability of the Ne/N ratio to capture much information in the context of over-
lapping generations and fluctuating population size. Except in organisms with the simplest life
histories, the available methods for estimating effective size do not allow estimation of λ, the most
relevant parameter in a genetic monitoring context. For example, of the demographic methods,
the formulae of Crow and Denniston (1988) for estimating Ne from the sex ratio and variance
in family size apply only to populations with discrete generations, while the method of Nunney
and Elam (1994) for organisms with overlapping generations, being based on the formulae of Hill
(1979), essentially assumes that the population is of constant size and age structure—the method
yields an Ne that does not clearly relate to λ.

Demographic methods require knowledge of family sizes which may be difficult to measure, if
not nearly impossible as in the case of organisms with high fecundity and high juvenile mortality.
In such cases, estimating Ne or λ from genetic data is a possibility. One such method, which uses
linkage disequilibrium data (Hill 1981; Bartley et al. 1992) requires a number of assumptions
which limit its applicability. Existing methods that infer Ne from temporal changes in allele fre-
quencies (Nei and Tajima 1981; Pollak 1983; Waples 1989; Waples 1990b) cannot separate
multigenerational effects (fluctuating population size or age structure) from the intergenerational
factors, and thus cannot estimate λ. We propose a statistical and computational approach to
estimate λ (or Ne, if desired) from genetic data on population samples.

While λ should be estimated to monitor genetic risk, other population parameters are also
important in conservation. To determine origins of subpopulations, admixture must be assessed.
Estimation of admixture between strains and stocks has attracted much recent interest from pop-
ulation biologists in a wide variety of species from the hybridization of tree species (Bacilieri
et al. 1996) or mammal breeds (Machugh et al. 1997) to the mixing of cultivated and wild strains
of grasses (Faville et al. 1995) or wild and hatchery strains of salmonid stocks—the Washing-
ton Department of Fish and Wildlife is currently genetically monitoring steelhead (Oncorhynchus
mykiss) populations for just that purpose (Steve Phelps, WDF&W, pers. comm.). Inference of
migration structure is another key factor in monitoring genetic risks to a subdivided population.
We will extend our computational framework for estimating λ to encompass problems of estimation
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of admixture and migration.

5.2 Availability of population and genetic data

Avise et al. (1995) review the genetic markers currently available to researchers, discuss the types
of analyses those markers allow, and review applications in conservation genetics. Band-sharing
methods for multilocus DNA fingerprints and RAPD’s have been developed (Lynch 1988), and used
to infer relationships among individuals. However, the power to infer individual relationships is
slight, and, for natural populations, genetic monitoring without inferring a pedigree is an attractive
option. The advent of Mendelian-inherited microsatellite markers (Tautz 1989; Wright and
Bentzen 1994) has made informative genetic data increasingly available and inexpensive for such
monitoring. Among other examples, DNA markers amplified from fin clips have been used in
monitoring Pacific salmon (Olsen et al. 1996), while hair samples have been used in studying bear
(Taberlet et al. 1997), and chimpanzee (Morin et al. 1993) populations. PCR-based technologies
are especially appropriate for populations of conservation interest as sampling is non-destructive
and/or non-invasive. It is thus possible to obtain data at multiple time points, and, since the
markers are highly polymorphic, the data are informative in characterizing the population at each
time point, and hence also in detecting and quantifying the gene frequency changes caused by small
effective population size or genetic exchange with other populations.

With microsatellite markers and PCR, data may be extracted from archived tissues, giving the
opportunity to obtain data from time points in a population’s past. For example, museum-preserved
skins from known populations of the pocket gopher provide genetic data on the populations at two
time points (1950’s, 1970’s) which may be compared to current samples (Ellie Steinberg, UW
Dept. of Zoology, pers. comm.). For some fish populations, the situation is even better. Many
such populations have been the subject of long-term ecological research efforts with population size
estimates available on a yearly basis, and age composition inferred from fish scales. Genetic marker
data may be obtained from these archived scales. Recently, Miller and Kapuscinski (1997)
isolated DNA from northen pike scales collected from Lake Escanaba, WI. Using data from three
years, 1961, ‘77, and ‘93, they estimated Ne from the temporal changes in allele frequencies over
the two time intervals. In a similar, ongoing study, microsatellites from archived juvenile Keogh
River (Vancouver Island) and Snow Creek (Washington State) steelhead scales are being analyzed
in the laboratory of Anne Kapucsinski (William Ardren, University of Minnesota, pers. comm.). In
both of the above studies, population census data are available over the time periods in question,
and genetic data are available in many more years than those considered by the studies.

Data, both genetic and demographic, in closely monitored or studied populations are increas-
ingly available, but are also more complex in structure: genetic samples may be drawn from ju-
veniles and/or reproducing adults at many points in time; fuller data on fluctuating population
sizes might be available as well as detailed information on age composition of populations. Multi-
ple multi-allelic loci, some potentially linked, and often having low-frequency alleles, are becoming
widely used. Efficient and simultaneous use of all these sources of information demands explicit
stochastic modeling of population-specific genetic processes. Inference on such models is analyti-
cally complex and computationally intensive.
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5.3 The Monte Carlo likelihood approach

In many areas of scientific modeling, where a highly structured complex stochastic system underlies
observable data, it may be impractical or even infeasible to compute a likelihood exactly. With
the advent of ever faster computers, Monte Carlo likelihood (Geyer and Thompson 1992) is an
increasingly valuable approach. In many of these structured systems there are latent variables,
which define the dependence structure of the data. Specifically, suppose we have data random
variables Y and a stochastic model indexed by parameters θ. Then, for any chosen latent variables
X the likelihood may be written

L(θ) = Pθ(Y) =
∑
X

Pθ(Y,X) =
∑
X

Pθ(Y | X) Pθ(X). (5.1)

The latent variable X is chosen to facilitate rapid computation of the component probabilities
Pθ(Y|X) and Pθ(X), either or both of which may depend on the model parameters θ. The com-
putational difficulty then lies in the summation over the set of all possible X values. It is this, or
an equivalent, summation which is to be effected by Monte Carlo.

Although methods for Monte Carlo evaluation of sums and integrals date back to Hammersley
and Handscomb (1964), direct Monte Carlo evaluation of (5.1), for example by simulation from
Pθ(X) is likely to be ineffective, since realizations will bear no relationship to the specific data Y.
More effective Monte Carlo estimates are obtained when latent variables X are realized from the
conditional distribution Pθ(X|Y). Then (5.1) may be rewritten in the form

L(θ)
L(θ0)

=
Pθ(Y)
Pθ0(Y)

=
∑
X

Pθ(Y,X)
Pθ0(Y,X)

Pθ0(X | Y) = Eθ0

(
Pθ(Y,X)
Pθ0(Y,X)

∣∣∣∣Y) (5.2)

(Thompson and Guo 1991). Thus the likelihood ratio is expressed as an expectation with respect
to the distribution of X conditional upon Y under the model θ0, and can be estimated by averaging
values of the integrand Pθ(Y,X)/Pθ0(Y,X) over X values realized from this conditional distribu-
tion. This form has two major advantages. First, the values X realized from Pθ0(X|Y) will be in
proportion to Pθ0(Y,X), and so will be those giving high contributions to the likelihood, provided
θ does not differ too far from θ0. Second, realization at a single θ0 provides a Monte Carlo estimate
of the entire likelihood surface L(θ)/L(θ0), at least in the neighborhood of the model θ0.

The disadvantage of the form (5.2) is that realizations from Pθ0(X|Y) are required. This
conditional probability is Pθ0(X|Y) = Pθ0(Y, X)/Pθ0(Y) which is proportional to Pθ0(Y,X) as a
function of X. Now Pθ0(Y) is not readily computable; if it were, Monte Carlo likelihood would be
unnecessary. However, the latent variables X are chosen so that Pθ0(Y,X) is easily evaluated, and
Markov chain Monte Carlo (MCMC) is a method developed precisely for the purpose of sampling
from a distribution known only up to a normalizing factor (Hastings 1970). Early forms of MCMC
date to the Metropolis algorithm (Metropolis et al. 1953) and the Gibbs sampler (Geman and
Geman 1984) and in recent years many forms of Metropolis-Hastings samplers have been developed
and implemented (Gilks et al. 1996).

