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ABSTRACT
We present a statistical method for identifying species hybrids using data on multiple, unlinked markers.

The method does not require that allele frequencies be known in the parental species nor that separate,
pure samples of the parental species be available. The method is suitable for both markers with fixed
allelic differences between the species and markers without fixed differences. The probability model used
is one in which parentals and various classes of hybrids (F1’s, F2’s, and various backcrosses) form a mixture
from which the sample is drawn. Using the framework of Bayesian model-based clustering allows us to
compute, by Markov chain Monte Carlo, the posterior probability that each individual belongs to each
of the distinct hybrid classes. We demonstrate the method on allozyme data from two species of hybridizing
trout, as well as on two simulated data sets.

HYBRIDIZATION between individuals from genet- from a sampled population belonging to the six genea-
ically distinct populations is of interest across logical classes of parentals, F1’s, F2’s, and backcrosses

many fields within biology. Hybrid zones, regions where that are the possible first- and second-generation prod-
individuals from genetically distinct populations inter- ucts of all possible matings between two species. To
breed to form genetically mixed offspring, have been employ their method, individuals in the sample must
recognized as fertile grounds for evolutionary studies be classified exclusively to one of the six categories or
concerning models of speciation, selection, recombina- be excluded from the analysis altogether because they
tion, the maintenance of species boundaries, and the fall into the “ambiguous” category. This requires that
evolution of host-parasite interactions (Hewitt 1988; parental species can be sampled separately, so that the
Boecklen and Spellenberg 1990; Harrison 1990). In frequency of different alleles among the parentals may
conservation biology and resource management, hy- be estimated and then used as if known without error.
bridization between endemic species and introduced Additionally, it requires that each parental species be
species (Goodman et al. 1999) or between wild and segregating for unique alleles, though even then it is
cultured populations (Elo et al. 1995; Jansson and not always possible to unambiguously assign individuals
Oest 1997) is a topic of great concern. to the different categories. Epifanio and Philipp (1997)

Mendelian genetic markers (Avise 1994) provide valu- note that error rates when classifying individuals to hy-
able tools for studying species hybridization because brid categories may be quite high if few loci are available.
they allow the characterization of individuals as pure- This is so even with diagnostic loci: loci that are fixed
bred individuals or hybrids. Such a characterization is for alternate alleles in the different species. Boecklen
useful, if not crucial, to the research goals in many and Howard (1997) give expressions and recommen-
studies of hybridizing populations. For example, identi- dations for the number of markers needed to achieve
fying individuals as belonging to pure, F1, F2, or back- a desired level of classification error, under several
crossed classes is important for documenting gene ex- restrictive assumptions such as unidirectional backcross-
change and introgression between species. ing and diagnostic loci. Miller (2000) provides a simi-

Several methods have been advanced for identifying lar analysis describing the probability of misclassifica-
hybrid individuals (Campton and Utter 1985; Nason tion using diagnostic dominant markers.
and Ellstrand 1993; Barton 2000; Miller 2000; Other methods for identifying hybrids with genetic
Young et al. 2001). One family of methods relies on the data do not necessarily require that the different species
use of alleles that are unique to each species. Nason possess unique alleles. Campton and Utter (1985) de-
and Ellstrand (1993) present a maximum-likelihood rive a statistic that is a simple function of the conditional
method for estimating the proportion of individuals probability of an individual’s genotypes at multiple loci

given the parental species’ allele frequencies. Once
again, this method requires that the parental allele fre-
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resolution of individuals into pure and hybrid categories putational framework that may be easily adapted to spe-
cial cases.and does not indicate directly whether individuals are

Our method is related to the method of Rannala andF1, F2, or backcrossed hybrids. Barton (2000) suggests
Mountain (1997), but differs substantially in that itthat, rather than classifying hybrids into genealogical
treats all the individuals in a sample simultaneously,classes, they could be classified by the number of alleles
rather than on a one-by-one basis. Our method also isderived from each taxon and the number of heterozy-
similar to Pritchard et al.’s (2000) Bayesian methodgous loci they possess. He suggests a moment-based
for analyzing structured populations. However, theirmethod for doing such classification using the informa-
method focuses on a genetic inheritance model speci-tion implicit in the linkage disequilibrium present in
fied in terms of the proportion of an individual’s ge-hybridizing populations.
nome originating from each of a set of possible subpop-The above methods for classifying hybrids require that
ulations. This is a useful heuristic model for populationsthe allele frequencies of each species are known or
with structure of unknown origin; however, when popu-can be estimated separately. When it is not possible to
lations are known to consist of pure individuals andsample the different species separately and hence obtain
recent hybrids of two species, a more detailed analysisestimates of the parental allele frequencies, the classifi-
using an inheritance model defined in terms of geno-cation of hybrids is more difficult. Young et al. (2001)
type frequencies, as pursued here, is possible.recently demonstrated the use of principal coordinate

In this article, we assume that we have a sample ofanalysis (a general multivariate statistical technique) to
individuals drawn from a hybridized population andcluster pure individuals of two species of trout and their
genotyped at L unlinked loci. We describe the popula-hybrids. Individuals intermediate between the two spe-
tion model and the genetic model for hybridization andcies clusters were assumed to be hybrids. These were
then describe the likelihood function that these modelsremoved from the sample before estimating allele fre-
imply. We then describe how that likelihood is used inquencies in the parental species. This method of separat-
a Bayesian specification of the problem and how Markoving hybrids from pure individuals has the drawback that
chain Monte Carlo (MCMC) is carried out for simulat-the principal coordinate analysis is not based upon a
ing from the Bayesian posterior distribution. Once thegenetic model, so the clusters are not readily interpret-
method is developed, we apply it to multilocus geneticable, and, further, the parental allele frequencies so
data from juvenile steelhead trout (Oncorhynchus mykiss),obtained are made under the assumption that the classi-
cutthroat trout (O. clarki clarki), and hybrids of the twofication of hybrids by the principal coordinate analysis
species collected from a coastal stream in Washingtonis correct.
state. We then demonstrate the method on two simu-

We present a new Bayesian statistical method for iden-
lated data sets and discuss the results. One data set has

tifying hybrids. Rather than assigning individuals to a many relatively uninformative markers and the other
single hybrid category, our method computes the poste- has nearly diagnostic markers. Finally, in the discussion,
rior probability that an individual in the sample belongs we note several useful extensions that could be easily
to each of the different hybrid categories. This posterior handled within the framework described here.
probability reflects the level of certainty that an individ-
ual belongs to a hybrid category. This is an improvement
over previous methods, which do not explicitly compute PROBABILITY MODEL AND

