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ABSTRACT
A population’s effective size is an important quantity for conservation and management. The effective

size may be estimated from the change of allele frequencies observed in temporally spaced genetic samples
taken from the population. Though moment-based estimators exist, recently Williamson and Slatkin
demonstrated the advantages of a maximum-likelihood approach that they applied to data on diallelic
genetic markers. Their computational methods, however, do not extend to data on multiallelic markers,
because in such cases exact evaluation of the likelihood is impossible, requiring an intractable sum over
latent variables. We present a Monte Carlo approach to compute the likelihood with data on multiallelic
markers. So as to be computationally efficient, our approach relies on an importance-sampling distribution
constructed by a forward-backward method. We describe the Monte Carlo formulation and the importance-
sampling function and then demonstrate their use on both simulated and real datasets.

REDUCTIONS in population size can lead to in- estimate Ne by the method of maximum likelihood. To
breeding, which increases the probability of popu- find the maximum-likelihood estimate Ne

l

of Ne, given
allele frequencies observed in samples taken from alation extinction in typically outbreeding species

(Frankham 1995). Reductions in population size also population at different times, one models the popula-
tion underlying the samples as a Wright-Fisher popu-lead to a loss of genetic diversity, which may restrict

a population’s ability to adapt to changing conditions lation. Ne

l

is then the size of that underlying, ideal
population for which the observed data are most prob-(Soulé 1986). To predict the risk to a population from

these types of genetic factors, biologists are often inter- able. In simulation studies Williamson and Slatkin
(1999) showed that the maximum-likelihood estimatorested in knowing the effective population size, Ne. An

effective size is defined by comparison to an ideal popu- outperformed the moment-based estimators, and they
lation model, the Wright-Fisher model. The Wright- also demonstrated how a likelihood approach may be
Fisher model assumes discrete, nonoverlapping genera- extended to estimate parameters in more complex pop-
tions of constant size, and it assumes that the gametes ulation models.
that unite to form adults in one generation are ran- This likelihood method has been restricted to data
domly sampled with replacement from the previous gen- on diallelic loci, because, with data on multiallelic loci,
eration. The variance effective size of a natural popula- evaluating the likelihood for Ne exactly is computation-
tion is the size of a Wright-Fisher population that would ally intractable. Here we describe the problem as one
experience a comparable increase in variance of gene of inference from a hidden Markov chain (Baum et al.
frequency over time. The inbreeding effective size is 1970). We develop an algorithm for importance sam-
defined similarly, but is based on the increase in gene pling, which makes it possible to compute the likelihood
identity by descent over time. by Monte Carlo.

It is possible to estimate the variance effective size
from observed changes in allele frequencies in a popula-
tion over time. Moment-based estimators using F-statis- FORMULATION OF THE MODEL AND MONTE CARLO
tics have been developed for this purpose (Krimbas

The model: The data are genetic samples collectedand Tsakas 1971; Nei and Tajima 1981; Pollak 1983;
at different generations. The first sample is collected atWaples 1989; Jorde and Ryman 1995). Recently, Wil-
generation 0 and the last sample at generation T. Anyliamson and Slatkin (1999) described a method to
samples drawn at intervening generations may be evenly
or irregularly spaced in time. For notational simplicity,
we assume for now that individuals are genotyped at a
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include K different allelic types, indexed by k 5 1, . . . , lems with the maximum-likelihood estimator (Neyman
and Scott 1948), we consider the integrated likelihood,K. The allele frequencies observed in samples taken

from different generations will differ due to genetic assuming a uniform prior distribution, p(X0), on the
population allele counts at time 0. The likelihood fordrift and sampling variation.

Let Yt 5 (Yt,1, . . . , Yt,K) be the counts of the K different Ne is the probability of the data Y 5 (Y0, . . . , YT) given
the parameter Ne. The probability of Y is the sum ofallelic types in the sample at generation t, and let St

denote the number of diploid individuals in the sample. the joint probability of Y and the latent variables X 5
(X0, . . . , XT) over the space of all X:We assume that the samples were taken from a Wright-

Fisher population of size Ne and denote the unobserved
PNe

(Y) 5 o
X

PNe
(Y, X)population allele counts at generation t by Xt 5 (Xt,1,

. . . , Xt,K), with R K
k51 Xt,k 5 2Ne. By the formulation of the

5 o
X0,...,XT

1p(X0)PNe
(Y0|X0)p

T

t51

PNe
(Xt|Xt21)PNe(Yt|Xt)2 .Wright-Fisher model, the Xt form a Markov chain in

time, with transitions defined by multinomial probabili-
ties depending on Ne, (3)

PNe
(Xt|X0, . . . , Xt21) 5 PNe

(Xt|Xt21) For the case of K 5 2 and Ne small, the likelihood in
(3) may be computed exactly. Williamson and Slatkin