All MCMC methods are based on defining an irreducible Markov chain over the space of X
values, the equilibrium distribution of the chain being the distribution from which realizations are
desired. Thus expectations with respect to the distribution may be estimated by time-averages over
realizations of the chain. Possible transitions of the chain are drawn from a proposal distribution.
For each proposed change to X, an acceptance probability is computed. If the change is accepted
with this acceptance probability, X otherwise remaining unchanged, the equilibrium distribution of
the chain will be as desired. The Gibbs sampler is a special case of a Metropolis-Hastings sampler
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in which the proposal distribution resamples components of X from their conditional distribution
given Y and the remaining components: in this case the acceptance probability is always one.
Components may be updated singly, but it is often more efficient to update several components of
X jointly, where this is computationally feasible (Smith and Roberts 1993). Recently, Metropolis-
Hastings samplers have been generalized to include reversible-jump MCMC samplers (Green 1995).
This enables sampling of more complex structured spaces, where the dimension of the space of X
values may vary within a single run of the chain.

MCMC methods have been used extensively in genetic analysis, particularly in the analysis
of data on extended or complex pedigree structures. In segregation and linkage analysis of trait
and genetic marker data observed on members of a known pedigree, the latent variables may be
genotypes (Guo and Thompson 1992) or meiosis indicators (Thompson 1994) or both (Lange
and Matthysse 1989). While too large a space of latent variables is undesirable, sometimes the
addition of more variables makes it possible to develop better mixing MCMC methods. Single-
site updating methods, in which a single component of X is proposed to be altered, are generally
very slowly mixing. Long runs are then required to ensure both adequate convergence to the
equilibrium distribution and precise Monte Carlo estimates. (If successive realizations are very
highly correlated, large Monte Carlo sample sizes are needed to reduce the Monte Carlo standard
error.) Methods to improve the mixing of samplers have been developed; one example in the area
of inference of ancestral types on a large complex pedigree structure is the simulated tempering
method of (Geyer and Thompson 1995). Recently, to improve mixing and ensure irreducibility,
there has been a focus on developing methods in which multiple components of X are updated
simultaneously. In pedigree analysis, such methods include use of a block-updating Gibbs sampler
(Janss et al. 1995), a whole-meiosis Gibbs sampler (Thompson and Heath 1997), and a whole-
locus Gibbs sampler (Heath 1997). New MCMC methods to analyze more complex model spaces
are being used in genetic analysis: reversible-jump MCMC (Green 1995) has been used in methods
to detect and locate multiple quantitative trait loci (QTL) from trait and genome-scan data, where
the number of QTL is not prespecified and thus the dimension of the model varies within a single
MCMC run (Heath 1997).

MCMC methods have also been used in analyses of inference of relationship among individuals
from genetic data. Painter (1997) develops methods for estimation of sibship structure, sam-
pling directly over the space of alternative sibship structures, using data on microsatellite markers.
Geyer et al. (1993) use a Metropolis-Hastings MCMC method to construct a Monte Carlo likeli-
hood function for relationship parameters among a group of individual California condors, on whom
there are multilocus DNA fingerprint data. At the other extreme of the evolutionary time scale,
MCMC methods have also been used in phylogenetic analyses, to estimate evolutionary parameters,
such as the product of mutation rate and effective size (Kuhner et al. 1995), or the rate of increase
of populations (Kuhner et al. 1997). In these analyses, the latent variable X is the structure and
inter-coalescence times of the ancestral coalescent (Kingman 1982) of a sample of DNA sequences,
and is sampled using a Metropolis-Hastings algorithm. Newton et al. (1997) have proposed an
alternative specification of the coalescent structure, leading to an MCMC sampler which can make
large changes in ancestral topology in a single MCMC step. In some cases, this specification may
provide a better mixing sampler. Other Monte Carlo likelihood methods have also been used in
the context of estimation of growth rates (Griffiths and Tavaré 1994) and recombination rates
(Griffiths and Marjoram 1996), and inference of mutation models (Nielsen 1997). Again
the realized latent variable is the ancestral coalescent, in these cases specified by the sequence of
ancestral recombination, mutation, or coalescent events.
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While MCMC methods have been used on pedigrees and on coalescents, there seems previously
to have been no proposal to use them on the intervening population time-scale, where data consist
of allele frequencies in samples of individuals from specified populations. The samples may be
from the same population at different time points, or from different populations. A population
may be subdivided, with some migration or admixture process among the subpopulations. A
population may also be age-structured. In the data samples, there may or may not be information
on the ages or subcomponent origins of the sampled individuals. The primary parameter of interest
may often be effective population size Ne or the parameter λ (section C.2.1), although migration
and admixture structure may also be of interest. This structure is ideally suited to Monte Carlo
likelihood with a latent-variable framework (equation (5.2)); the latent variables are the allele
frequencies in components of the population. MCMC is ideally suited to the sampling of these
latent variables, since the population processes underlying changes in allele frequency can be simply
specified in terms of the model parameters, and the probability of data samples conditional upon
underlying allele frequencies are likewise easily specified.

Thus our objective is to develop methods with which to realize allele proportions or counts,
conditional upon data from samples, in order to provide Monte Carlo likelihoods for genetically
relevant population parameters. To be specific, let us consider the simplest possible case of a
discrete generation population, with samples taken at two successive generations and typed for a
single diallelic locus. For simplicity we consider binomial sampling (with replacement) from the two
populations, although hypergeometric (without replacement) sampling could also be implemented.
Suppose that the frequency (proportion) of one of the two alleles is x1 in the first generation, and
x2 in the second. Suppose the samples are of size n1 and n2, and the frequencies observed in the
samples are y1 and y2. Suppose that the (diploid) variance effective population size over this one
generation of drift is Ne, and that Ne is small enough that standard diffusion approximations would
be inappropriate. The adult census size N is assumed known, and in this case λ = Ne/N . The
likelihood for θ = (x1, λ) is

L(θ) = Pθ(Y1 = y1, Y2 = y2) =
∑
x2

Pθ(Y1 = y1, Y2 = y2 | X2 = x2)Pθ(X2 = x2) (5.3)

which involves summation over all possible values of x2. However, the conditional probabilities are
easily computed:

(Y1|x1) ∼ n−1
1 B(n1, x1) (Y2|X2 = x2) ∼ n−1

2 B(n2, x2), (X2|λ, x1) ∼ (2Ne)−1B(2Ne, x1),
(5.4)

where B(n, p) indicates a binomial probability distribution with index n and parameter p. Thus,
Monte Carlo evaluation of likelihood ratios using equation (5.2) is straightforward. In this basic
formulation we have treated the initial allele frequency x1 as a parameter to be estimated jointly
with λ. This is undesirable, particularly when there are data on many alleles at many loci, each
with an initial frequency to be estimated. Ways to avoid this are discussed in section C.2.6.

