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Abstract

Biologists regularly encounter populations of organisms with disparate ancestries. Untangling the

composition of such populations is a problem for conservation biologists and wildlife managers. In

many cases the population under question is known to consist of individuals from two different

subpopulations and their hybrids. This occurs, for example, in hybrid zones between two species

or in regions recently colonized by exotics capable of reproducing with resident inhabitants. This

paper develops techniques using multilocus genetic data for Bayesian clustering of individuals to

purebred or genetically-mixed categories. The method relies on a novel application of the forward-

backward recursions in a two-component, finite mixture model. Though developed in the context of

the genetic admixture problem, these calculations are relevant more generally to Bayesian inference

in finite mixtures; they may potentially improve mixing of the Gibbs sampler in such contexts. The

technique is applied to genetic data on the Scottish wildcat, Felis sylvestris, a protected species

whose distinctness from domestic housecats has been questioned. A high proportion (≈ .60) of the

wild-living cats from which the sample was drawn are arguably purebred F. sylvestris.

Using the Bayes factor, we compare our new model, which allows for both purebred and ad-

mixed individuals, to a model in which all individuals are assumed genetically admixed to some

degree. It is difficult to accurately compute the marginal likelihood directly in these models, so

we compute the Bayes factor by reversible-jump MCMC. The approach follows from the original

MCMC formulation of the problem, and should help to illustrate ways in which reversible-jump

methods may be implemented for comparisons between a small set of closely-related models.

Keywords: Forward-backward recursion, Gibbs sampler, reversible jump, MCMC, hybrid zone
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1. INTRODUCTION

Populations studied by geneticists are seldom the ideal, randomly-mating and genetically-isolated

collections of individuals for which much genetic theory has been developed. In particular, nat-

ural populations may possess internal structure which prohibits random mating, or they may be

recently formed by migration and co-mingling of individuals from two or more originally separate

populations. Such structure complicates many types of genetic studies. For instance, when using

population-level data to map genetic diseases, population structure, if not accounted for, may lead

to spurious associations between genetic markers and disease status (Ewens and Spielman 1995).

Additionally, in the ecological study of plants and animals there is considerable interest in pop-

ulation structure, especially in regions of apparent overlap and interbreeding between different

subpopulations—so-called “hybrid zones.” For these, and other types of problems, it is desirable to

be able to infer population structure from genetic data. To this end, models of population genetic

mixture and admixture have been useful. I describe the application of such models to the inference

of population structure, focusing primarily on applications to hybrid zones of two different groups

of individuals. Such situations are now encountered frequently as a result of anthropogenic distur-

bance reducing barriers to gene flow between formerly separate subpopulations. Invasions of exotic

species are one pervasive example.

As used here, a “genetic mixture model” attributes structure in a population to the presence of

two or more subpopulations. Within these subpopulations individuals may mate at random, but

no interbreeding occurs between subpopulations. Every individual in the mixture is considered to

be a purebred descendant of only one subpopulation. Such models have been developed and used

extensively in the field of fisheries management (Milner, Teel, Utter and Burley 1981; Pella and

Milner 1987; Smouse, Waples and Tworek 1990; Millar 1991; Pella and Masuda in press).

On the other hand, admixture, throughout the genetics literature (Cavalli-Sforza and Bodmer

1971; Thompson 1973; Wijsman 1984; Long 1991) refers to interbreeding between members from

different subpopulations. Accordingly, a “genetic admixture model” attempts to model a popula-

tion’s genetic structure by the presence of two or more previously separate subpopulations between

which there has been some recent interbreeding. Such a population is said to be admixed. Addi-

tionally we will call an individual “admixed” if it possesses genes descended from more than one

of the historically separate populations. Early investigations of admixed populations sought to
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estimate the relative contributions of two founding populations to the admixed population. These

studies assumed the admixed population had undergone enough generations of random mating

to eliminate allelic associations between loci that accompanies genetic admixture. As a result,

the individual allele frequencies observed in the two founding subpopulations and the admixed

population were treated as sufficient statistics. It was not until recently that statistical methods

were proposed whereby the information in multilocus data could be used to elucidate structure

in a recently admixed population (Rannala and Mountain 1997; Paetkau, Calvert, Stirling and

Strobeck 1995; Pritchard, Stephens and Donnelly 2000a).

Pritchard et al. (2000a) propose a versatile model for genetic inheritance in admixed populations

and use it in Bayesian analyses of population structure in several different species. A limitation

of this model, however, is that it assumes every individual is admixed to some degree. In many

situations, such as with populations spanning hybrid zones, there is reason to expect both purebred

and admixed individuals. A probability model to accommodate such scenarios will include elements

both of genetic mixture models and genetic admixture models. In this paper I extend the methods

of Pritchard et al. (2000a) to handle explicitly purebred individuals. In sections 2 and 3, I review

mixture and admixture formulations for modeling population structure.

In Section 3, I develop a method for making joint, Gibbs updates of large blocks of variables

in Pritchard et al.’s (2000a) model. The method uses the fact that the latent allocation variables

of an i.i.d. finite mixture, with a Dirichlet prior on mixing proportions can be shown to follow a

hidden Markov chain, after integrating out the mixing proportions. This computation facilitates

MCMC simulation in a model, described in Section 4, that allows for both purebred and admixed

individuals. Additionally, I describe in the Discussion how such a method could help the Gibbs

sampler to escape from trapping states (Robert 1996) encountered in finite mixture problems.

I apply these techniques to data on the Scottish wildcat Felis sylvestris. In Scotland, F. sylvestris

evolved for thousands of years with little or no genetic exchange with cats in continental Europe.

Within the last 2,000 years these Scottish cats have suffered population declines due to human

influences and have been exposed to possible interbreeding with domestic cats. It can be difficult

to distinguish F. sylvestris from domestic cats on the basis of morphological characters alone and

conservation biologists are concerned that the wild-living cats in Scotland may now represent an

admixture of F. sylvestris and domestic cats. The data were previously analyzed by Beaumont et al.