5 (2Ne)!p
K

k51

[Xt21,k/(2Ne)]Xt,k

Xt,k!
, t 5 1, 2, . . . . (1999) effected the summation in (3) in terms of multi-

plication of transition probability matrices. The dimen-
sion of the square matrices is (Ne 2 1)!/[(Ne 2 K)!(K 2(1)
1)!], which increases rapidly with Ne and K . We note

The genetic sample at a time t is assumed to be drawn that the hidden Markov form of the system allows a
with replacement from the copies of alleles present in more efficient computation of the likelihood using the
the population at time t. This is equivalent to drawing algorithm of Baum (1972). Nonetheless, exact evalua-
the sample Yt from a very large gamete pool produced tion for multiple alleles would still require prohibitively
by the population at time t : sampling plan II of Waples large amounts of computation and storage. An alterna-
(1989). This type of sampling applies to many organ- tive is to estimate PNe(Y) by Monte Carlo.
isms, especially those species with high fecundity that Monte Carlo evaluation: For likelihood inference, we
may be sampled as juveniles, or those that may be sam- must evaluate PNe(Y) for a number of different values
pled (preferably noninvasively) as adults in populations of Ne. Expressing this probability as an expectation with
having census sizes considerably larger than their effec- respect to the distribution of X gives
tive sizes (Waples 1989). The sample allele counts Yt,
given the latent variable Xt, are conditionally indepen- PNe

(Y) 5 o
X

PNe
(Y, X) 5 o

X
PNe

(Y|X)PNe(X)
dent of all the other variables and follow the multinom-
ial distribution depending on the parameter Ne, the 5 ENe(PNe(Y|X)). (4)
sample size St, and Xt,

In this form the expectation would be taken over the
marginal probabilities of X, and it could be estimatedPNe

(Yt|Xt) 5 (2St)!p
K

k51

[Xt,k/(2Ne)]Yt,k

Yt,k!
, (2)

by Monte Carlo as

when St . 0. If there is no sample taken from the pop-
PNe

(Y) ≈ 1
m o

m

i51

PNe
(Y|X(i)) (5)ulation at generation t, then St ; 0, and we define

PNe
(Yt|Xt) ; 1.

for large m, with X(i) being the ith realization from theSuch a system forms a hidden Markov chain with the
marginal distribution of X. Such a naive scheme fails,dependence structure shown in the directed graph of
however, because PNe

(Y|X(i)) varies greatly over the val-Figure 1. The allele counts in the population when the
ues of X realized from their marginal distribution, re-first sample is drawn, X0, are nuisance parameters. To
sulting in enormous Monte Carlo variance.avoid estimating X0 and the associated consistency prob-

Instead, we pursue a more efficient Monte Carlo ap-
proximation by using importance sampling (Hammers-
ley and Handscomb 1964). We express PNe(Y) as an
expectation with respect to a different distribution
P*Ne

(X) having the property that P*Ne
(X) . 0 for all X

such that PNe
(Y, X) . 0. Thus, we have

Figure 1.—A directed graph showing the dependence struc-
ture of the components of X and Y. The Yt’s are observations of PNe

(Y) 5 o
X

PNe
(Y, X)

P*Ne
(X)

P*Ne
(X) 5 E*Ne 1PNe

(Y, X)

P*Ne
(X) 2, (6)

a hidden Markov chain. The graph shown represents a situation
where samples were taken at generations 0, 2, t, and T, and no
samples were taken at generations 1 and t 2 1. where E*Ne

indicates that the expectation is over the space
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At the end of the backward step, it is thus clear that theof X weighted by the distribution P*Ne
(X). The expecta-

resulting realization (X (i)
0 , . . . , X (i)

T ) is from the condi-tion (6) may be estimated by Monte Carlo, giving
tional distribution of X given Y.

An approximation for multiple alleles: In our application,
PNe

(Y) ≈ P̃Ne
(Y) 5

1
m o

m

i51

PNe
(Y, X(i))

P*Ne
(X(i))

(7) with multiple alleles at a locus, since there are so many
possible states that each Xt may take, the above proce-

for large m, where X(i) is the ith realization of X drawn dure is computationally infeasible. However, we make
from P*Ne

(X). The Monte Carlo variance of P̃Ne
(Y) is use of the Baum et al. (1970) algorithm in spirit, em-

made small when PNe
(Y, X)/P*Ne

(X) varies little across ploying two alterations to make it feasible to simulate
from P*Ne

(X) and to compute its value. We emphasize thatthe possible values of X and would be minimized if
P*Ne

(X) were exactly proportional to PNe
(Y, X). Such a although the method described below involves a series of

“approximations” by which P*Ne
(X), differs from PNe

(X|Y),distribution of X would, by definition, be the condi-
tional distribution PNe

(X|Y). Unfortunately, for the same the final sampling and computation of P*Ne
(X) is exactly

reasons that PNe
(Y) cannot be computed exactly, it is from the P*Ne

(X) as constructed, so its use in (7) gives a
infeasible to compute PNe

(X|Y). Nonetheless, the Monte true Monte Carlo estimate.
The first approximation is to perform the forward-Carlo variance of P̃Ne