COMPUTATIONAL METHODSthe probability of misclassification of particular individ-
uals. It further allows the inference of all model parame- Genotype frequency classes: We consider a group of
ters to be made while integrating over the uncertainty individuals in the wild that consists of sympatric popula-
in hybrid category classifications, rather than making tions of two species, A and B, and hybrids of the two
those inferences conditional on a single classification species that have occurred from n potential generations
of individuals to hybrid or pure categories. Our method of interbreeding. We take n to be known or assumed.
also has the following attractive features: (1) It is based For example, it may be known that species A was intro-
upon a genetic model, so the results are easily interpre- duced n generations ago to species B ’s range, or it may
ted; (2) it does not require that parental classes be be that the hybrids have reduced fitness, so hybrids
sampled separately, though if they can be, then those remaining in the population will be hybridized for no
samples can be included as prior information in the more than n generations. More practically, it is well
model; (3) it does not require that loci be diagnostic, known that individuals arising from many generations
or even that the species possess unique alleles—it can of backcrossing are difficult to distinguish from pure
make use of the information in frequency differences individuals even with many diagnostic markers (Boecklen
between alleles that are not fixed in either species; (4) and Howard 1997); hence the quality of the data limits
it incorporates the uncertainty due to the fact that allele the extent of the biological inferences one can make.
frequencies are always estimated and are not known With few markers or with low genetic differentiation

between the species it could be impossible to distinguishwithout error; and (5) it provides a modeling and com-
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cies at the top of the pedigree. Since there are 2n found-
ers for a pedigree with n generations, there are 2n � 1
different gene frequency classes that are determined by
the number, a, of founders originating from the species
A population (a � 0, 1, . . . , 2n). In Figure 1, both c
and f belong to the gene frequency class with a � 2.
The individuals at the bottoms of the other pedigrees
belong to the remaining four distinct gene frequency
classes.

We use uppercase Q to denote the proportion of an
individual’s genome derived from the species A popula-
tion. This quantity, which we refer to as the “genetic
heritage proportion,” is discrete and is determined by
the gene frequency class to which an individual belongs,
namely Q � a/2n, with a defined as in the previousFigure 1.—Six arrangements of founders on a pedigree of

n � 2 generations. Each box represents a locus. The circles paragraph. We note that Q is the quantity estimated by
within each box represent the two genes possessed by the Barton and Gale’s (1993) familiar hybrid index z and
diploid organism at the locus. The founders are the individuals also that Q is closely related to the latent variable q (i)

kin the top row of each pedigree. Black gene copies are those
described in the model with admixture developed byoriginating from the species A population, and the white genes
Pritchard et al. (2000) as the proportion of the ge-are from species B. Genes that are not determined to be either

black or white by the pedigree and the founders in it are nome of the ith individual originating from population
denoted by broken circles. The individual at the bottom of k. Q is necessarily discrete in our approach since we
each pedigree belongs to a different hybrid class, determined perform the analysis conditional upon n, the numberby the arrangement of species among the founders. a–f repre-

of generations of potential interbreeding. By contrastsent six distinct genealogical classes. a–f also represent six distinct
q (i)

k is used as a continuous variable by Pritchard et al.genotype frequency classes. There are, however, only five distinct
gene frequency classes; the individuals at the bottoms of pedigrees (2000), although they do treat q (i)

k as a discrete variable
c and f are both in the same gene frequency class. in their model for detecting immigrants with prior pop-

ulation information. The Pritchard et al. (2000) model
for detecting immigrants is similar to what we propose

between all the hybrid categories generated by as few here for detecting hybrids; however, their model is re-
as n � 2 or n � 3 generations of potential interbreeding. stricted to the case where the number, a, of immigrant

When hybridization between two species has been founders on a sampled individual’s pedigree does not
potentially occurring for n generations, the possible exceed one, and it does not make use of the expected
genealogical classes into which an individual may fall can frequencies of single-locus genotypes that we discuss
be enumerated and described by considering the possi- below.
ble arrangements of different species among the found- With gene frequency classes and the genetic heritage
ers in an n-generational pedigree, up to changes in proportion so defined, it is straightforward to enumer-
branching order at any node in the binary tree of the ate and define the genotype frequency classes. The
pedigree. The individual of interest is taken to be the members of a genotype frequency class all have the
member at the bottom of the pedigree and is assumed same expected proportion of single-locus genotypes
to be noninbred over the last n generations; hence we possessing 0, 1, or 2 genes originating from species A.
assume there are no loops in its n-generational pedigree. For the gth genotype frequency class we denote these
Figure 1 illustrates this for the case of n � 2. With data expected proportions by Gg � (Gg,0, Gg,1, Gg,2), respec-
only on unlinked loci, it is not possible to resolve all tively. Enumerating these genotype frequency classes
the genealogical classes for n � 3. For example, the and computing the expected proportions of the geno-
expected proportions of different multilocus genotypes types follows from Mendel’s laws. Since each individual
composed of unlinked markers for the F2 and F3 genea- receives one gene copy randomly selected from the two
logical classes are identical. Instead, with unlinked in its mother and another randomly selected from the
marker data, one can only resolve what we refer to as two in its father, the expected proportions of the geno-
genotype frequency classes. types in an individual are determined by the gene fre-

Before describing genotype frequency classes, how- quency classes to which its parents belong. For the gth
ever, it is convenient to consider a simpler classification genotype frequency class, we have
of hybrid individuals into gene frequency classes. Members
of the same gene frequency class have the same ex- Gg,0 � (1 � Qm)(1 � Q f)
pected proportion of all their genes originating from

Gg,1 � Qm(1 � Q f) � Q f(1 � Qm)
species A. This is determined by the number of founders
(without regard to their arrangement) from each spe- Gg,2 � QmQ f, (1)
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where Qm and Q f are the genetic heritage proportions from the species A population, and it takes the value 0
if that gene copy originated from species B. We useof the individual’s mother and father (and the sexes

of the parents are interchangeable). Straightforward Wi � (Wi,1, . . . , Wi,L) to denote all the latent gene origin
indicators in the ith individual, and W denotes the latentalgebra verifies that two individuals i and j will belong

to the same genotype frequency class if and only if the gene origin indicators in all the individuals.
The allelic types of the two gene copies at locus � inparents of j belong to the same gene frequency classes

as the parents of i. Consequently, the number of distinct individual i are denoted by Yi,� � (Yi,�,1, Yi,�,2), with each
of Yi,�,1 and Yi,�,2 taking an integer value between 1 andgenotype frequency classes after n generations of possi-

ble interbreeding can be calculated as the number of K�, inclusive, corresponding to the possible allelic types
at the �th locus. The L single-locus genotypes in the ithunordered pairs that may be formed from the 2n�1 �

1 gene frequency classes after n � 1 generations: (2n�1 � individual are denoted by Yi � (Yi,1, . . . , Yi,L), and all
1)(2n�1 � 2)/2. We denote this quantity by �n. For n � of the genetic data over all M individuals in the sample
2 there are always more genotype frequency classes than is Y � (Y1, . . . , YM). We introduce some notation here
there are gene frequency classes. With data on multiple to avoid awkward subscripting: let �A �i; �; j � denote
unlinked loci, it is possible to distinguish between indi- the frequency in the species A population of the allele
viduals in different genotype frequency classes. This is possessed by the i th individual at the j th ( j � 1, 2) gene
our primary inference goal and will be pursued in the copy of its �th locus. This is a shorthand for the doubly
Bayesian context by computing the posterior probability subscripted �A,�,Yi,�,j . We also introduce the latent variable
that each individual belongs to each of the �n genotype Zi : Zi � g indicates that individual i in the sample be-
frequency classes. The following section describes the longs to genotype frequency class g.
data and the probability model for making such infer- Given the population allele frequencies, the gene ori-
ence. gin indicators, and the genotype frequency class to

Genetic data and probability model: We have a sample which an individual belongs, it is easy to compute the
of M individuals drawn for genetic analysis. For now, probability of that individual’s single-locus genotype at
we assume that individuals are sampled randomly and the �th locus. For our purposes later, it is more useful
independently of whether they are purebred individuals to have an expression for the joint probability of the
of either species or are hybrids. This sort of sampling genotype and the gene origin indicators. At the �th
would arise if, for example, the two species, or hybrids locus in individual i belonging to genotype frequency
thereof, were difficult to distinguish on the basis of class g, this joint probability is
morphology—so-called “cryptic” hybridization. Each in-

P(Yi,�, Wi,�|Zi � g,�A,�, �B,�)dividual in the sample is genotyped at L unlinked loci.
Let the �th locus possess K� alleles detected in the sam-
ple. We denote the allele frequencies in species A and
B, n generations ago, by �A and �B, respectively. Each
of these �’s is a collection of vectors, with each vector �






�A�i; �; 1��A�i; �; 2�Gg,2, if Wi,�,1 � Wi,�,2 � 1
�A�i; �; 1��B�i; �; 2�Gg,1/2, if Wi,�,1 � 1, Wi,�,2 � 0
�B�i; �; 1��A�i; �; 2�Gg,1/2, if Wi,�,1 � 0, Wi,�,2 � 1
�B�i; �; 1��B�i; �; 2�Gg,0, if Wi,�,1 � Wi,�,2 � 0.giving the allele frequencies at a particular locus. For

example, for species A, �A � (�A,1, . . . , �A,L), where (2)
�A,� � (�A,�,1,, . . . , �A,�,K�

) are allele frequencies at the
�th locus. The alleles found in individuals from species The product of the two allele frequencies in the above
A and species B are assumed to be drawn randomly expressions follows from the assumption that each gene
from the allele frequencies �A and �B, respectively, n copy in the founders (n generations ago) of the ith
generations ago. Likewise, individuals n generations be- individual is sampled randomly from the alleles present
fore sampling are assumed to be in Hardy-Weinberg in its population of origin. Then, Gg,2 is the probability
and linkage equilibrium with reference to their contem- that an individual in genotype frequency class g has both
poraneous conspecifics; thus, linkage disequilibrium gene copies originating from species A, Gg,1/2 is the
and Hardy-Weinberg disequilibrium in the mixed popu- probability that the first (second) gene copy originates
lation are assumed to result entirely from the mixing and from species A and the second (first) originates from
admixing of the gene pools of species A and species B. species B, and Gg,0 is the probability that both gene

Within an individual, the two gene copies carried at copies originated from species B.
any locus are considered to be ordered and indexed by For a given genotype frequency class, the marginal prob-
j � 1 or 2. The order of the gene copies is arbitrary; ability of the ith individual’s genotype at locus � is com-
for example, it may merely be the order in which the puted by summing (2) over the latent gene origin indi-
genetic data on that locus in that individual happened cators:
to be recorded. We do not know from which species

P(Yi,�|Zi � g,�A,�,�B,�) � �
0�Wi,�,1�1

0�Wi,�,2�1

P(Yi,�,Wi,�|Zi � g,�A,�,�B,�).each of an individual’s gene copies descended, but we
denote that unknown information by the latent variable
Wi,� � (Wi,�,1, Wi,�,2). Wi,�,j takes the value 1 if the jth gene
copy at the �th locus of the ith individual originated (3)
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Finally, under the assumption of unlinked markers in choice facilitates simulation from the full conditional
distributions for �A and �B. The Dirichlet distributionHardy-Weinberg and linkage equilibrium among con-

specifics n generations ago, the probability of the ith is also the multivariate generalization of the beta distri-
bution, which arises theoretically as the equilibrium dis-individual’s multilocus genotype is just the product over

the L single-locus genotype probabilities: tribution for gene frequencies in the presence of genetic
drift and linear pressure from migration or mutation

P(Yi|Zi � g, �A, �B) � �
L

��1

P(Yi,�|Zi � g,A,�, �B,�). (4) (Wright 1938, 1952). Specification of the parameters
�A,� � (�A,�,1, . . . , �A,�,K�

) and �B,� � (�B,�,1, . . . , �B,�,K�
)

provides a way to incorporate prior information aboutThis gives us an expression for the probability of the
the allele frequencies among the two species at the �thdata on a single individual. We now must derive the
locus. If, at locus �, previous studies have indicated thatprobability of the data on all M individuals in the sample.
species B has very low frequency of allele j while speciesWe do this by modeling the hybridized population as a
A has high frequency, then �B,�,j should be chosen small,mixture with unknown proportions of individuals from
relative to the other components of �B,�, while �A,�,jthe different genotype frequency classes.
should be chosen large. If, on the other hand, very littleAs shown earlier, given n generations of potential
prior knowledge is available about allele frequencies ininterbreeding between the species, the members of the
the two species, then a sensible choice of prior �A,�,j �genetic sample may fall into �n � (2n�1 � 1)(2n�1 �
�B,�,j � 1/K� for j � 1, . . . , K�. This has the form of the2)/2 genotype frequency classes. We model the individ-
Jeffreys prior for a multinomial proportion (see Gelmanuals in the sample as being randomly and independently
et al. 1996).drawn from a mixture of individuals, each belonging to