4



(in press) using the method of Pritchard et al. (2000a). However, this analysis does not address the

issue of particular interest—that of estimating the proportion of purebred F. sylvestris individuals

in the population. Nor does that analysis allow estimation of posterior probabilities that particular

individuals in the sample are purebred cats. These questions about the Scottish wildcat population

are similar to those for many species of conservation interest to which the present methods apply.

Finally, using reversible-jump MCMC, it is possible to compute the Bayes factor for comparing

the new, expanded model to that of Pritchard et al. (2000a) given the Scottish cat data. While the

reversible-jump sampler allows estimation of the true Bayes factor, it is also possible to compute the

“pseudo-Bayes factor” (Gelfand, Dey and Chang 1992), and assess how accurately that estimates

the Bayes factor.

2. GENETIC MIXTURE MODELS

The formulation of a genetic mixture model follows that for a general finite mixture. Let N diploid

individuals be sampled from a population and typed at L loci. The population is assumed to consist

of J subpopulations indexed by j = 1, . . . , J . The proportion of individuals in the mixed population

from subpopulation j is the unknown parameter πj with
∑J

j=1 πj = 1. Assign to each individual a

latent allocation variable zi, i = 1, . . . , N . We use zi = j to indicate that the ith individual is from

the jth subpopulation.

Denote the multilocus phenotype of the ith individual by yi. I use “phenotype” as opposed to

“genotype” because the phrase “multilocus genotype” typically implies knowledge of the gametic

phase of the alleles present at different loci. No such knowledge is available here. The multilocus

phenotype, yi, consists of the allelic type of each of the two alleles carried by the ith individual at L

loci. Since we will later identify and label specific gene copies in an individual, we consider the two

alleles carried at a locus to be ordered. This order may be arbitrary. For example, it can merely be

the order in which the types of those two alleles are reported in the data on an individual. Thus,

yi can be regarded as a vector of length 2L with its first element giving the allelic type of the first

allele at locus 1, its second element giving the type of the second allele at locus 1, its third element

the type of the first allele at locus 2 and so forth. In general, yit, t = 1, . . . , 2L, is the type of

allele number (t [mod 2] + 1) at locus number dt/2e in individual i, where dxe denotes the smallest

integer greater than or equal to x.
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The allele frequencies in the jth subpopulation are denoted by θj = (θj1, . . . , θjL), where θj`,

` = 1, . . . , L, is a vector of length equal to K`—the number of types of alleles observed at locus `

across all the individuals sampled. The frequency in the jth subpopulation of the kth allelic type

of the `th locus is θj`k, k = 1, . . . , K`. We will adopt the notation θ〈j; yit〉 to mean θj`k where

` = dt/2e and k is the allelic type of the (t [mod 2]+1)th allele at the `th locus in the ith individual.

Given that an individual is from subpopulation j, it is assumed to have a multilocus phenotype

resulting from random mating and linkage equilibrium between the L loci within subpopulation j.

Thus,

p(yi|θj , zi = j) =
2L∏
t=1

θ〈j; yit〉 (1)

where p(·|·) will be used throughout to denote conditional probability mass or density functions.

The likelihood for π = (π1, . . . , πJ) and θ = (θ1, . . . , θJ), with y denoting (y1, . . . , yN ), is

p(y|π, θ) =
N∏
i=1

p(yi|π, θ) =
N∏
i=1

J∑
j=1

πjp(yi|θj , zi = j). (2)

Note that this formulation does not include the familiar binomial coefficient, 2, for heterozygotes

because we have arbitrarily ordered the two alleles carried by an individual at each locus. This

makes the likelihood in this model comparable to that in the admixture model of Pritchard et al.

(2000a).

“Training” or “learning” samples may be available. They might take the form of specially tagged

individuals which, though sampled along with the rest of the mixture, may be unambiguously

assigned to a subpopulation. Such an individual, say i∗, known to come from subpopulation j∗ is

easily accommodated by setting zi∗ = j∗ and defining p(yi∗ |θj , zi∗ = j) ≡ 0 for all j 6= j∗. However,

if a learning sample from the jth subpopulation is drawn separately (for example, if taken during

a season when the subpopulations can be sampled separately) it contributes a term of the form

C ·
∏L
`=1

∏K`
k=1 θ

nj`k
j`k to the likelihood, where C is a product of multinomial coefficients and nj`k is

the number of alleles of type k observed at locus ` in the learning sample taken separately from the

jth subpopulation. (In the Bayesian framework, these changes are equivalent to altering the prior

for θ and π appropriately.)

Treating this mixture model from the Bayesian perspective requires prior distributions for π and

θ. The conjugate prior for π is the Dirichlet distribution, Dir(ζ1, . . . , ζJ). Prior information could be

incorporated in the values of the ζj , or, if no prior information is available, the uniform distribution
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ζj = 1, j = 1, . . . , J , is a reasonable choice. The conjugate prior for each θj` is Dir(λj`1, . . . , λj`K`).

In this paper, I use uniform Dirichlet priors, λj`k = 1 ∀j, `, k, which tend to de-emphasize the

influence of rarely-occurring allelic types. This is a conservative assumption, and works well when

the subpopulations are sufficiently genetically distinct. Note, however, that Pritchard et al. (2000a)

discuss different Dirichlet priors and Pella and Masuda (in press) describe a useful Empirical Bayes

approach to assigning allele frequency priors in the application of Bayesian methods to mixed-stock

fishery analysis with closely-related subpopulations.