Of course, in practice, the situation will be far more complex than this simple example. The
data Y may be of marker phenotypes rather than genotypes, so sample allele proportions may
not be observable. The markers will have multiple alleles, there will be data at multiple genetic
marker loci, and some of these loci may be genetically linked. We may have data at multiple time
points, and may wish to consider the evolution of the population over multiple generations. The
generations may be overlapping, and the population age-structured. The population may have
several components, or be an admixture of several ancestral stocks. Despite these complications,
the same principle applies. We consider specific approaches to addressing more complex models
later in the proposal, but first review current methods for the estimation of population parameters
from the genetic characteristics of population samples.
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5.4 Current methods for inference from allele frequencies

Estimating Ne by temporal methods. Current methods for estimating Ne from temporal changes
in allele frequencies are either direct applications or extensions of the F -statistic based approaches
of Nei and Tajima (1981) and Pollak (1983). F is the standardized allele frequency variance
after t generations of genetic drift: F = (xt − x)2/x(1 − x), where x is the initial population
allele frequency and xt is the frequency at time t. Such methods are not well-suited to the data
now available. They do not deal well with samples from multiple time points; Pollak’s method
does so only by assuming Ne is constant. Additionally they are based, implicitly or explicitly, on
diffusion approximations for genetic drift—approximations which are unreliable for alleles at low
frequencies in small populations. Anderson (1998) compares diffusion approximations with exact
t-generation transition probabilities of allele counts, demonstrating a significant discrepancy when
the probability of allele fixation is non-negligible. Felsenstein (1985) documents similar problems
with such diffusion approximations. Waples (1989) shows that F -based methods exhibit a bias in
the estimation of F when there are alleles in low frequencies, resulting in a bias in the estimation
of Ne. Eliminating this bias currently requires grouping rare alleles, thus losing information.

Waples (1990b) and Jorde and Ryman (1995) extend the above methods to organisms
with more complex life histories. By computer simulations Waples (1990b) derives an empirical
relationship between F and the effective number of spawners per year, Nb, in a semelparous salmon
population with three ages of maturation. He estimates Nb from two samples separated in time by
one or more years. He also proposes a method of averaging F values over more time intervals to
accommodate data from several time points, but reports added imprecision when using samples from
many different time points. His basic model assumes that Nb is constant over time, and he points
out via computer simulations that the method is less reliable when population size fluctuates. When
data for the number of returning adults, N , are available, and N varies over time, a problematic
feature of this approach is that it is not straightforward to estimate λ = Nb/N . The method
estimates an average number of effective spawners over the time interval in question, but does
not relate this quantity clearly to the observed population sizes. With this method, the effects on
estimated effective population size of intergenerational (breeding) factors cannot be separated from
the effects of changing population size.

Jorde and Ryman (1995) present a method for estimating effective size in populations with
overlapping generations, and they use it estimate the effective size of four iteroparous, brown trout
(Salmo trutta) populations (Jorde and Ryman 1996). Their method is also F -statistic based.
They assume that the population in question is of constant size with constant survivorship and
mortality so that they can consider the allele frequency changes that would be observed once
the population’s gene frequency variance has settled into an asymptotic pattern of proportional
increase each year (Hill 1979; Charlesworth 1980). These assumptions are unlikely to hold
when population size, and hence also age structure. varies from year to year. For example, the
steelhead population of the Keogh River, has varied about 200 reproducing adults to over 2,800 in
ten years of record (Ward and Slaney 1988).

Inference of admixture. In a typical admixture problem, snapshot data of present-day gene
frequencies from parental populations and the admixed one are used to infer the proportion that
each parental population contributed at the time of admixture some known time in the past. Ac-
cordingly, the inference must take account of error due both to drift and to sampling. Thompson
(1973) presented the first method to include both drift and sampling error. Long (1991) devel-
oped an iteratively reweighted least squares method incorporating drift and sampling for use with
codominant and recessive marker alleles. Both of these methods adopt a diffusion approximation
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for genetic drift and have been used primarily in the context of human populations, since only
for these, until recently, have there been adequate population samples. With small populations of
endangered species, the effect of random genetic drift may far outweigh sampling variation. Partic-
ularly with highly polymorphic markers, inference then requires use of exact genetic drift transition
probabilities such as may be effected by Monte Carlo methods.

The basic framework for inference of migration structure is similar to that of admixture; indeed,
migration is continual admixture. Again, the available data have led to methods being developed
in the context of human population studies, with earlier studies using distance methods based
on diffusion approximations to infer, for example, patterns of migration among Italian villages
(Cavalli-Sforza 1969). More recent studies have used likelihoods derived from migration matrix
models and other multiallelic admixture models to estimate patterns of migration and admixture
among Faroese Islands (Thompson 1984) or Amerindian villages (Long and Smouse 1983). With
the advent of more polymorphic markers, there has been consideration of the migration information
contained in patterns of presence or absence of rare alleles (Thompson et al. 1992). In these cases
diffusion approximations are inadequate, and other methods are needed. Slatkin (1995) has
developed a more general framework for inference of migration structure from data on polymorphic
microsatellite loci. However, there is currently no method for computing likelihoods for, and hence
testing, specific migration hypotheses.

5.5 Population sampling and relationship to life-history

Some components of our methods must necessarily reflect details of the life history of the species
under study. Salmonid populations are of great conservation interest (Waples 1995; Nehlsen et al.
1991), and they present a range of life-history scenarios which may be addressed within a relatively
coherent framework. Pink salmon (Oncorhynchus gorbuscha) have the simplest life-history. They
are semelparous and mature exclusively at two years. Thus the odd-year and even-year populations
follow a rigid, discrete non-overlapping generation model. Indeed, the two-year-old maturation age
is so rigid that, throughout the species’ natural range, odd- and even- year populations can be
distinguished genetically (Zhivotovskii et al. 1989). Modeling the life history of this species is
straightforward, but must accommodate population fluctuations that may be extreme (Heard
1991).

Sockeye salmon (O. nerka) offer another life history—this species is semelparous, but adults
returning to spawn may be three, four, or five years old, providing the additional complication
of an age-structured adult population, and contributions from three years of juveniles to each
returning adult year class. Chinook salmon (O. tshawytscha) are similarly semelparous, with a
returning population composed of several year classes. The maturation ages are different, however;
fish mature at two to eight years (Healey 1991). More complex again are steelhead, (O. mykiss).
These fish may remain in fresh water for several years before going to the ocean, and they may
reside in the ocean and return to spawn several times. Since they are iteroparous, they have
true, overlapping generations, and individuals could be sampled at several stages in their life span
(Withler 1966).

Our initial modeling efforts will be on a semelparous salmonid, with a variable spawning age,
such as O. nerka or O. tshawytscha. We shall assume we have an annual estimate of of the number
of returning adults, N , which will enable us to separate the effects of fluctuating population size
from other aspects of the breeding structure of the population. We aim to estimate the ratio
λ = Nb/N where Nb is the effective number of reproducing individuals in a given year (Waples
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and Teel 1990; Waples 1990b). To accommodate the variable age at reproduction we shall model
the allele frequencies of the separate year classes contributing to a given adult pool of potential
breeders.

We will assume genetic data are available from population samples. The potential to sample
non-destructively either adults or juveniles raises several interesting modeling and computational
issues. Nei and Tajima (1981) distinguish between two different sampling schemes: one in which
adults are sampled non-destructively, and the other where samples are from the huge pool juveniles
produced by these adults. In the latter case, sample size may be larger than effective population
size. If returning adults are sampled, we have a direct estimate of the genetic characteristics of the
breeding population. Estimates of the proportions in each age class may also be available. If only
juveniles are sampled, we can consider variation only between offspring gamete pools. Inferences
will be dependent on our ability to make life-history assumptions, for example about the age-
composition of the parent population. Where both adults and their offspring are sampled, there is
the potential to separate components of drift. In principle, at least, it would be possible to test for
the differential contributions of adults in the different age classes. Additionally the contribution
to drift from reproductive and freshwater life stage factors could be separated from the effects of
differential ocean survival. By casting the inference problem in an explicit probability framework
and computing likelihoods by MCMC, we will have the flexibility to treat any sampling scheme or
a mixture of several.

We will assume the availability of samples taken at multiple time points, although not necessar-
ily every year. In estimating admixture proportions we will pursue inference from both single-time-
point data as well as data from several points in time. Rannala and Hartigan (1996) provide a
pseudo-likelihood approach to the problem of estimating, from single-time-point data, the average
number of migrants per generation among subpopulations: An MCMC framework could provide
a likelihood estimation procedure. However, our primary focus will be on data taken at multiple
time points, and on estimating migration as a process of ongoing admixture.