The conjugate prior for � is also a Dirichlet distribu-one of the �n genotype frequency classes with probabil-
tion, so it is helpful to let P(�) � Dirichlet (�1, . . . ,ity 	g , g � 1, . . . , �n, ��n

g�1 	g � 1. Using � to denote
��n). As with the allele frequencies, the parameters � �the vector of mixing proportions, (	1, . . . , 	�n), we
(�1, . . . , ��n) could be specified so as to reflect priormay now write the probability of all the observed data
knowledge of the biology of the situation. For example,Y conditional on n, 
A, 
B, and � as the product over
if it was well known that backcrosses between F1 hybridsthe M members of the sample of the probability of each
and species A had low fitness, then that could be re-of their multilocus genotypes:
flected in the prior for �. Additionally, if hybridization
and backcrossing were known to be fairly rare, then thisP(Y|�A,�B ,�) � �

M

i�1
��

�n

g�1

	gP(Yi|Zi � g,�A,�B)�. (5)
prior knowledge could be reflected by having smaller
�g’s for those genotype frequency classes that requiredAssigning each genotype frequency class a separate mix-
more episodes of interbreeding within the last n genera-ing proportion provides a means of accounting for possi-
tions. In the absence of prior information on hybridiza-ble differential fitness of the different classes.
tion rates, the prior �g � 1/�n, g � 1, . . . , �n is againA Bayesian specification: Equation 5 is the likelihood
a suitable choice.for �A, �B, and �. To pursue Bayesian inference in this

The influence of prior distributions in this sort ofproblem requires prior distributions P(�A), P(�B), and
hierarchical model is not easy to predict, and determin-P(�), so that the posterior distribution may be com-
ing a good prior distribution to use in the absenceputed. We wish to make inferences not only about �A, of prior information is not a simple task (Kass and

�B, and �, but also the latent variables W and Z � (Z1, Wasserman 1996). A second reasonable choice of prior. . . , ZM), so we are concerned with the joint posterior
is the uniform Dirichlet distribution—�A,�,j � �B,�,j � 1distribution, which is proportional to the joint probabil-
for j � 1, . . . , K� or �g � 1, g � 1, . . . , �n. However,ity of all the variables, P(Y, �A, �B, �, Z, W). With the
this uniform prior represents a substantial amount oflatent variables present, this joint density factorizes as
information when the number of components is large
(for example, if K� or �n is large). For this reason weP(Y, �A, �B, �, Z, W) � P(�A)P(�B)P(�)
prefer the use of the previously described Jeffreys-type

� �
M

i�1

P(Yi|Wi, �A, �B)P(Wi|Zi)P(Zi|�), priors, which reflect the amount of information con-
tained in a single observation, rather than in K� or �n(6)
observations. Because of the fact that some of the geno-

which, as we see in the next section, allows straightfor- type frequency classes will have few if any members in
ward MCMC sampling from the posterior distribution, the sample, and because some alleles will be found only
P(�A, �B, �, Z, W|Y). in low frequency in either of the species, there is poten-

It is computationally convenient and biologically rea- tial that the posterior will be sensitive to the choice of
sonable to take the specific form of the prior distribu- prior. We used various combinations of the uniform
tions �A and �B to be Dirichlet distributions, indepen- and Jeffreys-type priors in analyzing the data sets de-
dent over the L unlinked loci. That is, P(�A,�) is Dirichlet scribed later in the article and found that, although
(�A,�,1, . . . , �A,�,K�

). Since the Dirichlet distribution is the there were differences in some of the specific posterior
probabilities computed, they were not large enough toconjugate prior for the multinomial distribution, this
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alter the conclusions made from the analysis based on gene copies of allelic type j for which the corresponding
W·,�,· � 1). An analogous expression exists for P(�B,�|···).the Jeffreys-type priors.

MCMC simulation from the posterior distribution: It The full conditional distribution for � is also easily com-
puted by conjugacy asis not possible to compute directly the posterior distribu-

tions for only the variables that we are interested in.
P(�|···) � Dirichlet(�1 � s1, . . . , ��n � s�n), (8)However, simulating from the joint posterior distribu-

tion of all the variables by MCMC can be done via Gibbs where sg is the number of individuals in the sample
sampling in a manner similar to that for normal finite currently allocated to genotype frequency class g. The
mixture models (Diebolt and Robert 1994). Gibbs full conditional distribution for the pair of gene origin
sampling is a special case of the Hastings (1970) algo- indicators Wi,� in the ith individual currently included
rithm for constructing an ergodic Markov chain having in the gth genotype frequency class is obtained by Bayes’
a unique stationary distribution for which the normaliz- law as
ing constant may be unknown. In this case, the desired
stationary distribution is the posterior distribution of all P(Wi,�|···) �

P(Yi,�,Wi,�|Zi � g,�A,�,�B,�)
P(Yi,�|Zi � g,�A,�,�B,�)

, (9)
unknown variables in the model and is known up to
scale (i.e., without knowing the normalizing constant) where the numerator and denominator are given in
by Equation 6. Given initial starting values for all the (2) and (3), respectively. Finally, the full conditional
variables in the model, Gibbs sampling proceeds by suc- distribution for Zi would be P(Zi|Wi, �). However, it
cessively simulating new values for particular variables is possible to integrate out the Wi conditional on the
in the model from their full conditional distributions (Ge- remaining variables and hence simulate new values of
man and Geman 1984). After a sufficient period of burn- Zi from P(Zi|Yi, �A, �B, �), instead of from P(Zi|Wi,
in, a sample of variables drawn from this joint posterior �). This is an example of improving MCMC efficiency
distribution allows Monte Carlo estimation of the poste- through “collapsed Gibbs sampling” (Liu 1994). In our
rior distribution of any subset of variables of interest, case, this is particularly attractive, since computing
either marginally or conditional on the values taken by P(Zi|Yi, �A, �B, �) incurs almost no extra cost—the
another subset of variables. quantities needed to calculate it have already been com-