With the priors specified, the posterior distribution of π and θ, as well as other quantities of

interest, may be investigated via Gibbs sampling as described by Diebolt and Robert (1994). The

relevant full conditionals are

π| · · · ∼ Dir(ζ1 + #{z = 1}, . . . , ζJ + #{z = J})

θj`| · · · ∼ Dir(λj`1 + mj`1 + nj`1, . . . , λj`K` + mj`K` + nj`K`),

j = 1, . . . , J ; ` = 1, . . . , L

p(zi = j| · · ·) =
πjp(yi|θj , zi = j)∑J
k=1 πjp(yi|θj , zi = k)

, i = 1, . . . , N ; j = 1, . . . , J

where #{z = j} is the number of individuals currently allocated to subpopulation j, mj`k is the

number of alleles of type k at locus ` in individuals currently allocated to subpopulation j, and the

nj`k are, as before, the allele counts from the learning samples (if any) drawn separately from the

mixture sample.

3. A MODEL WITH ADMIXED INDIVIDUALS

With θ and y defined as in the previous section, the model of Pritchard et al. (2000a) is quickly

described. Now, j indexes the J conceptual “gene pools” or “historical subpopulations” from which

individuals may be descended. Allowing for admixed individuals requires a different model of genetic

inheritance, which, in turn, requires different latent variables. The ith individual in the sample gets

a vector of probabilities qi = (qi1, . . . , qiJ),
∑J

j=1 qij = 1, which are the unobserved proportions of

that individual’s genome descended from each of the J gene pools. Also, let wi = (wi1, . . . , wi2L)

be a vector of unobserved allocation variables which is parallel to the the vector of allelic types yi.

Hence, wit = j indicates that the (t [mod 2]+ 1)th allele at the dt/2eth locus in the ith individual is
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from the jth gene pool. Given wit = j the type of allele is assumed to be drawn randomly according

to θj . Under this model

p(yi|θ, wi) =
2L∏
t=1

θ〈wit; yit〉 (3)

independently for each i. By assigning the prior qi ∼ Dir(α, . . . , α), i = 1, . . . , N , and the hyperprior

α ∼ Uniform(0, A], Pritchard et al. (2000a)’s model is obtained. In effect this is a hierarchical model

for N different finite mixtures—the genes carried by the ith individual are a sample from a mixture

with mixing proportions given by qi, while the qi themselves (i = 1, . . . , N) are drawn from a

symmetrical Dir(α, . . . , α) distribution.

In this model, Gibbs sampling proceeds using the full conditionals

qi| · · · ∼ Dir(α1 + #{wi = 1}, . . . , αJ + #{wi = J}), i = 1, . . . , N

θj`| · · · ∼ Dir(λj`1 + rj`1, . . . , λj`K` + rj`K`),

j = 1, . . . , J ; ` = 1, . . . , L

p(wit = j| · · ·) =
qijθ〈j; yit〉∑J
k=1 qijθ〈k; yit〉

, i = 1, . . . , N ; j = 1, . . . , J ;

t = 1, . . . , 2L

where #{wi = j} is the number of alleles in the ith individual currently allocated to gene pool j and

rj`k denotes the number of alleles of type k at locus ` currently allocated to gene pool j. Pritchard

et al. (2000a) update α by a Metropolis-Hastings method (Appendix A). The posterior distribution

of α thus estimated provides some insight into the degree to which admixture has occurred across

individuals.

Learning samples would be available if there were substantial prior knowledge about the gene

pools contributing to the admixture and if known, purebred descendants from them were separately

sampled. By assuming any effects of genetic drift to be negligible, such samples could be treated

as learning samples in the mixture model. The full conditional for θj` would then be modified to

include the nj`k as before.

3.1 Block-updating wi when J = 2

In many situations involving invasions of exotic species, there is substantial prior knowledge that

the number of major subpopulations or “gene pools” involved is two—the native population and
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the invading population. Additionally, many hybrid zones are known to be areas of hybridization

(admixture) between two species or populations. Here I present novel computations, feasible when

only two subpopulations or gene pools are involved, that eliminate the explicit need for the variable

q = (q1, . . . , qN ) in implementing a Gibbs sampler. Such a method slightly improves mixing of the

chain, but is primarily useful as it makes possible Gibbs sampling in a simultaneous mixture and

admixture analysis as will be described in Section 4.

The computations themselves may be derived as follows. Let J = 2, so that each allele in

an individual may have originated from gene pool 1 or gene pool 2. Then, each qi1 will follow a

Beta(α, α) distribution and qi2 = 1 − qi1. Conditional on qi1, each wit will then be independently

a Bernoulli trial with p(wit = 1|qi1) = qi1. Marginalizing over qi1 (not conditioning on the data)

it follows that #{wi = 1} follows a beta-binomial distribution with parameters (α, α). Of course,

each allele in an individual is uniquely labelled so the elements of wi may be interpreted as fol-

lowing a labelled beta-binomial distribution. Under such a distribution, the elements of wi are not

independent, but they are exchangeable (deFinetti 1972), and hence their marginal distributions

are invariant to permutations of their order (and thus the arbitrary order we have imposed upon

them is acceptable).

This labelled beta-binomial sampling mechanism is easily visualized by a Pólya-Eggenberger

urn scheme (Feller 1957; Johnson and Kotz 1977). Imagine an urn initially filled with b1 balls

labelled “1” and b2 balls labelled “2.” Draw a ball randomly and record wi1 = 1 or 2 according to

the ball’s label. Then replace the ball to the urn, adding, at the same time, c more balls of the

same type (1 or 2) as the ball just drawn. Repeat the process, assigning a value to wi2 and so forth

until wi2L has also been assigned a 1 or 2. If b1, b2, and c were chosen to satisfy b1/c = b2/c = α,

then the resulting vector wi would be a realized value from the labelled beta-binomial distribution

with parameters (α, α). (One should notice, also, that this extends to a non-symmetrical beta

distribution, say Beta(α1, α2), by choosing b1/c = α1 and b2/c = α2.)