(Y) will be reduced to the extent
backward cycle separately for each allele. To describethat P*Ne

(X) resembles PNe
(X|Y). We now describe a

this, we introduce some more notation. Denote by X(k)method for rapid simulation of X(i)’s from a distribution
the vector (X0,k, . . . , XT,k) of latent counts of the kthP*Ne

(X) that is close to PNe
(X|Y). As is required for the

allele from time t 5 0 to t 5 T. Similarly we define
importance sampling, it is also possible to compute Y(k) 5 (Y0,k, . . . , YT,k). To do the forward-backward
P*Ne

(X(i)) quickly for each X(i) generated. cycle separately over alleles we first focus on allele 1,
Sampling from P*Ne

(X) by a forward-backward method: simulating X (i)
(1) by the forward-backward mechanism as

Baum et al. (1970) describe a method applicable to if the data were on a diallelic locus with observed counts
general, hidden Markov chains for realizing latent vari- Y(1) from samples of size S0, . . . , ST through time. Once
ables, such as X 5 (X0, . . . , XT), from their exact condi- we have realized X (i)

(1) we update the sizes of the popula-
tional distribution given the observed variables, such as tion and the sample. Thus we define the updated popu-
Y 5 (Y0, . . . , YT). Their algorithm first employs a “for- lation size vector 2N*(2) 5 (2Ne 2 X (i)

0,1, . . . , 2Ne 2 X (i)
T,1)

ward step” in which the conditional probability distribu- and an updated sample size vector 2S*(2) 5 (2S*0,2, . . . ,
tions of each Xt, given the observed variables up to and 2S*T,2) 5 (2S0 2 Y0,1, . . . , 2ST 2 YT,1), in effect removing
including Yt, are recursively computed and stored using the first allelic type from the remainder of the data
the relation and the population. We then use the forward-backward

mechanism again to simulate X (i)
(2) as though the dataP(X t|Y0, . . . ,Yt) ~ o

Xt21

P(Xt21|Y0, . . . , Yt21)P(Xt|Xt21)P(Yt|Xt),
were counts Y(2) from a diallelic locus drawn from a
population with sizes that change over time N*(2) and(8)
sample sizes S*(2). This continues sequentially over alleles,

which is normalized by the sum of that quantity over
updating population sizes and sample sizes as above:all the values of Xt. The last such conditional distribu-
2N*(k) ← (2N*(k21) 2 X (i)

(k21)) and 2S*(k) ← (2S*(k21) 2 Y (i)
(k21)),tion computed is P(XT|Y0, . . . , YT). The “backward step”

until X(K21) has been realized, which also determinesbegins with simulating a value X (i)
T from this distribution

that X(K) ← (2N*(K21) 2 X (i)
(K21)). (Here and later we use(where, as before, the superscript (i) indicates a realized

the notation A ← B to mean “the value B is assigned tovalue of a random variable). One then proceeds back-
the variable A.”) At the end one has obtained a realizedward, realizing X (i)

T21 from its conditional distribution
value X(i), which may be used in (7).given all of the observed variables, Y, and X (i)

T . In similar
P*Ne

(X) using a continuous approximation: Although real-fashion, one realizes X (i)
T22 and so forth back to X (i)

0 . In
izing alleles sequentially, as above, greatly reduces thethis backward phase, each X (i)

t is simulated from its con-
number of terms required to use (8) and (10), theditional distribution given all the data Y and all of the
method would still involve a prohibitive amount of sum-components of X that have been realized so far. That
mation over binomial probabilities. Thus we constructis, X (i)

t is drawn from
P*Ne

(X), employing a normal approximation to binomial
P(Xt|Y0, . . . , YT, X (i)

t11, . . . , X (i)
T ). (9) probabilities, which replaces all such sums by analytically

tractable integrals. Recall that if W z Binomial(n, p),Because of the conditional independence structure in
then the transformed variable sin21(W/n)1/2 is approxi-a hidden Markov chain, (9) reduces to P(Xt|Y0, . . . , Yt,
mately normally distributed with variance 1/(4n). NoteX (i)

t11), which may be computed using the distributions
that this quantity does not depend on p. Hence we usestored during the forward step by the relation
this transformation to define the quantities φt,k 5

P(Xt|Y0, . . . , Yt, X (i)
t11) ~ P(Xt|Y0, . . . , Yt) P(X (i)

t11|Xt).
sin21[Yt,k/(2S*t,k)]1/2 when S*t,k . 0, and ut,k 5 sin21[Xt,k/
2N*t,k)]1/2. By realizing the continuous values u(i)

t,k in a(10)
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forward-backward framework within a continuous set- to verify that the method gives correct results we apply
it to a simple simulated dataset (dataset 1) for which itting, the computational demands are greatly reduced.