We denote full conditional distributions by P(·|···) puted in step 3 of the sweep. By Bayes’ law
and refer to a standard iteration of our MCMC algo-
rithm as a “sweep.” A sweep consists of a series of steps P(Zi � z|Yi , �A, �B, �) �

	zP(Yi|Zi � z,�A,�B)

��n
g�1	gP(Yi|Zi � g,�A,�B)

,
in which each of the variables in the probability model
(except for the data, Y, which are fixed) is updated z � 1, . . . , �n. (10)
once. Here, with the probability distributions given in
more detail below, the steps in a single sweep are as Multiple chains are run from different starting values

to diagnose mixing problems. In this case, it is easy tofollows:
assign overdispersed starting values by simulating values

1. For � � 1, . . . , L, simulate new values for �A,� and of �A, �B, and � from their prior distributions rather
�B,� from P(�A|···) and P(�B|···), respectively. than their full conditional distributions in steps 1 and

2. Simulate a new value of � from P(�|···). 2 of the first sweep. We used Gelman’s (1996) estimated
3. For i � 1, . . . , M and � � 1, . . . , L, simulate a new scale reduction potential factor to monitor convergence

value of Wi,� from P(Wi,�|···). of the chains to the desired posterior distribution. This
4. For i � 1, . . . , M, simulate a new value of Zi from quantity is computed for each scalar variable in the

P(Zi|Yi, �A, �B, �). posterior distribution. For each such variable, the poten-
tial scale reduction is computed as the square root ofBy sampling the current states of all the variables after
the ratio of the variance of the variable estimated byeach sweep, one acquires a dependent sample suitable
using information from all of the multiple chains to thefor Monte Carlo estimation of most quantities of inter-
variance of the variable estimated by using the valuesest. In particular, a Monte Carlo estimate of the poste-
simulated from just a single one of the chains. Valuesrior probability that individual i is of the gth genotype
of the scale reduction potential near 1 indicate that thefrequency class is obtained by averaging the values of
chains have converged to the target distribution.P(Zi � g|Yi, �A, �B, �) computed during each sweep.

In the case of data from cutthroat trout and steelheadThe full conditional distributions are easily derived.
trout described in the following section this conver-By conjugacy,
gence occurs very rapidly. Burn-in then requires little

P(�A,�|···) � Dirichlet(�A,�,1 � rA,�,1, . . . , �A,�,K�
� rA,�,K�

), time. This will typically be the case for genetically well-
separated species. Poor mixing of the Markov chain may(7)
occur for species that are not genetically well separated.
Pritchard et al. (2000) discuss strategies for specifyingwhere rA,�,j is the number of gene copies of allelic type

j at the �th locus currently allocated to species A (i.e., the allele frequency prior distributions to improve mix-
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TABLE 1ing in such cases. However, it is likely that with genetic
differentiation low enough to have mixing problems Genotype frequency classes assumed for the analyses
with the MCMC, it will be very difficult, if not impossible,
to distinguish most genotype frequency classes. Gg,2 Gg,1 (A, B) Gg,0

g Q (A, A) or (B, A) (B, B) Name

1 1.00 1.0000 0.0000 0.0000 Pure CuttANALYSIS OF THREE DATA SETS
2 0.00 0.0000 0.0000 1.0000 Pure St

We demonstrate our method by analyzing one real 3 0.50 0.0000 1.0000 0.0000 F1

and two simulated data sets. The real data consist of 74 4 0.50 0.2500 0.5000 0.2500 F2

5 0.75 0.5000 0.5000 0.0000 Cutt Bxjuvenile trout from Whiskey Creek, Washington state,
6 0.25 0.0000 0.5000 0.5000 St Bxtyped at 30 polymorphic protein loci, having between

two and four alleles, as part of a large genetic survey These are the six genotype frequency classes that arise from
conducted by the National Marine Fisheries Service and n � 2 generations of potential interbreeding. Gg,2, Gg,1, and

Gg,0 are the expected frequencies of loci having 2, 1, or 0 genesthe Washington Department of Fish and Wildlife. The
originating from species A, as described in the text. The finalsample was collected under the belief that the fish were
column gives names that we use to refer to these genotypejuvenile coastal cutthroat trout (O. clarki clarki); how- frequency classes.

ever, the Hardy-Weinberg and linkage disequilibrium
in the sample, and the presence of homozygotes for
alleles common in steelhead trout (O. mykiss) popula- . . . , 6 for the mixing proportions, �, of the different

genotype frequency classes. A total of 100,000 sweepstions but rare in cutthroat trout populations, suggested
that the sample might be a mixture of cutthroat, of five chains started from overdispersed starting values

were run. This required 4.6 hr on a laptop computersteelhead, and their hybrids. Hybrids between these two
trout species have been documented in several rivers on with a 266 Mhz G3 (Macintosh) processor.

After applying the method to the Whiskey Creek datathe West Coast (Campton and Utter 1985; Neillands
1990). set, we demonstrate its use on simulated data sets 1 and

2. Data set 1 is a simulated set of steelhead and cutthroatThe report of Johnson et al. (1999) gives more details
about the sampling and the genotyping of the trout. It trout data. To simulate data set 1, we started with two

species having allele frequencies at 30 unlinked loci thatalso summarizes the available literature from the field
and the laboratory on hybridization between O. clarki were the posterior mean estimates of allele frequencies

in the cutthroat and steelhead populations at the 30clarki and O. mykiss. They report that there are no severe
developmental abnormalities that occur in hybrids of loci used in the analysis of the Whiskey Creek data. We

simulated a sample of size 300 individuals with 155 purethe two species; hybrid offspring are clearly viable. How-
ever, hybrids may possess morphological and behavioral cutthroat (Pure Cutt), 100 pure steelhead (Pure St),

25 F1, 6 F2, 14 cutthroat backcross (Cutt Bx), and 0 steel-traits that reduce their fitness in natural environments.
This accords well with the observation in other studies head backcross (St Bx) individuals. This sort of sample

might be encountered from a population in whichthat hybrid individuals are detected typically among ju-
venile trout, but adult hybrids are seldom observed, and steelhead and cutthroat hybridize infrequently, and the

F1’s tend to mate assortatively, being more likely to matewith the observation that although hybridization may
occur each year (in cases where it has been monitored with other F1’s or with pure cutthroat than with

steelhead. To simulate the ith individual belonging toover time it has been found to be ongoing) the two
species still remain distinct. Nonetheless, in some stud- the gth genotype frequency class, the species origin of

each gene copy at a locus was randomly assigned ac-ies, the fish sampled and analyzed possess genotypes
suggesting they belong to a hybrid class involving more cording to Gg , and then the allelic type of each gene was

randomly selected from its species of origin according tothan just one generation of hybridization. Here, we
apply our method to the genetic data from Whiskey the posterior mean allele frequencies estimated from

the Whiskey Creek analysis.Creek with particular reference to the task of distin-
guishing between F1 and later hybrids. Simulated data set 2 is a sample of 300 individuals

with the same number of individuals belonging to theFor this analysis, we assume there are six genotype
frequency classes to which individuals might belong— different genotype frequency classes as in data set 1.