After treating the semelparous salmon life histories, we will consider the iteroparous life history
of O. mykiss to begin extending our methods to organisms with truly overlapping generations. This
will also allow us to estimate λ from the excellent datasets being compiled for two populations of
this species (William Ardren pers. comm.), and to infer and estimate admixture from hatchery
populations of O. mykiss to adjacent wild populations. Our modeling efforts for O. mykiss will
be an important step in making these methods general to a broad class of iteroparous species of
conservation interest.

5.6 MCMC approaches to multiple parameters and missing data

The aim of our proposed MCMC algorithms is to realize underlying population allele counts or
frequencies, in order to provide likelihoods for genetically relevant population parameters, such as
Ne or λ, and to estimate admixture proportions, and migration structure. In this section, we provide
some preliminary details of our proposed methods; implementing and then refining these methods,
to improve the statistical and Monte Carlo efficiencies of procedures, is the major component of
the proposed research.

In section C.2.3 we gave the equations (5.3) and (5.4) for sampling the latent frequencies at
a single generation for a single allele. Considering first a discrete-generation population, extension
to samples at multiple time-points is straightforward. Each sample Y is a binomial proportion,
with index the sample size n, and parameter the frequency of the allele X in the population from
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which the sample is taken (equation (5.4)). Each generation t, conditionally upon the previous one,
has a population frequency Xt which is a binomial proportion, with index 2Ne(t) and parameter
Xt−1, where Ne(t) is the diploid effective population size over that generation (equation (5.4)).
Conditional on the population frequencies X, the data samples Y are independent, each depending
only on the X-value in the population from which it is taken. The distribution of any given Xt,
conditional on the other X-values and on the samples Y, depends only on Xt−1, Xt+1, and, if a
sample is taken at generation t, on the sample proportion Yt. For example, equation (5.3) may be
rewritten

L(x1, λ) = P(x1,λ)(Y1 = y1, Y2 = y2)

=
∑
x2

Pλ(Y1 = y1, Y2 = y2 | X2 = x2, X1 = x1)Pλ(X2 = x2 | X1 = x1)

=
∑
x2

Pλ(Y1 = y1|X1 = x1)Pλ( Y2 = y2 | X2 = x2)Pλ(X2 = x2 | X1 = x1) (5.5)

This conditional independence structure of hidden-Markov form makes implementation of a Metropolis-
Hastings or Gibbs sampler for X straightforward. Note there need not be data from every genera-
tion; whatever data there are can be fully utilized without additional complexity.

Clearly, to have sufficient statistical power for useful inferences, data from a large number
of polymorphic loci are required. While, for unlinked loci with negligible linkage disequilibrium
among them, latent population allele frequencies can be realized independently, loci with multiple
alleles cause potential difficulties. In place of binomial samples, we have multinomial samples. For
binomial samples the probabilities can be evaluated rapidly even for populations or samples of
several hundreds or even thousands, by pre-computing and storing the binomial coefficients. For
multinomial samples, the number of such coefficients makes this impractical. One solution is to
sample the allele counts at a locus sequentially over the alleles; each of the first k − 1 allele counts
at a k-allele locus is then again a binomial realization. Computational efficiency is improved by
sampling first the larger allele classes.

In equation (5.3) in C.2.3, we treated the initial population allele count as a parameter to be
estimated jointly with the parameter λ. While this is acceptable when data on only a few loci
and alleles are to be estimated, it is undesirable to estimate an initial population frequency for
every allele. The number of parameters increases with the number of alleles and loci, and as more
and more data are included in the likelihood, the maximum likelihood estimator of a parameter
such as λ is inconsistent (Neyman and Scott 1948). The situation is akin to that of estimating
a rooted evolutionary tree (Thompson 1975), or to ML estimation of variance components in
quantitative genetics. In these cases, it is usual to, in effect, integrate out the high-dimensional
nuisance parameter, by considering an unrooted evolutionary tree (Felsenstein 1973), or by
adopting REML methods in quantitative genetics (Henderson 1986). We propose to do likewise,
considering an integrated likelihood, placing a diffuse prior distribution (Box and Tiao 1973) on
initial population allele frequencies at each locus. For example, Painter (1997) puts Dirichlet
priors on allele frequencies at polymorphic microsatellite loci. Population data from other studies
can also be used to provide prior distributions. Waples (1990a) gives the empirical distribution of
population allele frequencies over a large number of populations and a large number of allozyme loci.
This empirical distribution can be very closely fitted by a Dirichlet distribution with appropriately
chosen parameter values. In the simplest case, for example, equation (5.5) becomes

L(λ) = Pλ(Y1 = y1, Y2 = y2)
=

∑
x1,x2

Pλ(Y1 = y1|X1 = x1)Pλ(Y2 = y2|X2 = x2)Pλ(X2 = x2|X1 = x1)π(X1 = x1)(5.6)
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where π() is the assumed prior on the initial frequency x1. MCMC methods, in which latent
variables are sampled, makes staightforward the consideration of an integrated likelihood, where
nuisance parameters are given some prior distribution. Indeed, once the relevant priors are in-
corporated, there is no need to distinguish between a latent variable such as x2 and a parameter
such as x1. For these reasons, such integrated likelihoods are increasingly used for inference in
multiparameter structured stochastic systems, including those in genetic analysis (Heath 1997).

For a semelparous salmonid, with variable age at maturity, the generations are no longer
discrete. We may suppose that the age composition of a returning adult population is known,
or can be estimated from the samples of returning adults. In this case, the latent variables X
should specify population allele frequencies at each locus, and in each returning year class. With
this partitioning of the population, we have more latent variables to sample, but the conditional
independence structure is maintained. The allele frequency X(t,a) in a given age class, age a at
year t, conditional upon all other components of X and on the data Y, will depend only on the
data samples Y at year t, on the allele frequency in the parents of that class (the spawners at
year t − a), and the allele frequencies in the offspring age class aj returning at year t + aj . The
adults sampled, in any given year, may or may not be age-classified. That is, we may have samples
Y(t,a), each a Binomial sample proportion with index the sample size n(t,a) and parameter X(t,a),
or we may simply have a sample allele count Yt with a separate estimate of the age composition
of the population, say a fraction qa of age a. In this latter case, Yt is a Binomial proportion with
index the sample size nt, and parameter

∑
a qaX(t,a). In either case, X(t,a) may be sampled from

its conditional distribution; a Gibbs sampler can be implemented. The variables qa may be treated
also as latent variables of the MCMC, and sampled accordingly.

A major advantage of the MCMC framework is that partial information can be incorporated
easily. For example there may be annual census counts and age composition data, but only inter-
mittent observation of genetic marker data. Or, in some years, there may be age-specific samples,
but in other years only a general estimate of age composition of the spawners. Some loci may not
be typed in all years for which there are genetic data. The Monte Carlo framework enables us to
sample missing observations from the appropriate conditional distributions, so that all data obser-
vations are fully utilized in making estimates and inferences. In the above development, we have
presented the sampling as a single-site updating MCMC scheme, in which each latent component
X(t,a) for each of k− 1 alleles at each k-allele locus is updated in turn. However, in some cases it is
possible to update several components of X jointly. We propose to investigate the feasibility and
practicality of joint updating schemes, to improve computational efficiency.

For ease of notation, we revert to the discrete-generation case to discuss estimation of popu-
lation parameters, although the same general formulae apply to the more general age-class case.
We also discuss estimation of the single parameter λ. We assume λ remains constant over the
years, although the number of breeding adults may fluctuate widely. Note that this assumption is
primarily for notational convenience: with sufficient genetic data, at multiple time points, it would
be possible to test for variation in λ due to changing ecological or demographic conditions. Also,
the same general formulation would apply if we were instead to estimate Ne directly, or assume
some other parametrized relationship between Ne and N .