And then, by transforming each u(i)
t,k back into the appro- is possible to compute the likelihood exactly. We simu-

lated samples of 20 diallelic loci from 100 diploid indi-priate discrete X(i)
t,k we have a way to realize X(i) from

P*Ne(X) and to compute the probability P*Ne(X(i)). The viduals at generations 0, 6, and 12 from a Wright-Fisher
population of 25 diploid individuals. For each locus,details of this procedure are given in the appendix. We

use it to compute the Monte Carlo estimate P̃Ne(Y) the initial allele frequency in the population at time
zero was an independently drawn uniform real numberusing (7).

Monte Carlo variance and multiple loci: The quantity between 0 and 1. The log-likelihood for Ne given these
data was estimated for values between 10 and 52, inP̃Ne(Y) is only an estimate of the true value PNe(Y). By

the central limit theorem, for large m, PNe(Y) will be steps of 2, using m 5 20,000 realizations of X from
P*Ne(X) for each locus and each Ne.approximately normally distributed (Hammersley and

Handscomb 1964) with mean P̃Ne
(Y) and a variance that We simulated a second dataset (dataset 2) to see how

the method performed with multiallelic markers takenmay be approximated without bias by the quantity
from a Wright-Fisher population. The dataset included
three samples of 100 diploids for 12 five-allele loci atVar

l

(P̃Ne
(Y)) 5

1
m(m 2 1)o

m

i51
1PNe

(Y, X(i))

P*Ne
(X(i))

2 P̃Ne
(Y)2

2

.
generations 0, 4, and 8 from a population of 50 diploids.
The allele frequencies at each locus in generation 0(11)
for these simulations were independently drawn from

These facts may be used to obtain a confidence interval a uniform Dirichlet density with five components. For
estimate around each P̃Ne

(Y). this dataset, the log-likelihood was computed for values
The ability to estimate Ne typically requires data from of Ne between 20 and 100 in increments of 4 using m 5

many loci. The extension to data on J independently 50,000 realizations of X for each locus and each value
segregating loci, indexed by j 5 1, . . . , J, is straightfor- of Ne.
ward—each locus is treated separately, and the esti- Finally, we computed a log-likelihood curve for Ne
mated likelihoods from each locus are multiplied to- given data on a population of Drosophila in Begon et
gether. Thus, let P̃Ne,j(Y) be the Monte Carlo likelihood al. (1980). These data were analyzed using F-statistics
estimate from the data on the j th locus. The Monte by Begon et al. (1980) as well as by Pollak (1983). They
Carlo likelihood estimate using all the loci is then observed allele frequencies in three samples at each of

nine enzyme loci. The first two samples were taken a
P̃ J

Ne
(Y) 5 p

J

j51

P̃Ne,j(Y). (12) little more than 1 yr apart, and the third sample was
taken some 8 mo later. Though the natural populations

This requires that the initial allele counts have indepen- do not have discrete generations, they have been mod-
dent prior distributions, p(X0). An implicit assumption eled previously by Begon et al. and Pollak as populations
of (12) is consequently that the loci used are in linkage with discrete generations. Because of the different
equilibrium at t 5 0. P̃ J

Ne(Y) will also have an approxi- growth rates of flies during different seasons, seven gen-
mately normal distribution. An unbiased estimator for erations separate the first two samples, while only two
its Monte Carlo variance (derived in Equation A9 in the generations separate the second two samples (Begon
appendix) is et al. 1980). The sample sizes for all loci were the same,

with larger sample sizes taken in the latter sampling
periods. The sample sizes were S 0 5 190, S 7 5 250, andVar

l

(P̃ J
Ne

(Y)) 5 p
J

j51
1P̃Ne,j(Y)2

2

S 9 5 335 flies. Pollak (1983) notes that since Begon
et al. (1980) sampled adult flies, their sampling scheme

2 p
J

j51
1[P̃Ne,j(Y)]2 2 Var

l

(P̃Ne,j(Y))2. (13) is closer to what is known in the literature as sampling
scheme I than it is to sampling scheme II. However,

This can be used to compute a confidence interval esti- as discussed by Waples (1989), the probability models
mate around P̃ J

Ne(Y). underlying the two different sampling schemes are very
When displaying the Monte Carlo likelihood curve similar when the actual size of the population is much

it is preferable to plot the log-likelihood values, larger than the effective size of the population. This is
log P̃ J

Ne(Y), for different values of Ne. In this case, the the case with these Drosophila. Begon et al. (1980)
endpoints of the confidence intervals may be similarly report census sizes in the tens of thousands of flies,
log-transformed. while the estimated Ne is orders of magnitude smaller.

Because of this, it is still reasonable to analyze the data
using the likelihood method we have developed here.

SIMULATED AND REAL DATASETS
The data appear as allele frequencies in Table 1 of

Begon et al. (1980). Unfortunately the allele frequenciesWe demonstrate the method by computing log-likeli-
hood curves for Ne from three different datasets. First, at the Pgm locus are misreported there and fail to sum
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Figure 3.—Log-likelihood curves from the data of Begon
et al. (1980) estimated by Monte Carlo. The format of the plot
is as for Figure 2.

ated P̃ J
Ne

(Y) at values of Ne between 200 and 1200 in
increments of 50, with two more points (Ne 5 425 and
Ne 5 475) included near the peak of the likelihood
curve. For each point we used m 5 500,000 realizations
of X.