By such a scheme it is apparent that if dt balls of type 1 have been drawn in the first t drawings

from the urn, then the probability that the next ball drawn is a 1 is given by

b1 + dtc

b1 + b2 + tc
. (4)

And so the pairs (wit, dt), t = 1, . . . , 2L, can be interpreted as forming a time-inhomogeneous
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Markov chain in time t with transition probabilities determined by (4) and the obvious fact that

dt+1 = dt + 1{wit+1 = 1}, where 1{x = a} takes the value one when x = a and zero otherwise.

This Markov chain dependence structure was previously noted by Freedman (1965), who used it to

obtain limiting distributions of quantities associated with urn models.

The foregoing has all been considered in the absence of data, yi. However, given θ, the data

provide some information about the true value of each wit by the relation p(yit|wit, θ) = θ〈wit; yit〉.

Therefore, conditional on θ and yit, the pairs (wit, dt) participate in a hidden Markov chain. Recogni-

tion of this fact allows application of a “filter-forward, simulate-backward” type of algorithm which

may be derived following the computations of Baum, Petrie, Soules and Weiss (1970) in order to

realize the elements of wi from their joint full conditional distribution, p(wi|α, θ, yi). Furthermore,

using the Baum (1972) algorithm, it is possible to compute p(yi|α, θ), effectively performing a sum

over all possible binary vectors of length 2L in an efficient manner. This is described below.

Take b1, b2, and c as defined above. Suppressing the i subscript for clarity, let wt ∈ {1, 2},

t = 1, . . . , 2L, and define dt =
∑t

τ=1 1{wτ = 1}. We adopt the notation w≤t (w≥t) to mean

w1, . . . , wt (wt, . . . , w2L) for components of w, and use the same notation with y and d. The pairs

(wt, dt) can be interpreted as following a Markov chain in t:

p(wt+1, dt+1|w≤t, d≤t) = p(wt+1, dt+1|wt, dt)

=
b1 + dtc

b1 + b2 + tc
1{dt+1 = dt + 1{wt+1 = 1}}.

The “perturbed” or “degraded” observations of the chain are the allelic types y1, . . . , y2L which

depend in hidden Markov fashion on w. For notational clarity, we assume implicit dependence on

the allele frequencies θ,

p(yt|w≤2L, d≤2L) = p(yt|wt) = θ〈wt; yt〉.

This dependence structure is shown in the undirected graph of Figure 1.
Figure 1

about

here.
In the forward step we compute and store values of p(wt, dt|y≤t) for wt = 1, 2 and dt = 0, . . . , t,

recursively for t = 1, . . . , 2L, by the relations

p(wt+1, dt+1|y≤t) =
∑

1≤wt≤2

p(wt+1, dt+1|wt, d∗t )p(wt, d∗t |y≤t) (5)

where d∗t = dt+1 − 1{wt+1 = 1}, and

p(wt+1, dt+1|y≤t+1) =
1

φt+1
p(wt+1, dt+1|y≤t)p(yt+1|wt+1, dt+1) (6)
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where

φt+1 = p(yt+1|y≤t) =
∑

1≤wt+1≤2
0≤dt+1≤t+1

p(wt+1, dt+1|y≤t)p(yt+1|wt+1, dt+1). (7)

At the end of the forward step, notice that
∏2L
t=1 φt = p(y1, . . . , y2L), which in the context of

the Gibbs sampler (and if we were to reinstate the i subscript) is the desired quantity p(yi|α, θ)

for the ith individual. At the end of the forward step we have also obtained the distribution

p(w2L, d2L|y≤2L). After simulating values for w2L and d2L from that distribution, we are in a

position to simulate values for wt going backwards recursively for t = 2L − 1, 2L − 2, . . . , 1, using

the conditional distributions stored during the forward step and the values just realized for wt+1

and dt+1. The backward step uses the following relations recursively to compute the conditional

distribution from which to realize values of (wt, dt):

p(wt, dt|y≤2L, w≥t+1, d≥t+1) = p(wt, dt|y≤t, wt+1, dt+1)

=
1
ψt

p(wt, dt|y≤t)p(wt+1, dt+1|wt, dt), (8)

where ψt is a normalizing constant

ψt =
∑

1≤wt≤2

p(wt, d∗t |y≤t)p(wt+1, dt+1|wt, d∗t ) (9)

and where, again, d∗t = dt+1 − 1{wt+1 = 1}. It is apparent that a realization of the variable

(w1, . . . , w2L) thus obtained is drawn from the distribution of w1, . . . , w2L conditional on y≤2L. As

such, in the context of the Gibbs sampler, and reinstating the i subscript, it is a realization from

p(wi|α, θ, yi) for the ith individual, as desired.

The amount of computation required for the backward step is linear in L. The forward step at

time t requires a handful of elementary operations for each of the 2t states that the pair (wt, dt) may

take. This makes the entire forward step O(L2) for the case of two subpopulations. Depending on

how many loci are available this will typically be computationally reasonable. However, extending

this method to J > 2 will be computationally difficult. With J > 2, dt becomes a vector whose

elements record the number of balls of type 1, . . . , J which have been drawn up to and including

time t. The number of possible states for the pair (wt, dt) is then J(t + J − 2)!/[(t − 1)!(J − 1)!]

which gets large rapidly with t and J .
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4. A MODEL FOR SIMULTANEOUS POPULATION MIXTURE AND ADMIXTURE

Continuing in the case of two subpopulations (J = 2), a common goal in applications would be to

identify purebred versus admixed individuals and to estimate the proportion of those types in the

population. This corresponds to partitioning one’s sample into purebred and admixed groups. The

ith individual’s inclusion in one of the two groups can be denoted by a latent variable vi taking the

values

vi =

 P, if purebred

A, if admixed following the Pritchard et al. (2000a) model

Using the calculation of Section 3.1, this partition problem can be treated as a mixture problem

using Gibbs sampling. The proportion of individuals of the two types in the population are given

by the new parameter ξ = (ξP, ξA), with ξP + ξA = 1. The full conditional distribution for vi is

then, for example, for vi = P

p(vi = P| · · ·) =
ξPp(yi|α, θ, vi = A)

ξPp(yi|π, θ, vi = P) + ξAp(yi|α, θ, vi = A)
. (10)

Calculating each of the necessary phenotype probabilities, p(yi|π, θ, vi = P) and p(yi|α, θ, vi = A),

has been described in Equation 2 and Section 3.1.