The integrated likelihood (5.6) is of the same general latent-variable form given in section C.2.3
(equation (5.1)). More generally, with data at multiple time-points t1, . . . , tr, with 1 = t1 < t2 <
. . . < tr = T :

L(λ) = Pλ(Yt1 , . . . , Ytr) =
∑
X

Pλ(Y,X)
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=
∑

x1,...,xT

 r∏
j=1

Pλ(Ytj |Xtj )

( T∏
t=2

Pλ(Xt|Xt−1)

)
π(X1)

 (5.7)

Note that the joint probability Pλ(Y,X) is easily computed; the difficulty in exact likelihood eval-
uation is in the summation of X-values. In obtaining Monte Carlo likelihood ratios, we shall follow
the formulation of Thompson and Guo (1991) given in equation (5.2). At a given parameter value
λ0, we shall realize Monte Carlo samples of X from the conditional distribution Pλ0(X | Y). Hence,
we obtain Monte Carlo estimates of the likelihood ratio L(λ)/L(λ0) by averaging the “complete-
data” likelihood ratio Pλ(Y,X)/Pλ0(Y,X) over the realized X-values (equation (5.2)). From the
Monte-Carlo estimate of the likelihood surface, an estimate of λ may be obtained, possibly after
interating the process to obtain a simulation value λ0 which is close to the maximum likelihood
estimate (Geyer and Thompson 1992; Kuhner et al. 1995). In addition to investigating the per-
formance and properties of this Monte-Carlo likelihood approach, for more complex models we will
also consider a fully Bayesian approach, incorporating prior distributions on all parameters, and
sampling also over values of λ. For simple models with a single parameter, we prefer the Monte
Carlo likelihood approach, but for more complex models a fully Bayesian MCMC may provide
clearer inferences (Heath 1997). While each approach has been used in several areas of genetic
analysis, there has been no direct comparison. For the case of estimation of λ under a drift model,
we will compare the two approaches.

Hypotheses of admixture and migration tend to be specific to the populations under study,
but several classes of such problems can be formulated. One is where the admixture occurs in an
initial founding event, and samples are taken at some later time point, both from the populations
dscending from the unmixed contributors to the founding gene pool, and from the mixed population.
If populations are small, or a substantial number of generations have elapsed, all three populations
will have undergone genetic drift. One example is the Icelandic population, founded approximately
40 generations ago by a mix of Celtic and Norse populations (Thompson 1973). Another is of
wild salmonid populations of the Lake Washington drainage, founded about 14 generations ago
by stocks from several other lakes of the Pacific Northwest (Anderson 1998). In both these
examples, genetic drift is a significant factor. Each was analyzed using diffusion approximations,
but for highly polymorphic marker loci, where not all alleles are present in the samples from each
population, this is not ideal. The structure of the likelihood is similar to that above, although
now there are two initial populations (and the mixture), and data are taken only at a single final
timepoint T . We assume, as is the case in these two examples, that there are good estimates of
adult census size over the relevant period of history, and assume that the three populations share
the same value of λ. Let X(1)

t , X(2)
t , and X

(3)
t denote the allele frequencies at generation t, in the

two contributing populations and in the admixed one, respectively. Of course, data for multiple
alleles and loci will be used. If the mixing at generation t = 1 is in proportions µ and (1−µ), then
X

(3)
1 = µX

(1)
1 + (1 − µ)X(2)

1 and, analogously to equation (5.7), given data Y = (Y (j)
T ; j = 1, 2, 3)

at time T on all three populations, we have

L(λ, µ) = Pλ(Y (1)
T , Y

(2)
T , Y

(3)
T ) =

∑
X

P(λ,µ)(Y,X)

=
∑
X

 3∏
j=1

Pλ(Y (j)
T |X

(j)
T )

 T∏
t=2

3∏
j=1

Pλ(X(j)
t |X

(j)
t−1)

 π(X(1)
1 )π(X(2)

1 )

 (5.8)

where now the sum is over all the allele frequencies in all three populations over the T generations.
Note that µ enters only through the initial value X(3)

1 = µX
(1)
1 +(1−µ)X(2)

1 in the mixed population.
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Since we have a likelihood with the same conditional independence structure as before, the
latent allele frequencies X may again be sampled conditionally on the data Y, at any given pa-
rameter values (λ0, µ0), to give a Monte Carlo estimate of the relative joint likelihood for λ and µ,
using equation (5.2):

L(λ, µ)
L(λ0, µ0)

=
∑
X

P(λ,µ)(Y,X)
P(λ0,µ0)(Y,X)

P(λ0,µ0)(X | Y) = E(λ0,µ0)

(
P(λ,µ)(Y,X)
P(λ0,µ0)(Y,X)

∣∣∣∣∣Y
)

(5.9)

We will investigate the properties of this likelihood for joint estimation of λ and µ. Alternatively,
there may be separate data on which to base population-specific values of λ, providing more statis-
tical precision for the estimation of µ. We will investigate the loss of information about µ incurred
by lack of knowledge of λ.

Generally, there is little information in “snapshot data” taken at a single time point, although
with data on a very large number of alleles at a very large number of genetically neutral loci it
should be possible to estimate µ and λ quite precisely. We will also extend the above formulation
to the case where data are available from the three populations at multiple time points. We
will also develop tests of population origins, based on these admixture likelihoods. In this case,
the hypotheses are of variable dimension, depending on whether a population did, or did not,
originate as a mixture of other populations. To encompass these hypotheses within a single MCMC
framework, reversible-jump MCMC can be used (Green 1995; Heath 1997).

So far we have considered only genetic drift, admixture, and migration, as the factors influenc-
ing population allele frequencies. Although mutation rates are non-negligible for some microsatellite
loci, mutation will have little impact on population allele frequencies over the sort of time period of
tens of generations relevant to small natural populations. If desired, mutation can be incorporated
into the MCMC sampling process for latent allele frequencies. A more significant factor may be se-
lection. Although it may be necessary to assume neutral markers to be able to make clear inferences
about population structure (λ) or origins (µ), it should be possible to detect whether significant
selection is present. Whereas effects of population history are common to all loci, selection affects
loci differentially, and this, in principle, enables tests for selection to be developed (Lewontin and
Krakauer 1973). Within our framework, selection could be incorporated into the distribution of
allele frequencies given those at the preceeding generation, and hence into the MCMC sampling of
population allele frequencies. To avoid a large number of selection parameters, which would again
lead to inconsistent estimators (Neyman and Scott 1948), a prior on selection coefficients could
be assumed. Time permitting, we will investigate the feasibility of this approach.

We have here presented our objective in terms of estimates to be derived from Monte Carlo
likelihoods. However, assessment of the precision of estimation is no less important. In any MCMC
analysis there are two sources of variance, or standard error. The first is the statistical standard
error, due to variance of data random variables under a model. This may be assessed by curvature
of the estimated likelihood surface, or by a parametric bootstrap procedure. Although the latter is
computationally intensive, it is always feasible, since the Monte Carlo procedure provides a method
for simulating under any specified parameter values. The second source of variance is the Monte
Carlo standard error, which must also be assessed. Geyer (1996) has proposed several methods
for estimation of the Monte Carlo standard error in MCMC procedures, and we propose to adopt
these methods.

MCMC is a very powerful and flexible approach for addressing inferences from data taken over
the course of history. Provided the population process is well-specified, it can be simulated. More-
over, the process of genetic inheritance defines a conditional independence structure: individuals
receive genes from their parents and segregate them to their offspring. Provided a process can be
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simulated, it is always theoretically possible to implement an MCMC algorithm to realize latent
variables conditionally upon observed data. The inheritance pattern of genes within a population
makes the MCMC realization of latent allele frequencies conditionally upon observed sample al-
lele frequencies not only theoretically possible, but also practically feasible, enabling us to develop
practical computational methods for population genetics inference.
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Chapter 6

Direct Estimation of the Ratio of
Effective Number of Breeders to the
Census Number from Temporal
Changes in Allele Frequencies: A
Collection of Working Notes on a
Maximum Likelihood Approach and a
Simulation Study

These working notes outline the rationale for a maximum likelihood approach to estimating
λ, the ratio of effective breeding adults to the census number of breeding adults in a population.
It provides background on F -statistic approaches to the same problem. Then it describes how
to implement a Baum (1972)-type algorithm to efficiently compute the likelihood for a diallelic
locus. It then describes extensive simulations comparing the moment-based estimators to the
maximum likelihood estimator for the case of data on diallelic loci. This reads a bit like a
manuscript that never got sent anywhere—which it is!