RESULTS

For each of the datasets, we were able to use our
importance-sampling method to compute a log-likeli-
hood curve. Using a program we wrote in C, the runs
for datasets 1 and 2 each took z10 hr on a 266-Mhz
laptop computer. The log-likelihood curves from data-
sets 1 and 2 appear as solid lines in Figure 2. The esti-
mated 90% confidence intervals around each value of
log P̃ J

Ne
(Y) appear as two dashed lines bordering the

log-likelihood curve. Despite the fact that few Monte
Carlo replicates (m 5 20,000 and 50,000) were used,

Figure 2.—Log-likelihood curves estimated by Monte Carlo
the Monte Carlo variance is minimal, as indicated by thefrom datasets 1 and 2. The values of Ne at which the likelihood
fact that the dotted lines practically lie on top of thewas computed are indicated by vertical lines above the hori-
estimated log-likelihood curve. In both cases, the truezontal axis in each figure. The log-likelihood values are con-

nected by a solid line. Vertical bars intersecting the solid line values of Ne (25 and 50, respectively) are well within 2
indicate 90% confidence intervals around log P̃ J

Ne
(Y) com- units of log-likelihood from the maximum-likelihood

puted using the Monte Carlo variance estimate (13). The estimates, which may be read from the graph as 24 and
endpoints of the confidence intervals are connected by dashed

56. Since dataset 1 consists only of diallelic loci, it islines. (a) Dataset 1 is simulated data from 20 diallelic loci.
possible to compute the exact log-likelihood curve. This(b) Dataset 2 is simulated data from 12 loci with five alleles
exact curve has been plotted as a dotted line in Figureeach.
2a. It is impossible to distinguish the exact curve because
the Monte Carlo estimate is very accurate in this case.

The log-likelihood curve computed for the data ofto one. We thus used only the remaining eight loci. Of
Begon et al. (1980) is shown in Figure 3. It took z54these eight, three had three alleles, two had four alleles,

two had five alleles, and one had six alleles. We evalu- hr on a 450-Mhz desktop computer to produce the re-
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sults. As before, the 90% confidence intervals around with demonstrably small Monte Carlo variance. Though
the computational demands of this procedure are sub-the Monte Carlo estimates appear as dotted lines. With

this dataset, even with m 5 500,000 realizations of X, stantial, the reduction in Monte Carlo variance obtained
makes it worthwhile. Nonetheless, it may be possible tothe Monte Carlo variance is not negligible. It is, however,

small enough that reliable inferences may be made from improve the estimates by making additional changes to
P*Ne

(X) so that it more closely resembles PNe
(X, Y), espe-the log-likelihood curve. The maximum-likelihood esti-

mate of Ne is 500. Using the values of Ne at which the cially in the tails of the distribution. This would further
log-likelihood has decreased 2 units from its maximum reduce the Monte Carlo variance.
gives an estimate of a 95% confidence interval for the It should be pointed out that while many Monte Carlo
true Ne. These points are 250 and 975. By contrast, problems involving high-dimensional random variables
Pollak (1983), using an F-statistic method, estimated like X make use of Markov chain Monte Carlo (MCMC)
Ne to be 251 with a standard error of 115. We discuss methods, our method is not an MCMC method. In
the discrepancy between the two estimates in the next MCMC, successive realizations are correlated. In our
section. Our results are not comparable to the Ne esti- method each X(i) realized from the distribution P*Ne

(X)
mated by Begon et al. (1980) because, at the time, those is independent of the other realized values. As a result,
authors were unable to make a single estimate of Ne our method does not have the same problems of conver-
using the samples at all three time points. gence assessment as does Markov chain simulation

(Gelman 1996).
It is interesting that our maximum-likelihood estimate

DISCUSSION differs so much from the estimate given by Pollak
(1983) for the same data. Though perhaps some of thisAs discussed in Williamson and Slatkin (1999), esti-
is attributable to the fact that we chose not to use themating Ne by maximum likelihood has advantages over
incorrectly reported data at the Pgm locus, there areestimating Ne using F-statistics. Until now, it was imprac-
differences between the two estimation methods thattical to compute the likelihood for Ne using all the data
could also account for some of the discrepancy. Thewhen loci with more than two alleles were available.
most notable differences occur when combining infor-While it has been suggested that one may bin low-fre-
mation from multiple samples in time. Consider the factquency alleles together to turn multiallelic loci into
that a better estimate of Ne may be made from two sam-apparently diallelic loci and then apply exact likeli-
ples taken many generations apart than from two sam-hood calculation methods to such reduced data, this
ples separated by fewer generations. Likewise two largeinvariably throws away some information. Furthermore,
samples will yield a better estimate than two small sam-different binning strategies lead to different results.
ples. When there are many samples, the relative infor-Allowing full use of the data, the Monte Carlo likelihood
mation content in different intersample intervals willprocedure described here is a preferable way to analyze
depend on the relative sample sizes and the numbertemporal data on multiallelic loci. The method is suit-
of generations between the samples. By its nature, theable for multiallelic loci such as the microsatellite mark-
maximum-likelihood approach will appropriately weighters becoming available in a wide variety of species.
information from different intervals. In contrast, Pol-Monte Carlo methods use realizations of random vari-
lak’s F-statistic, FKr