The conjugate prior for ξP is a Beta(δP, δA) which gives the full conditional

ξ| · · · ∼ Beta(δP + #{v = P}, δA + #{v = A}). (11)

I have used a uniform (δP = δA = 1) prior for ξP. This prior corresponds to each individual i

having prior probability of 1/2 of being either purebred or admixed.

In this expanded model, which we will call model MP,A a sweep consists of

1. Gibbs update for π using only the individuals with vi = P,

2. Gibbs update for θ where contributions to the full conditionals are determined by zi for

individuals with vi = P and by wi for those with vi = A,

3. Gibbs updates for each individual’s zi if vi = P and for wi if vi = A,

4. Gibbs update for ξ from Equation 11,

5. Gibbs update for each vi using Equation 10,
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6. Metropolis-Hastings update for α as described in Appendix A.

The output from the resulting Markov chain can provide Rao-Blackwellized (Liu, Wong and Kong

1994) estimates for the posterior probability that individuals in the sample are purebred or admixed

as well as esimates of the posterior distributions for ξ, π, θ, α, and each qi given vi = A (though the

qi’s are not necessary for running the chain, they may still be realized from their full conditional

distributions and they provide good summary statistics).

5. BAYESIAN MODEL COMPARISON

Once able to entertain the model MP,A, it is natural to ask whether that expanded model has

gained us anything. One way to pose the question is to ask whether the data provide more support

for MP,A than for the model we will call MA which requires all individuals to be admixed and

governed by a single α. A rough estimate of the Bayes factor, B = p(y|MP,A)/p(y|MA), might

be obtained by observing the proportion of time the Markov chain defined under MP,A spends in

states with zero or almost zero individuals allocated to the purebred group (since retricting ξP to

zero in MP,A essentially gives MA). However, this is unsatisfactory as there is no prior probability

mass on the point ξP = 0. Furthermore, the chain may visit states with low ξP so infrequently,

that it is impossible to get a good estimate of B that way.

Gelfand et al. (1992) suggest approximating B by the “pseudo-Bayes factor” formed as the

product over all observations of the ratio of cross-validitation predictive densities under the two

models. The cross-validation predictive density for the ith individual, may be approximated by the

harmonic mean of the values p(yi|αs, θs) under MA and the values p(yi|αs, πs, θs, ξPs), computed

as the denominator in (10), under MP,A, where s subscripts the states visited by the chain over

which the harmonic mean is taken. Raftery (1992) cautions that the pseudo-Bayes factor, being

akin to a pseudo-likelihood, may be an inaccurate approximation to the Bayes factor and should

not be used for model comparison if the latter is available. However as discussed by Pritchard et al.

(2000a), it is difficult to reliably estimate the marginal likelihood p(y|MA), and the same is true

for p(y|MP,A), making computation of the Bayes factor by that route challenging.

As an alternative, I have developed a reversible-jump MCMC scheme (Green 1995) for com-

puting the Bayes factor B = p(y|MP,A)/p(y|MA). While reversible jump methods have recently

received widespread attention for sampling over numerous models in complex model spaces (Rue
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and Hurn 1999; Dellaportas and Forster 1999; Giudici and Green 1999), it seems they have been

used less often when a small number of closely-related models are being considered, as in the

present case. The posterior distributions estimated from separate runs under MP,A and MA can

guide us in devising reversible-jump proposals that are easy to implement and offer a good estimate

of B. Details appear in Appendix B. This circumvents the potential problem of instability in a

direct, sampling-based estimate of p(y|MP,A) or p(y|MA), and affords an opportunity to compare

the pseudo-Bayes factor to the full Bayes factor in the comparison of two complex, hierarchical

models.

6. DATA AND RESULTS

The data from Scottish wildcats were provided by Mark Beaumont (University of Reading, UK) and

are fully described in Beaumont et al. (in press). The data set is freely available at http://www.

rubic.rdg.ac.uk/ mab/data.html. Briefly, genetic samples were collected from wild-living cats

throughout Scotland by a variety of methods including trapping and tissue collection from road

kills and carcasses. Samples were also obtained from 13 museum specimens. In all, 230 wild-living

cats were sampled and typed at eight microsatellite loci with numbers of alleles ranging from nine

to 17 per locus. Additionally, 74 housecats were typed at those eight loci using blood samples from

veterinary centers in the south of England. These 74 cats can be considered a learning sample for

the domestic cat subpopulation.

I analyzed the data under model MP,A using runs of length 62,000 sweeps of ten different

chains started from overdispersed starting points by initializing values of all parameters (α, θ, ξ, π)

with values simulated from their prior distributions. All ten chains converged very quickly to the

same part of the parameter space. The first 2,000 sweeps were discarded as burn-in, as observing

the estimated scale reduction potential factor (Gelman 1996) suggests this is more than adequate

burn-in. I give the results in the next section. I performed an analagous run under model MA and

compare the differences between the results obtained under MP,A and MA in Section 6.2. For both

runs I used an upper bound of A = 3 for the parameter α. Each run took about 11 hours on a

laptop computer with a 266 Mhz G3 (Macintosh) processor.

It should be noted that the learning sample of housecats breaks the symmetry in the posterior

with respect to permutations on the labels for the two components (F. sylvestris and housecats) in
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the model. Thus, there is not a substantial label-switching (Stephens 2000) problem in this case.