6.1 Introduction

Starting with Krimbas and Tsakas (1971), researchers have used temporal changes in observed
allele frequencies to estimate the effective size Ne of a population. Until recently, all such efforts
have used moment estimators derived from Wright’s standardized allele frequency variance, F =
(pt−p0)2/[p0(1−p0)], where p0 is the initial population allele frequency and pt is the population allele
frequency at time t. These F -based methods have performed adequately with data at only a few
temporally-spaced samples, however current biotechnology allows for obtaining long time series of
allele-frequency data either by non-invasive sampling or by the amplification of DNA from archived
tissue samples collected previously from populations. Among other examples, microsatellite DNA
markers amplified from fin clips have been used in monitoring Pacific salmon (Olsen et al. 1996),
while hair samples have been used in studying bear (Taberlet et al. 1997) and chimpanzee (Morin
et al. 1993) populations. Scale samples, historically collected from fish populations to determine
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the age of individuals, are a valuable source of archived tissue for modern genetic studies. Miller
and Kapuscinski (1997) isolated DNA from northern pike (Esox lucius) scales from a small lake
in Wisconsin and used those samples to estimate Ne for the population and compare that to
estimates of the number of adult fish in the lake. Currently a similar project is underway with
steelhead (Oncorhynchus mykiss) on the West Coast in two populations with excellent spawner
abundance data for over 40 years (William Ardren, Univ. of Minn., pers. comm.).

There is a growing amount of allele frequency data from these sorts of closely-monitored
populations, however, the traditional F -based methods of estimating Ne are not particularly well-
suited for these rich datasets. Specifically, there are no formally-derived methods, which work well,
for many samples in time, and there is no facility for incorporating data on the census size of the
population at points in time between the samples. We propose a maximum likelihood procedure
which is particularly advantageous when data are available at multiple points (generations) in time
from samples of varying size, and which also provides a natural way to incorporate population census
or abundance estimates. A recent maximum likelihood estimator (Williamson and Slatkin in
press) has demonstrated the utility of the maximum likelihood approach for estimating Ne. Our
method differs in that it explicitly uses estimates of population abundance in each breeding season
to make a direct estimate of the ratio of the effective number of reproducing adults (Nr) to the
observed number of reproducing adults (C).

This ratio, which we call λ = Nr/C is a quantity which separates the effects of intergenerational
population-genetic sampling from those of fluctuating population size on the effective size of a
population. It is useful to conservation biologists faced with the genetic management of populations
whose annual census size is easily estimated, but whose effective size is more difficult to infer by
demographic methods. Knowing λ and the annual population abundance, a biologist could make
informed predictions of the expected loss of genetic variability in future years. In this regard,
especially in the context of overlapping generations or year classes, λ is distinct from the ratio
Ne/N—the ratio of the overall effective size of the population to some average of the census size
over some period. As Frankham (1995a) notes in a review of Ne/N ratios from 102 species,
the ratio Ne/N fails to capture much information in the context of overlapping generations and
fluctuating population size.

Throughout this treatment we will assume that λ remains constant during the time of genetic
sampling. It is easy to suspect that this assumption would not hold; for example, λ could be
expected to vary under different environmental or ecological conditions, or under different numbers
of breeding adults, Nr. Fortunately, estimating λ by maximum likelihood takes the first step toward
testing hypotheses about λ using likelihood ratio tests. The model presented here may then be
seen as a null hypothesis (i.e., “λ is constant”) which could be rejected by comparing it to models
in which λ is allowed to vary. Future work will explore this.

Except in organisms with the simplest life histories, existing methods for estimating effective
size do not allow estimation of λ. Our goal in this paper is to present a maximum likelihood
method for estimating λ in such simple cases where the exact likelihood may be computated easily
enough to allow sufficient replicates in a simulation study to compare our method with the F -based
methods. Thus we restrict our attention, here, to multiple samples in time of diallelic marker loci
from a very small population with discrete, non-overlapping generations. In a future paper we will
discuss Monte Carlo likelihood methods (Thompson and Guo 1991; Geyer and Thompson 1992)
to extend this approach to larger populations, multiallelic markers, and organisms with overlapping
year classes. Below we introduce the scenario of the population and data we are dealing with. We
review the F -based methods that can be used for this sort of estimation, then we develop the
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maximum likelihood approach. We compare the performance of different estimators by computer
simulation.

6.2 The Population and Sampling Scenario

We assume a population of diploid organisms having discrete, non-overlapping generations. Each
generation t there are Ct adults which produce offspring that become Ct+1 adults in the next
generation (Figure 6.1). The population does not reproduce as a Wright-Fisher population, but
the effective number of reproducers in any generation t is given by bλCtc where bxc denotes the
greatest integer less than or equal to x. We observe census sizes Ct each generation (t = 0, 1, . . . , T )
and we observe allele frequencies ytj by sampling with replacement from the adults at some (not
necessarily all) times t at different loci indexed by j = 1, . . . , J . The loci all have two codominant
alleles, and the sample size for locus j in generation t is Stj . We assume that migration, selection,
and mutation are unimportant.

This type of sampling scheme, called sampling plan II by Waples (1989), applies to organisms
with high fecundity which can be randomly sampled as gametes or juveniles. It is probabilistically
identical to the sampling scheme shown in Figure 6.2, which may be interpreted as follows: at time
t = 0 each of the C0 adults produces an equal and infinite number of gametes according to its
genotype. From this infinite pool of gametes (or juveniles, if we wish to call them that) we draw
our genetic sample which gives an estimate of the population allele frequency at t = 0 (note that
this is the same as sampling the C0 adults with replacement). Then the intergenerational sampling
occurs to form the C1 adults in the next generation. The details of this sampling are unknown, but
it is not simple binomial sampling; if it were, then Nr1 the effective number of reproducers at t = 1
would be C1 and we would have no further work to do. Instead, the intergenerational sampling
from t = 0 to t = 1 results in an allele frequency distribution at t = 1 commensurate with a
single generation of genetic drift in a Wright-Fisher population of size Nr1 . (So, it is Wright-Fisher
reproduction of a population of size Nr1 .

Our objective is to use the observed census sizes and the observed allele frequencies to estimate
λ, the ratio of Nr/C, by maximum likelihood. We start with the assumption that Ct, the number
of reproducing adults, is known without error for each t, but we will relax this assumption in a
later paper, when we will also consider different sampling plans.

6.3 F -statistic Approaches

F -statistic methods for estimating Ne are based on classical theory of the increase in allele frequency
variance due to genetic drift. We review the derivation of F -based estimators for Ne in the case
of two temporally spaced samples. Then we consider methods for combining the information
from multiple (> 2) temporally spaced samples. We review the method due to Pollak (1983),
and another method suggested in an overlapping-generations context by Waples (1990b). These
methods typically estimate the harmonic mean effective sizes of the population for the generations
between samples. Thus, in populations of simple life-history structure it is possible to obtain an
estimate of λ given the census sizes and the estimate of Ne. We compare the above two methods
to our maximum likelihood estimator by computer simulation later in the paper.
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Figure 6.1: A graph showing the relationships between random variables at the jth locus and
associated quantities in the probability model. The circles denote populations, the triangles denote
samples from those populations. Time proceeds from top to bottom in the figure. Note that there
may be no samples in some years; Stj in such years is zero.
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Figure 6.2: Schematic showing how the sampling scheme described in the text might arise in
organisms with high fecundity. The population genetic sampling associated with intergenerational
inheritance is assumed to occur primarily between the juvenile and the adult stage.