, neither includes terms for sampleables to estimate an expectation by a sample average.
There are a number of ways one can express the likeli- size nor interval length between samples, and, ÑKr

, his
hood of Ne as an expectation, and then estimate it by estimate of Ne based on FKr

, includes a term for only the
Monte Carlo, but few of those schemes will be successful, number of generations between the first and the last
because most will have high Monte Carlo variance. We sample and is invariant to permutations of the sample
attempted several different schemes before settling on sizes at different times. Since the data from Begon et
the importance-sampling method presented here. Al- al. (1980) span sampling intervals of different lengths
though these less sophisticated Monte Carlo estimators and include different sample sizes at different times,
produced reasonable estimates in very small problems, differences between our results and those in Pollak
when applied to data involving loci with many alleles (1983) should be expected.
these methods failed to converge reliably, even after The Monte Carlo variance of our estimate of the likeli-
many days of computation (E. C. Anderson and E. G. hood given the data from a natural population of Dro-
Williamson, unpublished data). sophila was higher than the variance associated with

The importance-sampling method we use is successful our estimates from simulated data. Although a good
because our importance sampling function, P*Ne

(X), estimate was achieved after sufficient computation, it
closely resembles PNe

(X|Y), the conditional probability may still be that data generated under a model that
differs from the Wright-Fisher model present difficultyof X given Y. This is achieved by recognizing the hidden

Markov chain structure of the problem and using the for the Monte Carlo likelihood method. For example,
it may be that the effective size of the natural Drosophilaforward-backward algorithm of Baum et al. (1970). In

doing so, we have developed a Monte Carlo estimator population was different during the two different sam-
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The forward-backward method here, and variations of

Using ut,k and φt,k in a continuous setting: We defineit, should be useful in estimating population parameters
the random variables φt,k 5 sin21[Yt,k/(2S*t,k)]1/2 whenfrom such models using Monte Carlo likelihood.
S*t,k . 0, and ut,k 5 sin21[Xt,k/(2N*t,k)1/2 when N*t,k . 0.A software package, MCLEEPS, implementing the
These quantities have an approximate normal distribu-algorithm described in this article is available for
tion, which is independent of their means. We use themfree download from http://www.stat.washington.edu/
in our construction of the importance-sampling func-thompson/Genepi/Mcleeps.shtml.
tion PNe

(X). Below, we concentrate on their use for real-
izing X (i)

(k), keeping in mind that if k . 1 then we willWe thank an anonymous referee for helpful comments on the
have already realized X (i)

(k21), and we use the updatedmanuscript and for suggesting the extension to the population model
with hypergeometric sampling. This study was supported by National population and sample sizes N*(k) and S*(k). If k 5 1 then
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N*(1) 5 (Ne, . . . , Ne) and S*(1) 5 (S0, . . . , ST), respec- Working backward, each u(i)
T,k for t 5 T 2 1 down to

tively. t 5 0, is realized from a 1(mt, s2
t ) distribution and then

The forward step: Following Cavalli-Sforza and transformed into the corresponding u*T,k and X(i)
t,k by }.

Edwards (1967), if ut21,k is normally (1) distributed In keeping with (10), before u(i)
t,k is realized, mt and s2

t

with mean mt21 and variance s2
t21, then, after a genera- must be appropriately updated, on the basis of the values

tion of genetic drift in a population of N*t,k diploids, ut,k of mt and s2
t stored during the forward step and the

has an approximate normal distributions with mean mt21 realized value u(i)
t11,k. This involves making the assign-

and variance s2
t 5 s2

t21 1 1/(8N*t,k). If there are data Yt,k ments
from a sample of size St,k at time t, then φt,k has an
approximate normal distribution with mean ut,k and vari- mt ← mt/(8N*t11) 1 s2

t u*t11,k

1/(8N*t11) 1 s2
t

(A5)
ance 1/(8S*t,k), so, given that ut,k z 1(mt, s2

t ), the condi-
tional distribution of ut,k given φt,k is also normal. These

s2
t ← s2

t /(8N*t11)
1/(8N*t11) 1 s2

t

(A6)relations form the basis of a continuous approximation
for doing the forward step. For the purpose of realizing
X we assume that the uniform prior on X0 is equivalent in the order as written.
to a diffuse prior on u0,k. Therefore u0,k |φ0,k z 1(m0, Computing the probability P *Ne