6.1 Results for model MP,A

The posterior mean estimate of ξP, the proportion of purebred cats, is .65, with a 90% credible set

spanning the range from .47 to .79. The MCMC estimate of the posterior density of ξP is given

in Figure 2(a). The distribution is long-tailed to the left. These low values of ξP coincide with
Figure 2
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here.
low values of the parameter α (Figure 2(d)). This correlation is expected; when α is low, then

admixed individuals are expected to have admixture proportions near to zero or one, and hence

the ability to distinguish between admixed and purebred individuals is diminished. The estimated

posterior density for α itself is shown in Figure 2(c). It has a peak around 0.7, and tapers off

with larger values, but it is still rather high at the upper bound imposed on it of 3. The choice

of A = 3 is clearly a choice of prior to which the final result will be sensitive. A larger A would

reduce the posterior probability for low values of ξP, reducing the skewness of the posterior for ξP

and increasing its posterior mean estimate. This issue will be taken up again in the Discussion.

Figure 2(b) gives the estimated posterior density for the probability that a cat is F. sylvestris

conditional on its being of purebred type. The posterior mean is .83 with a 90% credible interval

from .73 to .94. This suggests that a large proportion (> 60%) of the wild-living cats in Scotland

are purebred F. sylvestris. On the other hand, there is evidence that between 21% and 53% of the

wild-living cats are admixed individuals with ancestry from both F. sylvestris and domestic cats.

Further, it cannot be ruled out that some wild-living cats are pure housecats that have gone feral.

Figure 3 summarizes the results for individual cats. On the horizontal axis, is the posterior
Figure 3
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probability of being purebred. On the vertical axis is the posterior probability of being F. sylvestris

conditional on being purebred. A cluster in the upper right represents 102 of the cats in the sample,

all with posterior probability of being pure greater than .80. Given that these cats are pure, they

have posterior probability close to one of being F. sylvestris. Also evident is a small cluster of cats

with p(vi = P|y) > .65 but which, if they are purebred cats, are almost certainly domestic cats. At

the other end of the scale are several cats with very high probability of being admixed.

6.2 Comparison of results for models MP,A and MA

Analyazing the data under MA, using the new approach in Section 3.1, I obtained the same results

as Beaumont et al. (in press) did. The log of the Bayes factor, log B, comparing the support of the
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data for MP,A versus MA, given the Scottish cat data, is ≈ 20.3. Thus, 2 log B > 40, indicating

overwhelming support for MP,A (Raftery 1996). All details appear in Appendix B. The log of the

pseudo-Bayes factor is 12.3 which, quite notably, differs by eight from the true log B.

For parameters shared by MA and MP,A, the estimates differ between models most for α. Under

MA, α is much smaller, so as to accommodate the purebred cats as admixed individuals with

admixture proportions close to 0 or 1 (Figure 4). Additionally, a significantly smaller proportion
Figure 4
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of the alleles in the sample get allocated to the housecat population under MP,A than under MA.

Histograms of the proportion of alleles allocated to the housecat subpopulation for MP,A and MA

are shown in Figure 5.
Figure 5
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7. DISCUSSION

In applications to conservation biology and ecology, populations of interest may be pure mixtures of

two subpopulations, or they may contain admixed individuals from two originally separate subpop-

ulations. Genetic data, in conjunction with statistical models of genetic mixture and admixture

have been useful for clustering individuals and genes from different subpopulations. This paper

presents a novel application of the “filter-forward-simulate-backward” algorithm akin to the com-

putations presented in Baum et al. (1970) to the population-admixture model of Pritchard et al.

(2000a). This computation makes it possible to expand that model to one that allows for individ-

uals to be either purebred or admixed. Such an expanded model (MP,A) is vastly more supported

by the Scottish cat data than one including admixture only. It is likely that MP,A will fit other

datasets much better as well, because samples from recently admixed populations will typically

include some purebred individuals.

While the dramatic improvement of model fit is encouraging, it also raises some issues that

bear further investigation. The first of these is that MP,A may fit the data better not simply

because it allows separate classes of purebred and admixed individuals. It may be that a great

deal of improvement comes from including the parameter π which allows different contributions

of pure cats from the two subpopulations. This contrasts to the formulation in MA where, due

to the symmetry of the Beta(α, α) prior for the qi’s, the marginal probabilities are equal that any

gene copy is from the housecat or the F. sylvestris subpopulation. That is to say, under MA,

p(wit = 1|α) = p(wit = 2|α) = .5 for all i, t, and α. By contrast, under MP,A, for different values
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of ξ, π, and α, the marginal probability that any gene copy is from the housecat population is not

constrained to equal the marginal probability that it is from the F. sylvestris population. The

symmetry imposed by MA might explain some systematic biases for estimates of qi that Pritchard,

Stephens, Rosenberg and Donnelly (2000b) report for simulated data with unequal admixture

proportions. Furthermore, the issue may have implications for model MP,A. If the population

admixture proportions depart from .5, then p(yi|α, θ) might be inflated for individuals with large

amounts of ancestry from the lesser-represented subpopulation, and deflated for individuals with

more ancestry from the greater-represented subpopulation. For this reason, in the Scottish cat

problem, one might expect that the posterior probability of being a purebred individual will be

overestimated for cats that resemble F. sylvestris and underestimated for cats that appear to be

housecats. This may also induce some bias in the posterior estimate of ξP. All this suggests that a

fruitful extension to the model MA of Pritchard et al. (2000a) would be to allow population-specific

α’s. For example, in the case of J subpopulations, qi ∼ Dir(α1, . . . , αJ).