6.3.1 Population Genetics Background

In a Wright-Fisher population of size Ne diploid individuals the frequency of an allele changes
by genetic drift such that after each generation, the expectation of the frequency is the initial
frequency, but the variance increases (Wright 1931). Thus at time t, the random variable pt—the
allele frequency—has for its first two central moments:

E(pt) = p0

Var(pt) = p0(1− p0)

[
1−

(
1− 1

2Ne

)t]
.

Expanding this, we have (
1− 1

2Ne

)t
= 1− t

2Ne
+O

(
1
N2
e

)
,

so that when t/2Ne is small,

Var(pt)
p0(1− p0)

=
E(pt − p0)2

p0(1− p0)
≈ t

2Ne
. (6.1)

The expectation of the squared deviation of pt from its starting value p0, when adjusted to com-
pensate for the effects of its starting frequency [i.e., when divided by p0(1− p0)], is approximately
a linear function of t with slope equal to 1/2Ne.

This forms the basis for Wright’s F -statistic:

F =
(pt − p0)2

p0(1− p0)
.
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Since p0 is a constant and pt is the random variable the expectation of F is ≈ t/2Ne by (6.1). Thus,
if we could measure K population allele frequencies without error, the estimator

F̃ =
1
K

K∑
i=1

(pti − p0i)2

p0i(1− p0i)

would be unbiased for t/2Ne.
In practice, however, one cannot observe p0 and pt without error, but may only observe sample

estimates y0 and yt. Several authors have suggested estimators for E(F ) in this case. For a single
locus with K alleles Krimbas and Tsakas (1971) proposed

F̃a =
1
K

K∑
i=1

(y0i − yti)2

y0i(1− yti)
.

They just use y0i and yti in place of p0i for pti. One notable problem with this is that if an allele
appears in the sample at time t, but not at time 0, or vice-versa, then the estimate is infinite.

Others have proposed estimators, which differ only in how the p0(1− p0) term in the denomi-
nator is estimated. Nei and Tajima (1981) proposed

F̃c =
1
K

K∑
i=1

(y0i − yti)2

(y0i + yti)/2− y0iyti
. (6.2)

and Pollak (1983) suggested the estimator

F̃k =
1

K − 1

K∑
i=1

(y0i − yti)2

(y0i + yti)/2
. (6.3)

both of which avoid the problem of the estimate going to infinity when an allele is detected in
only one year. In extensive computer simulations Waples (1989) found that Fc and Fk yield
similar results in most situations. Though the expectation of F̃a F̃c or F̃k is not the expectation
of parametric F , because the expectation of a ratio of random variables is not the ratio of the
expectations and the expectation of the square of a random variable is not the square of the
expectation, the estimators are, in most instances, not badly biased, unless some of the alleles are
at very low frequency (Waples 1989).

6.3.2 Estimating Ne from the Estimates of E(F )

Having estimated E(F ), one must convert that estimate (say, F̃c, though the following also applies
to F̃a and F̃k) into an estimate of the effective size. This is typically done by first assuming that
the expectation of F̃c is approximately

E(F̃c) ≈
E(y0 − yt)2

p0(1− p0)
=

Var(y0 − yt)
p0(1− p0)

.

Then, the variance of (y0 − yt) may be obtained by considering conditional variances and expecta-
tions. Dropping terms of O(1/N2

e ) yields

E(F̃ ) ≈ 1
2S0

+
1

2St
+

t

2Ne
,
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and solving for Ne gives the estimator

Ñe =
t

2[F̃w − 1/(2S0)− 1/(2St)]
(6.4)

(S0 and S1 are the sample sizes in number of diploid individuals) for the sampling scheme of
Figure 6.2 (Waples 1989).

6.3.3 Estimators for Multiple Samples in Time

Pollak (1983), assuming a population of constant effective size Ne develops an estimator for r+ 1
sampling points at generations t0, . . . , tr, with sample sizes S0, . . . , Sr. Though he developed this
method for multiallelic loci, we restrict our attention to the diallelic case where the observed allele
frequencies are y0, . . . , yr, and for notational convenience we denote the frequencies of the alternate
allele at each time point w0, . . . , wr (thus w = 1− y). Pollak (1983) proposes the F -statistic FKr
for this scenario:

FKr = 2
r∑

k=1

(
(yk − yk−1)2

yk + yk−1
+

(wk − wk−1)2

wk + wk−1

)
,

and derives, via a diffusion approximation, its expectation for sampling plan II as

EP (FKr) ≈
tr − (2r − 1)

Ne
+

r∑
k=1

(
1
Sk

+
1

Sk−1

)
.

The corresponding estimator of effective size is thus1

ÑKr =
tr − (2r − 1)

Fkr −
r∑

k=1

(
1
Sk

+
1

Sk−1

) . (6.5)

An undesirable feature of this estimator is that the numerator is always negative when the number
of samples exceeds (tr + 3)/2. (Note that tr here is the same as T in our population scenario.)
Therefore the numerator will always be negative when a sample is available from every generation
of a population for any interval longer than one generation.

Waples (1990b) suggests a different method. When there are r+1 different samples available
from a population with overlapping generations (such as Pacific salmon) he notes that there are
r(r+1)/2 different time intervals for which F̃ could be computed, and he advocates using the mean
F̃ computed from each of those r(r + 1)/2 comparisons as the estimator for E(F ). In estimating
Ne from that, however, the value of t in Equation 6.4 is not just length of time between the two
most distant samples. In the case dealt with by Waples (1990b), t in (6.4) is replaced by a “b”
to account for the overlapping generations, and when using r + 1 samples the appropriate b is the
mean b over all r(r+ 1)/2 comparisons. This is easily translated into the present scenario because,
in the discrete generation case, b is merely t; thus the appropriate t in (6.4) is the mean t over
all the r(r + 1)/2 comparisons, weighted by the number of comparisons. This approach gives the
estimator:

FNr =
2

r(r + 1)

r∑
i=0

∑
j>i

1
2

(
(yi − yj)2

(yj + yj)/2− yiyj
+

(wi − wj)2

(wi + wj)/2− wiwj

)
(6.6)

1In retrospect, the other estimator that Pollak (1983) gives would be less biased in the simulations that I did.
However, it does seem to me that (6.3.3) is the estimator Pollak (1983) gives for the sampling plan under which I
simulate data, later in this chapter.
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if the formula for F̃c (6.2) is used, and

FPr =
2

r(r + 1)

r∑
i=0

∑
j>i

2

(
(yi − yj)2

yj + yj
+

(wi − wj)2

wi + wj

)
(6.7)

when the formula for Fk (6.3) is used. An estimate for Ne is then found by inserting either FPr or
FNr into (6.4) and using for t in that expression the average

t̃ =
2

r(r + 1)

r∑
i=0

∑
j>i

(tj − ti). (6.8)

6.3.4 Estimating λ from Ñe

Since the quantity estimated by the above estimators is the harmonic mean effective size (Waples
1990b), λ in this simple situation may be easily estimated. If each generation t there were Nrt =
bλCtc effective adults, then the F-based estimate, Ñe would yield an estimate of

T
T∑
t=1

1
bλCtc

.

Thus, assuming that λCt is an integer (or otherwise disregarding the small error from rounding)
the estimate of λ by one of the above F -based methods is

λ̃ =
Ñe
∑T
t=1

1
Ct

T
, (6.9)

which is just the estimate of the effective size divided by the harmonic mean of the observed census
sizes.