(X(i)): By carrying out the
s2

0) with m0 5 φ0,k and s2
0 5 1/(8S*0,k). With that as a

forward-backward steps above on the first allele, thestarting point, we work iteratively forward in time, as-
realization X(i)

(1) is obtained. Then, N*(2) and S*(2) are com-signing values
puted and used in the forward-backward steps to obtain
X(i)

(2). Executing these steps for all the alleles yields themt ← mt21 (A1)
realization X(i), which is used in (7). PNe

(Y, X(i)) in (7)
s2

t ← s2
t21 1 1/(8N*t,k) (A2)

is easily computed using the expansion shown between
if S*t,k 5 0. If S*t,k . 0, however, then one first computes the large parentheses in (3).
mt and s2 as in (A1) and (A2), but then further updates It remains only to compute P*Ne

(X(i)), which can be
the values to reflect the information in the sample at done by recording the probability of realizing each com-
time t: ponent X (i)

t,k . Although this probability depends on the
values of mt, s2

t , N*(k), and several bookkeeping variables,
mt ← mt/(8S*t,k) 1 s2

t φt,k

1/(8S*t,k) 1 s2
t

(A3) we denote it here simply by 3(X(i)
t,k). (The actual function

3 is described later in this appendix.) As long as the
realization of X(i)

(k) over alleles occurs in the same order
s2

t ← s2
t /(8S*t,k)

1/(8S*t,k) 1 s2
t

. (A4)
over k (k 5 1, 2, . . . , K) for each i, then

This is analogous to computing a posterior distribution P *Ne
(X(i)) 5 p

K

k51
p
T

t51

3(X(i)
t,k). (A7)

from a normal prior and normal data (see, for example,
Gelman et al. 1996, p. 43).

Details of }: The fact that we are realizing X(i)
(k)’s oneCarrying this out until t 5 T gives values for the mean

allele at a time requires that we do some extra book-and variance of uT,k given φ0,k, . . . , φT,k, assuming they
keeping to keep our importance-sampling scheme effi-follow a normal distribution. In fact, for each t, it gives
cient. Primarily, we must avoid realizing X(i)’s for whichus the parameters for the normal distribution of ut,k
PNe

(Y, X (i)) 5 0. Potential problems arise because byconditional on φr,k for all r # t. We are thus in a position
the method we use to realize values from P*Ne

(X), Xt,kto realize u (i)
t,k ’s in the backward step and transform those

u (i)
t,k ’s back into the X(i)

t,k ’s that we need. may only take values between 0 and 2N*t,k, inclusive. If
The backward step: The backward step is more compli- 2N *t,k 5 0 at any value of t, then for any s . t, X(i)

s,k must
cated than the forward step, because after realizing each also be 0. To avoid situations in which this leads to
value of u (i)

t,k we must transform it into the discrete value PNe
(Y, X(i)) being 0 (as when X(i)

t,k 5 0 and Yt,k . 0) we
X(i)

t,k that we require. This transformation process re- introduce the following scheme and additional nota-
quires some extra bookkeeping to ensure that we do tion:
not waste time realizing X(i)’s that are incompatible
with the data. This is described in the next section of

dt,k 5 51 if X(i)
i,k 5 0 implies PNe

(Y, X(i)) 5 0

0 otherwisethe appendix. We first realize the value u (i)
T,k from a

1(mT, s2
T) distribution. Then we transform that to the

gt,k 5 min
r , t

2N*r,krealization X(i)
T,k by a many-to-one map }, which has two

effects: the first is that of folding and translating the
kt,k 5 the number of allelic subscripts ,: k , , # Kdistribution of uT,k so that it is bounded between 0 and

p/2, mapping u(i)
T,k P (2∞, ∞) to a value u*T,k P [0, p/2]. such that Yr,, . 0 for at least one r $ t. (A8)

The second is transforming that u*T,k into the appropriate
value X(i)

T,k (see the next section). Knowing the above quantities, we can define the func-
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tion }. In the remainder of this section and in the and if (d 5 0) then u* ← u
following one we drop the t and k subscripts for clarity.

else if (d 5 1) then u[L] ← 2L 2 u (this is reflectionWith N* and g positive integers, d P {0, 1}, and k P
around u 5 L), and then{0, 1, . . . , min(2N* 2 d, g 2 d)}, let }(u; N*, d, g, k):