However, data set 2 consists of 20 nearly diagnostic locithe six classes arising from n � 2 generations of potential
interbreeding. Table 1 lists the expected proportions for distinguishing the two simulated species, A and B.

That is, there are assumed to be 20 diallelic, codominantof the different single-locus genotypes in these six classes
and also gives the names that we use to refer to them. loci at which the frequency of the first allele is 0.995 in

species A and the frequency of the alternate allele isThough prior information is available on allele frequen-
cies in other steelhead and cutthroat populations, we 0.995 in species B. This represents considerably more

power to distinguish species than is present in the troutdo this analysis using the prior ��,j � 1/K�, j � 1, . . . ,
K� for allele frequencies and the prior �g � 1/6, g � 1, data set.
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Figure 2.—Graphical summary of results
for the Whiskey Creek data set. (a) The 20
probable Pure St individuals appear as solid
circles while the 50 probable Pure Cutt fish
appear as open circles in the graph with
the height of the circles determined by the
posterior probability of being Pure St or
Pure Cutt, respectively. The four remaining
fish are plotted on the graph as open trian-
gles at heights given by the posterior proba-
bility that they are either Pure St or Pure
Cutt. The fish are ordered by their posterior
probability of being purebred. (b) Posterior
probabilities of genotype frequency class
for fish 19, 48, 16, and 72—the four plotted
as triangles in a. The height of the different
patterns in the column denotes the poste-
rior probability of each fish belonging to
each of the six different genotype frequency
classes.

Both of the simulated data sets were analyzed assum- Cutt. All of the fish with posterior probability �0.8 of
being Pure St have negligible posterior probability ofing n � 2 and using the same priors on the allele fre-

quencies and the mixing proportions that were em- being Pure Cutt and vice versa. Of the remaining 4 fish,
3 of them, nos. 19, 48, and 16, have posterior probabilityployed in the analysis of the Whiskey Creek data. Five

chains, started from overdispersed starting points, were 0.01 of being either Pure Cutt or Pure St. This means
that, given the data and the assumptions of the modelsimulated for 45,000 sweeps each. This required 8 hr

for data set 1 and 5.3 hr for data set 2 on the same 266 and the priors used, those fish have probability �0.99
of being hybrids of some sort. The fourth fish (no. 72)Mhz G3 processor.
has posterior probability near 0.12 of being either Pure
Cutt or Pure St; hence, posterior probability near 0.88

RESULTS
of being a hybrid of some sort. Figure 2 graphically
represents this.Whiskey Creek data: Using the multilocus genotype

data on the 74 fish in the data set, our method success- We may look more closely at the four probable hybrid
fish. Figure 2b shows the posterior probabilities thatfully estimated allele frequencies �A and �B for the two

putative species contributing to the sample. Inspecting fish 19, 48, 16, and 72 belong to each of the six different
genotype frequency classes. Note that they all have high-these allele frequencies, it was clear that one set of

frequencies corresponded to the steelhead group and est posterior probability of belonging to the F2 class.
This is unexpected because one would suspect therethe other to the cutthroat group, so we were able to

label them as such. In this analysis, each fish is assigned would be, in general, more F1’s in a population than
F2’s since the F2’s would have to be formed by matinga posterior probability of belonging to one of the six

different genotype classes. Two of those classes are pure- between F1’s. In fact, the posterior probabilities for all
these fish are such that no classification or assignmentbred categories (Pure Cutt and Pure St). Twenty of the

fish in the sample have posterior probability �0.8 of of any of them could be made with great certainty to a
single one of the genotype frequency classes. As alreadybeing in the Pure St category, and for 15 of those fish,

that posterior probability is �0.99. Fifty fish have poste- noted, with posterior probability 0.12, fish 72 may be-
long to the Pure St category. Further, it cannot be deter-rior probability �0.8 of being Pure Cutt, with 45 of

those having posterior probability �0.99 of being Pure mined with great certainty that fish 19 and 48 are not
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Figure 3.—Histograms showing the posterior
distribution of allele frequencies estimated for the
steelhead and cutthroat populations in Whiskey
Creek. The solid symbols are for alleles in the
steelhead population, and the open symbols de-
note the cutthroat allele frequencies. The vertical
axis in each graph is proportional to posterior
probability density. The numbers 1–6 refer to dif-
ferent loci ranked in order or how informative
they are for distinguishing between the species.
Locus 4 has three alleles, and the others have two
alleles. Note that locus 1 is the only one that is
close to being diagnostic. For a contrast, consider
locus 6: The steelhead population has high poste-
rior probability of being fixed for a single allele,
but that allele is at a frequency around 0.4 in the
cutthroat population.

F1 hybrids. And even fish 16 has a posterior probability nostic locus. For all the others, there is almost zero
of almost 0.07 that it is an F1 hybrid. In other words, posterior probability that an allele appearing in the
no conclusions may be made with great confidence steelhead species does not appear in the cutthroat spe-
about the presence of fish in the sample that are hybrids cies or vice versa. Having such a small number of loci
belonging to categories beyond F1. This is due to the that are distinctive between the species makes it difficult
lack of clear separation between the two species in this to make fine-scale inferences about the specific geno-
data set. Only about eight of the loci are very informa- type frequency classes to which an individual belongs.
tive, and none of them are strictly diagnostic when infor- This point is made clear again by the analysis of the
mative priors for the allele frequencies are not used. first simulated data set.