6.4 The Maximum Likelihood Approach

6.4.1 The Probability Model

Referring back to Figure 6.1, let Y denote the vector of all Ytj , i.e., the genetic data. Since genetic
drift in this population is a Markov chain (albeit time-inhomogeneous if the population size is
inconstant), the probability of Y given the parameters λ and X0, the unobserved population allele
counts at t = 0, can be computed as the sum over latent variables X, the unobserved allele counts
in the population. Thus we have

L(λ,X0) = Pλ,X0(Y) =
∑
X

Pλ,X0(Y,X) (6.10)

=
∑

x1,...,xT

 T∏
t=0

J∏
j=1

Pλ(Ytj |Xtj)Pλ(Xt+1,j |Xtj)

 , (6.11)

where Pλ(Ytj |Xtj) is understood to be unity any time that no genetic sample is taken, i.e., when
Stj = 0. It is easy to compute the joint probability, Pλ(X,Y), if the X are known; then Pλ(X,Y) is
merely the probability of a fully-specified path through a Markov Chain (with no parts of it “hidden”
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any longer). The probabilities of the individual transitions of this chain are easily computed. In
generation t the effective number of diploid breeding adults is Nrt = bλCtc, so at the jth locus
the population allele count in the next generation follows a binomial distribution depending on the
current generation:

Xt+1,j ∼ Binomial(2Nrt+1 , xtj/(2Nrt)). (6.12)

Likewise, the allele count in a sample drawn at time t at the jth locus is binomially distributed,

Ytj ∼ Binomial(2Stj , xtj/(2Nrt)). (6.13)

Though the individual transition probabilities are readily computed, the summation over X-
values is difficult (if not impossible) to perform because there are so many terms in it—the number
of terms increases with C, λ, and T , as well as with additional alleles. To apply this approach to
real scenarios will require Monte Carlo evaluation of the sum over those X values. Below, however,
we explore the method in cases where exact computation is feasible.

In the above development of the likelihood, X0, the initial population allele counts are treated
as parameters to be estimated jointly with λ. It is undesirable, however, to estimate an initial
frequency for every allele, and, in fact with the number of nuisance parameters increasing with each
new allele employed in a sample, the estimate of λ is inconsistent (Neyman and Scott 1948).
To avoid these problems, we instead seek to maximize an integrated likelihood (Kalbfleisch
and Sprott JRSS 1976 or so) formed by integrating out the nuisance parameters over a prior
distribution, π(X0), for the initial allele frequencies. π(X0) may be an uninformative prior, or one
that comes from previous observations on the types of locus systems being used (e.g., allozyme
markers vs. microsatellites). The integrated likelihood has the form:

L(λ) = Pλ(Y) =
∑
X

Pλ(Y,X) (6.14)

=
∑

x0,...,xT

π(X0j)
T∏
t=0

J∏
j=1

Pλ(Ytj |Xtj)Pλ(Xt+1,j |Xtj)

 . (6.15)

6.4.2 Exact Computation of the Likelihood by Baum (1972) Algorithm

In the diallelic case, one may compute the likelihood in (6.15) exactly by a “peeling” method.
(Without a peeling type of algorithm, the number of terms in the sum increases roughly expo-
nentially with T—exactly so if Ct is constant.) The simple Markov structure of the process lets
us start from time T and then work our way backward in time storing the probability of all the
future events conditional on a current state, and using those in the sum over allele frequencies in
the preceding time step. First, rewrite the right hand side of (6.15) without the locus subscripts
for notational clarity:

∑
x0,...,xT

(
π(X0)

(
T−1∏
t=0

P (Yt|Xt)P (Xt+1|Xt)

)
P (YT |XT )

)
. (6.16)

Since any XT terms in the product appear with no other X’s except XT−1 we may factor those out
and consider two separate sums:

∑
x0,...,xT−1

(
π(X0)

T−2∏
t=0

P (Yt|Xt)P (Xt+1|Xt)

)∑
xT

P (XT |XT−1)P (YT |XT ). (6.17)
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The second sum in that expression is the sum over all intervening values between XT−1 and YT . It
is thus the probability of YT given XT−1. We can compute and store this P (YT |XT−1) for each of
the values of XT−1 by summing over the possible values of XT , and we can store the P (YT |XT−1)
in memory. We have now “pruned back” our sum to look like

∑
x0,...,xT−1

(
π(X0)

T−2∏
t=0

P (Yt|Xt)P (Xt+1|Xt)

)
P (YT |XT−1). (6.18)

Now we may treat all the terms involving XT−1’s separately from the rest, proceeding as in (6.17)
only one “layer” further back:

∑
x0,...,xT−2

(
π(X0)

T−3∏
t=0

P (Yt|Xt)P (Xt+1|Xt)

) ∑
xT−1

P (XT−1|XT−2)P (YT−1|XT−1)P (YT |XT−1).

(6.19)
The second sum in the above expression is P (YT , YT−1|XT−2) which we can compute for each
of the values of XT−2 by summing over the previously stored values of P (YT |XT−1). Once we
have computed all the P (YT , YT−1|XT−2)’s we may discard the P (YT |XT−1)’s, freeing up computer
memory. We proceed thus until finally summing the values of P (Y0, . . . YT |X0) weighted by the
prior on X0.

By performing the sum this way, a problem that seemed to increase exponentially in T is now
only linear in T . The difficulty arises in the storage requirements. Though this is not a great
problem for diallelic loci, for loci with multiple (say k) alleles the memory requirements become
severe. In general the memory required is twice the number of possible allele frequency states—a
number that grows very quickly with both Nr and k, being the number of ordered k-tuples whose
sum is 2Nr (for diploids). For example, if k is 6 and Nr is 150 diploid individuals, there are
more than 21 billion possible allele frequency states. To compute the sum as above for the exact
likelihood would require more than 170 gigabytes of RAM. (Also, when bλCtc is large, this method
consumes a large amount of CPU time.)

6.5 The Simulations

I have performed simulations to investigate the variance of a maximum likelihood estimator for λ
to that of two different F -statistic approaches. Scenarios for simulation are described in Figure 6.3
and some summary statistics for the estimators presented in Table 6.1. Histograms of the MLE
and the F-based estimator using Equation 6.7, follow in several figures.

The basic conclusion of the simulations is that though the F -statistic estimator has smaller
variance, it becomes more biased as more samples are available in time, so that its mean squared
error is greater than that of the MLE in data-rich situations. It should be noted that one might
be able to develop a different F -statistic estimator for multiple samples that performs better than
the “ACE” estimator and the “PE” estimator used here. Nonetheless, the MLE compares quite
favorably with other methods available today.
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(a) 13
sam-
ples

(b) 7
sam-
ples

(c) 4
sam-
ples

(d) 3
sam-
ples

(e) 7
sam-
ples,
con-
stant
prior

(f) 7
sam-
ples,
C cy-
cling

Figure 6.3: Graphs showing six different scenarios for performing simulations. Each one involves
12 generations between the first and the last sample drawn. Sample sizes for each locus were
50 haploid individuals. In scenarios a–e, the observed census size Ct each generation was 100
haploid individuals, genetic drift was simulated at λ = .3, and 8 diallelic loci were drawn in each
sample. In scenarios a–d the initial allele count in the population was drawn from a discrete uniform
distribution on [1, b100λc − 1], and the prior π assumed for computing the likelihood (6.15) was
the same (discrete uniform). In scenario e, the initial allele count for the simulations was constant
(a frequency of .4, thus 40 out of 100) while the prior in (6.15) was still the discrete uniform. In
scenario f, the observed census size cycles 100 → 50 → 200 → 50 → 100 → . . . and samples are
drawn from the years with 100 individuals observed. The “true” λ for this simulation was .4.
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(c) MLE: 4 samples
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(d) F-based: 4 samples

Figure 6.4: Histograms of the estimators. MLE is the maximum likelihood method. “F-based” is
the ACE estimator. See caption in Table 6.1
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(d) F-based: 13 samples

Figure 6.5: Histograms of the estimators. MLE is the maximum likelihood method. “F-based” is
the ACE estimator. See caption in Table 6.1
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(b) F-based: 7 samples, constant prior
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(c) MLE: 4 samples, cycling Ct, true λ = .4
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Figure 6.6: Histograms of the estimators. MLE is the maximum likelihood method. “F-based” is
the ACE estimator. See caption in Table 6.1
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