The results also suggest that estimation in MP,A may be sensitive to the upper bound, A, chosen

for α. Had A been chosen greater than three, then values of α > 3 would surely have been visited in

the MCMC simulation, and the resulting estimate for ξP would have been somewhat larger, since

α and ξP are positively correlated. This is observed in a separate run made with A = 10—the

chain visits values of α between 3 and 10 quite frequently. In fact, the estimated posterior density

for α decreases only slightly between 3 and 10. However, the effect on the other parameters is

not overwhelming. For example, with A = 10, the posterior mean (90% credible interval) for ξP

was .71 (.53, .82), as opposed to .65 (.47, .79) with A = 3. It is interesting that the choice of A

has little effect in the poorer-fitting model MA, because that model tries to fit purebred cats as

admixed individuals. This keeps α low regardless of A. Under MP,A, however, once the purebred

individuals are removed from the admixed class there is little information left for estimating α. So,

paradoxically, to use the better-fitting model MP,A requires imposing more prior information. In

the case of A, however, biological knowledge can guide the choice.

I chose A = 3 because, with only two subpopulations, large values of α indicate that admixed

individuals carry close to half of their ancestry from one subpopulation and half from the other. In

a population like this, the most plausible explanation for such a pattern would be that the admixed

individuals were all first-generation (F1) hybrids between individuals from the two subpopulations.
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If this is the case, then, at each locus, an admixed individual will carry exactly one allele from one

subpopulation, with the other allele coming from the other subpopulation. This condition can be

used to compute the posterior probability that an individual in the sample is an F1 hybrid. I leave

the description of such a procedure to a separate paper, however, I have found that none of the

individuals in the sample had posterior probability greater than .5 of being an F1 hybrid. In fact,

for all but seven of the individuals, the posterior probability of being an F1 hybrid was below .10.

For this reason, it seemed implausible that α should be allowed to range past about three.

The Bayesian model comparison revealed that MP,A is a much better model for the Scottish cat

data. Computing Bayes factors in these models is often difficult because calculating the marginal

likelihood can require a difficult computation of an unkown normalizing constant. Rather than

directly computing the marginal likelihood, Appendix B gives an example of how approximations

to posterior densities of several parameters in different models may be used to formulate reversible-

jump moves between a small set of closely-related models. This gives us a good approximation to

the Bayes factor. In turn, that allows us to compare the true Bayes factor to the pseudo-Bayes

factor (a product of ratios of cross-validation predictive densities). The pseudo-Bayes factor has

been advocated as a computationally manageable approximation to the Bayes factor. While cross-

validation and predictive densities offer a fine level of detail for exploring which observations, in

particular, are poorly fit by a model, their use in overall model comparison via the pseudo-Bayes

factor should be done with reservation. In the current problem, the pseudo-Bayes factor provided

a poor approximation of the Bayes factor.

Quite apart from genetic mixtures, the forward-backward computation here may be useful in

more general mixture problems. Sometimes, the Gibbs sampler mixes poorly in the Bayesian

analysis of mixtures. Robert (1996) describes this in terms of trapping states in finite normal

mixtures: when only one or a few observations are allocated to a component, the parameters for

that component fit the few observations so tightly that few if any of the other observations would

likely get allocated to the component. Reparametrizing the normal mixture model, as done by

Mengerson and Robert (1995), corrects the problem by keeping the component-specific parameters

from fitting the observations in a near-empty component too tightly. However, this does not address

trapping states that may occur simply because the mixing proportion for a component becomes

small. If the mixing proportion of a component happens to reach a value near zero, then the
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probability of allocating any observations to that component will also be small, and the component

may remain empty through many iterations of the chain.

The block-updating scheme of Section 3.1 can provide a useful Gibbs move that could be ex-

ecuted to restore empty components, by the following rationale: in a J-component finite mixture

with a Dir(ζ1, . . . , ζJ) prior on the mixing proportions, the latent allocation variables, zi, marginally

follow a labelled compound multinomial-Dirichlet distribution. Consequently, conditional on cur-

rent values of all the zi’s, the subset of those having any two values will follow a labelled beta-

binomial distribution (Johnson, Kotz and Balakrishnan 1997). That is, the marginal distribution

of {zi : zi = ja ∪ zi = jb, ja 6= jb, i = 1, . . . , N} follow a labelled beta-binomial distribution

with parameters (ζja , ζjb). Thus, the methods of Section 3.1 could be applied to redistribute el-

ements amongst the two components ja and jb, having marginalized over the mixing proportions

πja and πjb . And so, observations may be reallocated to component ja (or jb), according to their

full conditional distributions, even if πja (or πjb) is close to zero.
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APPENDIX A. METROPOLIS UPDATES FOR α

The method of Metropolis sampling is used to update values of α. A new value for α denoted α∗

is drawn from a proposal distribution. Since α is constrained to the interval (0, A], I use a folded

normal distribution, centered at α. Hence a variable a is drawn from a Normal(α, σ2) distribution.

If 0 < a ≤ A then α∗ = a. Otherwise if −A ≤ a < 0 then α∗ = −a and if A < a ≤ 2A then

α∗ = 2A − a. In all other cases (a < −A or a > 2A) the proposal is rejected without further

consideration. The proposal density is then still symmetrical

h(α∗|α) = N (α∗;α, σ2) +N (−α∗;α, σ2) +N (2A− α∗;α, σ2) = h(α|α∗)
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with N denoting the normal density function. The standard deviation, σ, of the proposal distribu-

tion requires some tuning. Under model MA, σ ≈ .12 seems to work well, while when individuals

may be purebred or admixed (model MP,A) then σ ≈ .5 encourages better mixing with the Scottish

cat data.

The proposed value α∗ is accepted as the new value with probability given by the minimum

of 1 or the Hastings ratio. For Pritchard et al. (2000a)’s model, using, the qi’s, the acceptance

probability is

min

{
1,

∏N
i=1D(qi;α∗, J)∏N
i=1D(qi;α, J)

}
where D(q; α, J) denotes the density of a Dirichlet random vector q of J components with all J

parameters equal to α.

When able to eliminate the qi’s (as in Section 3.1), then with only admixed individuals (model

MA) the acceptance probability may be written as

min

{
1,

∏N
i=1 p(yi|α∗, θ)∏N
i=1 p(yi|α, θ)

}
.