A statistically reasonable way to measure the degree Simulated data set 1: This data set was simulated as-
to which a locus is useful in separating the species is by suming that allele frequencies in the two species were
the Kullback-Leibler divergence (Kullback and Leib- equal to the posterior mean estimates from the Whiskey
ler 1951) between the two species at that locus. Briefly, Creek data set. In this case, since we know the true
at locus � the Kullback-Leibler divergence between spe- genotype frequency classes to which each individual
cies A and B is ��(A, B) � I�(A:B) � I�(B :A), where belongs, we can better assess how well the method works
I�(A:B) is the expected Kullback-Leibler information for on this data set. Figure 4 shows how well purebred indi-
distinguishing the species from which an allele at locus viduals in the sample could be distinguished from the
� originated given that it came from species A. Mathe- hybrids. For most of the Pure Cutts and the Pure St the
matically, for a given value of the allele frequencies, posterior probability or being in the correct genotype

frequency class is �0.99. There are 32 Pure Cutts with
Ie(A:B) � �

K�

k�1

�A,�,k log
�A,�,k

�B,�,k

. (11) posterior probability of being Pure Cutt 0.98. Almost
all of the remaining probability for these individuals
goes to the Cutt Bx category. There are, in contrast,By averaging the values of ��(A, B) obtained for the
only seven Pure St individuals with posterior probabilitydifferent allele frequencies visited by the Markov chain
of Pure St 0.98. This is most likely due to the fact thatin doing MCMC, it is possible to compute the posterior
there are no St Bx individuals in the sample, so themean Kullback-Leibler divergence between the species
proportion of St Bx individuals in the population isat each locus. We have done this to identify the six most
estimated to be small, and hence even the fish that areinformative loci in the data set, and we have plotted the
not well distinguished solely by their genotype betweenposterior distribution of the allele frequencies at those
the Pure St and the St Bx classes will tend to have aloci in Figure 3. From this figure, it is apparent that

only the locus labeled “1” comes close to being a diag- higher posterior probability of being in the Pure St class.
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Figure 5.—Posterior probabilities of specific genotype fre-
quency categories for the hybrid individuals in simulated data
set 1. (a) Twenty-five simulated F1’s. (b) Six simulated F2’s and
14 simulated Cutt Bx’s, as indicated.

frequencies used in the simulations it is much more
difficult to make clear distinctions between the different
hybrid genotype frequency classes. Figure 5a shows the
posterior probabilities of inclusion in the six genotype
frequency classes for the 25 F1 hybrids in descendingFigure 4.—Results for simulated data set 1. (a) Posterior

probability of Pure Cutt for 155 simulated cutthroat trout. (b) order of the posterior probability that they are F1’s.
Posterior probability of P (Pure St) for 100 simulated steelhead While many of them have high posterior probability of
trout. (c) Posterior probability of either Pure Cutt or Pure St being F1, there is also one with posterior probabilityfor 45 simulated hybrid trout of genotype frequency classes

�0.5 of being in the Cutt Bx category. For the non-F1denoted by the different symbols as given in the inset.
hybrids, the situation is even less promising. Of the six
F2 individuals (the last six individuals in Figure 5b), not
one of them has posterior probability �0.5 of beingThis is a clear example of how the method gives weight
in the F2 category. Finally, for the Cutt Bx genotypeto the proportion of individuals from different genotype
frequency class, as the first 14 columns in Figure 5bfrequency classes found in the sample. These results
reveal, there is a great deal of variability among thealso suggest that, with data similar to those from Whiskey
individuals in the posterior probability that they areCreek and with many purebred individuals of each spe-
Cutt Bx. This results from having few loci in this simu-cies sampled, it is unlikely that any purebred individual
lated data set that are strongly distinctive between thewill receive high posterior probability of being in a non-
species, and it argues that with genetic data of this sort,purebred genotype frequency category.
assignment of individuals, if desired, to specific geno-All but 1 of the 45 simulated hybrid fish have posterior
type frequency classes should be made with caution andprobability 0.20 of being either Pure St or Pure Cutt,
only in the presence of very strong posterior supportand 37 of them have posterior probability 0.02 of
(for example, �0.98) of that assignment.being purebred. As is apparent in Figure 4c, it is most

Simulated data set 2: The analysis with 20 nearly diag-difficult to distinguish the Cutt Bx’s from the purebred
nostic loci demonstrates how well the method performscategories. As expected, the F1’s are the easiest to distin-
when the populations are genetically well separated byguish from the purebred individuals.
the markers. The 155 species A individuals, the 100While the method works well in distinguishing be-

tween purebred and hybrid categories, with the allele species B individuals, and the 25 F1’s all had posterior
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this method does not require that each species possess
unique alleles.

We have demonstrated the method by analyzing data
from cutthroat and steelhead trout. Though the data
set includes 30 loci polymorphic in the sample, many
of the loci are not very informative. Given only the 74
individuals in the sample, none of the loci appear to
be purely diagnostic. While information from samples
drawn from other steelhead and cutthroat populations
could be used as prior information, we used a vague

Figure 6.—Posterior probability of genotype frequency prior on allele frequencies, reflecting little prior knowl-
classes for the 14 B Bx individuals and 6 F2 individuals in edge of allele frequencies, so as to demonstrate the
simulated data set 2. method’s performance with data having no apparently

diagnostic loci. Despite such restricted data, the method
was able to identify four individuals having high poste-

probabilities �0.9996 of belonging to the correct geno- rior probability of being species hybrids.
type frequency class. Likewise, the six F2’s each had The analysis of data simulated to mimic the trout data
posterior probability �0.997 of belonging to the F2 ge- provides insight into the method’s ability to distinguish
notype frequency class, and all but two of the simulated between the different genotype frequency classes that
B Bx individuals had posterior probability �0.997 of the hybrids belong to. Despite the low level of genetic
belonging to the B Bx class. As Figure 6 shows, of the differentiation between the two trout species, the poste-
remaining two B Bx individuals, one has posterior prob- rior probability of being purebred was very low for most
ability 0.983 of being B Bx; this individual possessed, by of the simulated hybrids. However, it was clear that it
random chance, many more loci heterozygous for the is much harder to distinguish the specific (i.e., F2 vs.
two alleles than expected of a B Bx. The remaining B backcrossed category) genotype frequency classes of hy-
Bx individual happened to be one of the rare carriers brid individuals without many loci showing extreme al-
of a locus homozygous for the species A common allele. lele frequency differences between the species. Our
This can occur because the loci were designed in the analysis of a simulated data set with 20 nearly diagnostic
simulation to not be perfectly diagnostic. Our method loci demonstrates the method’s ability to identify the
is able to handle such a situation because it does not specific genotype frequency of individuals with great
require that loci are fixed for alternate alleles. The result certainty using highly informative genetic data.
is just that the posterior probability of belonging to the A number of assumptions are made to derive the
correct genotype frequency class is reduced for that likelihood in this problem. One of the advantages of the
individual. model-based approach over a more general multivariate

approach (like principal component analysis) is that
the assumptions here are explicit. One important as-