R1 → {d, . . . , 2N* 2 k} 3 [0, p/2] be the many-to-one if (L # u[L] , H) then u* ← u[L]

map that takes a realization of u P (2∞, ∞) to the
else we know u[L] $ H, and we consider theordered pair (X, u*), where X is an integer such that

sequence u[i] 5 i(L 2 H) 1 u[L], i 5 1, 2, . . . ,
d # X # 2N* 2 k, and u* is a real number between 0

and we assign u* ← u[i *], where i* is the leastand p/2, inclusive. } may be described by the following
i such that L , u[i] , H. (The sequence u[i] representspseudocode. We first define the quantities L 5
successive translation leftward.)sin21(0.5/(2N*))1/2 and

else if (u . H)
H 5 5sin21[(2N* 2 k 1 0.5)/(2N*)]1/2, k $ 1

sin21[(2N* 2 0.5)/(2N*)]1/2, k 5 0. and if (k 5 0) then u* ← p/2

else if (k . 1) then u[H] ← 2H 2 u (this is reflectionThen,
around u 5 H), and then

if (d 5 2N* 2 k or d 5 g 2 k 5 0) then u* ← 0
if (L , u[H] , H) then u* ← u[H]

else if (L , u , H) then u* ← u
else we know u[H] , L and we consider the sequence

u[j] 5 j(H 2 L) 1 u[H], j 5 1, 2, . . . , and weelse if (u , L)

Figure A1.—Figures representing } and 3 for 2N* 5 20. The normal curve is the density for u. (a) Reflections and translations
as described in the appendix. Long-dashed lines represent the curve after reflection through L or H, while the short-dashed
lines represent the reflected curve after one or more successive translations. (b) If d 5 1 and k 5 1, then X(i) is constrained to
be in {1 . . . , 2N* 2 1}. The shaded regions correspond to those values of u for which X(i) 5 13 by }. The total shaded area is
equal to 3m,s2(X 5 13; 10, 1, g, 1). (c) If d 5 0 then X(i) may take the value 0. The shaded area shows 3m,s2(X 5 0; 10, 0, g, k).
(d) If k 5 0 then X may take the value 2N*. The shaded area shows 3m,s2(X 5 2N*; 10, d, g, 0).
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assign u* ← u[j *], where j* is the least j such that
1I{d 5 1} o

∞

i51

P(a # u[i] , b)L # u[j] , H. (The sequence u[j] represents successive
translation rightward.)

1 I{k . 0} o
∞

j51

P(a # u[j] , b),finally we use u*, making the assignment X ←
2N*sin2u* 1 0.5,

where I{·} is the indicator function and P(a # u , b) is
where x denotes the largest integer #x. The reflections the probability that a 1(m, s2) random variable is be-
and translations are depicted graphically in Figure A1a. tween a and b, namely eb

a(2ps2)21/2 exp{[2(u 2 m)2]/
The probability 3m,s2(X 5 X(i); N*, d, g, k) of realizing (2s2)}du. We compute this probability by numerical inte-

X 5 X(i): If u z 1(m, s2), and (X, u*) 5 }(u; N*, d, g, gration in our programs. In practice, the infinite sums
k), then we denote by 3m,s2(X 5 X(i); N*, d, g, k) the mar- are approximated by summing the first several terms of
ginal probability that X 5 X(i). The value of 3m,s2(X 5 X(i); the series, until the contribution of the next term is
N*, d, g, k) can be expressed using the notation from very small (e.g., ,1027). Values of 3 for different values
the above section. First, 3m,s2(X 5 X(i); N*, d, g, k) 5 0 of d and k appear as shaded regions in Figure A1, b–d.
if X(i) , d or X(i) . 2N* 2 k, though such values of X(i) This folding and translating might seem to be a very
should never occur from } anyway. Second, there are involved process, but it is computationally much faster
cases when } constrains X(i) to be either 0 or 1 with than realizing u from a truncated normal distribution
probability 1. Hence if 2N* 2 k 5 d or g 2 k 5 d 5 0 and computing the probability of X(i) when u is from
then 3m,s2(X 5 d; N*, d, g, k) 5 1. such a distribution.

Multilocus Monte Carlo variance calculation: We de-If, on the other hand, 2N* 2 k . d and g 2 k . 0,
rive an expression for the variance of a product of Jthen for X(i) 5 0 and X(i) 5 2N* we have
independent random variables, Wj, j 5 1, . . . J:

3m,s2(X 5 0; N*, 0, g, k) 5 P(2∞ , u , L)

Var(pWj) 5 E ([pWj]2) 2 [E(pWj)]2 (definition of variance)3m,s2(X 5 2N*; N*, d, g, 0) 5 P(H # u , ∞),

5 E([pW 2
j ]) 2 [E(pWj)]2 (powers distribute over products)while for 0 , X(i) , 2N* 2 k we define a 5 sin21[(X(i) 2

0.5)/2N*)]1/2 and b 5 sin21[(X(i) 1 0.5)/(2N*)]1/2 and 5 pE(W 2
j ) 2 p[E(Wj)]2 (independence of the Wj)

have
5 pE(W 2

j ) 2 p[E(W 2
j ) 2 Var(Wj)] (definition of variance).

3m,s2(X 5 X(i); N*, d, g, k) 5 P(a # u , b)
Denoting P̃Ne,j(Y) in (13) by Wj and taking the expecta-

1I {d 5 1}P(a # u[L] , b)
tion gives the same result, verifying that the expression
in (13) is unbiased for Var(P̃ J

Ne
(Y)).1 I{k . 0}P(a # u[H] , b)