In the model MP,A which includes both purebred and admixed individuals, the acceptance proba-

bility is

min

{
1,

∏N
i=1[ξPp(yi|π, θ) + ξAp(yi|α∗, θ)]∏N
i=1[ξPp(yi|π, θ) + ξAp(yi|α, θ)]

}
.

APPENDIX B. REVERSIBLE JUMP MCMC FOR MODEL COMPARISON

We may compute the Bayes factor, B, by reversible jump MCMC (Green 1995). This method allows

for the construction of a Markov chain that may jump between state spaces of varying dimension.

In our case we construct a chain which takes values in two spaces indexed by m = 1 or 2. If m = 1

then the chain is currently in the space associated with model MA, and it moves to new values

within that space as described in Section 3. If m = 2, then the chain is currently in the state

space associated with model MP,A, and it moves to new values within that space as described in

Section 4. Since MP,A includes the variables ξ and π (ξ has one degree of freedom, ξP, and, in the

case of J = 2, π has one degree of freedom as well) which are absent in model MA, there are two

extra degrees of freedom when m = 2. For this reason, reversible-jump moves are required to move
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from m = 1 to m = 2. The formulation of these moves is such that detailed balance is satisfied,

ensuring that the proportion of time the chain spends with m = 1 converges to p(MA|y) as the

chain is run for infinite time, and so, for a run of the chain of length n, the quantity∑n
i=1 1{mi = 1}∑n
i=1 1{mi = 2} (A.1)

estimates the posterior odds, which, upon division by the prior odds, gives B.

For a reversible jump move from m = 2 to m = 1 we leave θ unchanged and propose a new

value for α, say α′, that is a deterministic, many-to-one, function g of the current values of α, ξP,

and π. We are at liberty to choose any appropriate and suitable g. For the Scottish cat problem,

by examining the posterior distribution of ξP, π, and α under MP,A, and by surmising that high

values of ξP in MP,A should correspond to low values of α′ in MA, I empirically chose

α′ = g(α, ξ, π) = 0.0925 + 0.13638α− 0.21 sin−1(ξ2
P). (A.2)

In this case, sin−1(ξ2
P) was chosen, since that transformed variable has a simpler (i.e. more linear)

relationship with α than does ξP, itself, in the MCMC output from MP,A (see Figure 2(d) in

the main text). Notice that π does not actually appear in the function g, since this simplifies

the Jacobian, and it does not seem essential (i.e. there is not large correlation between α and

π). Taking the 5000 pairs (α, ξP) that were plotted in Figure 2(d) and applying g to them gives

values of α′ summarized by their histogram in Figure 6(a). This histogram resembles the posterior

distribution of α under MA (broken line in Figure 4), as desired.
Figure 6
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To propose the reverse move from m = 1 with a current value α′ to m = 2 with proposed

values for the parameters α, ξP and π requires simulating new values for ξP and π from known

densities and then using those values and the inverse of the function g to determine what value

of α shall be proposed. The known densities were chosen to approximate the posterior density

estimates of ξP and π under MP,A. Letting π0 denote the proportion of purebred cats that are

F. sylvestris, the densities used were fξ(ξP) ≡ Beta(8, 4) and fπ(π0) ≡ .8Beta(30, 9)+ .2Beta(15, 2).

These densities are shown in Figure 6(b). Comparison to Figures 2(a) and 2(b) shows that they

resemble overdispersed versions of p(ξP|y) and p(π0|y). With values of ξP and π0 drawn from these

densities, α is determined by

α = g−1(α′, ξP, π0) =
0.21 sin−1(ξ2

P) + α′ − .0925
.13638

.
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We may propose a reversible jump move at the end of each sweep. Thus, if m = 1, after a sweep

updating all the variables associated with MA, we propose a jump up to m = 2. If m = 2, then

after a sweep updating all the variables associated with MP,A we propose a jump down to m = 1.

Under such a scheme, the acceptance probability for a proposed move from m = 1 with α = α′ to

m = 2 and parameter values (α, ξP, π0), is min{1,A}, with A reducing to

A =
p(MP,A)
p(MA)

× p(α|MP,A)
p(α′|MA)

× p(ξP|MP,A)p(π0|MP,A)
fξ(ξP)fπ(π0)

×
∏N
i=1[ξPp(yi|π, θ) + ξAp(yi|α, θ)]∏N

i=1 p(yi|α′, θ)
× 1

0.13638
(A.3)

where p(·|M) denotes prior densities for parameters under different models M . If proposing a move

down from m = 2 with current values (α, ξP, π0) to m = 1 with α = α′, the acceptance probability

is min{1,A−1}. The factor of (0.13638)−1 is the Jacobian from the transformation g.

Figure 7(a) shows a trace of logA from a chain forced to stay in m = 1 (i.e. it makes proposals

to m = 2 but is not allowed to accept them) using the Scottish cat data with learning samples,

and assuming prior odds for the models p(MP,A)/p(MA) = 1. Figure 7(b) shows a similar trace of

logA−1 for a chain restricted to m = 2.
Figure 7
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It is apparent from these traces that, without imposing strong prior support for MA, it is

unlikely that a chain in m = 2 would ever move to m = 1. Thus, I made three different runs

with prior log-odds, log[p(MP,A)/p(MA)], equal to −19, −20, and −21. From each of these runs,

I estimated the posterior log adds by taking the log of (A.1). The value of the posterior log-odds

calculated as the average over ten chains started from overdispersed starting points as a function of

sweep number is shown for the three different prior odds in Figure 8. Though the chains may not

have been run long enough for an extremely precise estimate of the posterior log-odds, an order-

of-magnitude estimate can clearly be made. Subtracting the prior log-odds from the estimated

posterior log-odds gives, for each of the three different prior odds used, an estimate of ≈ 20.3 for

the log of the Bayes factor. Hence, 2 log B > 40, indicating overwhelming support in the data for

model MP,A over MA.
Figure 8
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