DISCUSSION
sumption is that the loci used in the analysis are un-

We have developed a model-based statistical method linked. In studies with a limited number of loci on
for identifying species hybrids using multilocus genetic organisms with many chromosomes, this assumption is
data. Using Markov chain Monte Carlo in a Bayesian not likely violated. However, as the number of loci in-
setting, we compute the posterior probability that an creases, so does the probability that some of them will
individual belongs to each of a set of possible genotype be linked. Under the assumption of no linkage, each
frequency classes. This allows us to utilize all the data locus is treated as an independent unit of information;
simultaneously, while integrating over the uncertainty however, the information carried by linked loci will not
in individual assignments to genotype frequency classes be independent. Therefore, analyzing data on linked loci
and in the model parameters—the proportion of indi- with this method will cause one to overestimate one’s
viduals from the different genotype frequency classes certainty in identifying species hybrids. If the recombina-
and the allele frequencies of each of the species—which tion fractions between the markers were known, it would
are seldom known without error. This method also has be possible to account for linked loci. However, model-
the advantage that it can perform a mixture deconvolu- ing the dependence between loci in a manner faithful
tion without a priori knowledge of the allele frequencies to the underlying process could incur a heavy com-
in the separate species. In other words, one need not putational cost, and the use of an approximation, for
be able to separate the two species on the basis of mor- example, a Markov approximation to the genotype fre-
phology, nor must one be able to sample from the pure quency class process along the chromosome as taken
species separately, to separate the two species and their by McKeigue (1998) in a related problem, would be
hybrids present in a mixture. Finally, though strong computationally preferable.

In addition to the assumption that the loci are un-genetic differentiation between the species is helpful,
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linked, this analysis assumes that the markers used are We adopted a simple sampling model: Individuals are
assumed drawn at random from a population that is anot tightly linked to any loci that are under selection.

Especially with large numbers of markers, this assump- mixture in the proportions � of individuals from the
different genotype frequency classes. This was probablytion will be violated to an extent. For example, Riese-

berg and Linder (1999), reporting on hybrids between violated in the case of the cutthroat trout data, because,
when the biologists collected the specimens, they weretwo sunflower species of known pedigree, find that selec-

tion leads to significant departures from the expected trying to obtain pure cutthroat and hence were throwing
back those individuals that looked like steelhead or hy-proportions of some marker alleles in the hybrids. We

note that with some modification the statistical frame- brids. However, it is sometimes difficult to distinguish
cutthroat juveniles from steelhead or hybrid juvenileswork presented here may be useful for identifying loci

influenced by selection in naturally hybridizing popula- on the basis of morphological characters. To estimate
accurately the proportion of hybrids in a locale, or eventions.

We also assume that there is no linkage or Hardy- to estimate accurately the posterior probability that an
individual is a hybrid, it would be wise to design the studyWeinberg disequilibrium in the parental species n gen-

erations before the sampling event. This assumption with those goals in mind. Having an explicit model,
like the one described in this article, that includes theallows multilocus genotype probabilities to be expressed

in terms of a few allele frequency parameters and the sampling of the organisms is an asset, since the model
may be tailored to particular sampling schemes. Formixing proportions �, and it allows the disequilibrium

in the sample to be used to identify two separate species’ example, it would be possible to model stratified sam-
pling in which sampled organisms were first put intogene pools: Any disequilibrium in the mixed population

is assumed to arise from the mixture of the two species “possibly hybrid” and “probably purebred” categories
on the basis of their morphological traits, and then aand their hybrids. This assumption could be relaxed

only if samples of the pure species’ populations were random subset of individuals from each of those catego-
ries was genetically typed. Or the sampling model couldavailable and the preexisting disequilibrium observed

therein could be accounted for by using a parameteriza- be modified similarly for sampling at several locations
along a transect intersecting a hybrid zone.tion in terms of genotype frequencies for the loci in

disequilibrium, rather than simply a parameterization Throughout, we have been interested primarily in
making inference about the genotype frequency classin terms of allele frequencies. The fact that the linkage

and Hardy-Weinberg disequilibrium in the sample are to which individuals in the sample belong. It should be
noted, however, that the output for the MCMC samplera source of information that can be used to estimate

the separate species’ allele frequencies underscores the could be used to estimate many other quantities of inter-
est. Barton (2000) recently presented a method for esti-necessity of having recently or incompletely hybridized

populations. Unless some prior information about spe- mating multilocus genotype frequencies and multilocus
linkage disequilibrium in hybrid populations. He notescies’ allele frequencies were available, or if a sample of

known, purebred individuals were available, it would that one could try to achieve the same end by describing
a population as a mixture of parentals, F1’s, backcrosses,not be possible to identify hybrids among species that

have been entirely panmictic with one another for and F2’s, but dismisses such an approach because the
mixture is not uniquely determined by the genotypeenough generations that the linkage disequilibrium at

all markers had decayed to low levels. frequencies. Though the mixture is not uniquely deter-
mined by the genotype frequencies, the data can be usedFinally, the analysis we describe is made conditional

on the assumed value n, the number of generations over to determine a posterior distribution for the mixing
proportions and the allele frequencies in the two spe-which interbreeding has been potentially occurring. In

practice, n will typically have to be chosen small, because cies. This is precisely what we have done here. And
further, the mixing proportions � and the allele fre-as n increases, �n, the number of genotype frequency

classes, increases exponentially, and the Gg’s of each quencies �A and �B determine the multilocus genotype
frequencies expected under the model. Since ournew class are typically close to those for another class,

so distinguishing between them would require an enor- MCMC method provides values of � and the allele fre-
quencies �A and �B, sampled in proportion to theirmous amount of data. It is recommended that the num-

ber of genotype frequency classes be kept small in any joint posterior probability, it would be straightforward
to also estimate the posterior distribution of the fre-analysis. One way to do this, while allowing for many

generations of potential interbreeding, is to not con- quency of any multilocus genotype or any linkage dis-
equilibrium measure of interest from the MCMCsider all �n possible products resulting from n genera-

tions of mating between the two species. For example, if sample.
We also note that the general framework here couldhybridization were rare, it would be sensible to consider

only the F1 class and then the simplest backcross catego- be modified to handle null alleles or dominant markers,
like amplified fragment length polymorphisms. For ex-ries, omitting the categories involving more than one

F1 individual in the pedigree. ample, if locus � included a null allele or was a dominant
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