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Behavioral Ecology of Four 
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The Loricariidae, a Neotropical family of armored catfish, is the fifth most 
diverse fish family in the world (Nelson, 1994), with more than 600 
species (possibly more than 800 species; Scott Schaefer, pers. comm.). 
Loricariids occur in small streams to large rivers from southern South 
America north to Panama (Burgess, 1989; Buck and Sazima, 1995). 
Loricariid populations have also naturalized in a few warm-water Habitats 
in North America where they have been introduced by humans (e.g., 
Barron 1964; Nico and Martin 2001). Ichthyologists and aquarists have 
long been fascinated by this group but relatively few long-term studies 
have documented their lives in nature. 

In this chapter, I summarize field observations on the behavior and 
natural history of loricariids near the northern boundary of the family?s 
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natural distribution in the Rio Frijoles (9'9' N, 79'44'W). This stream 
drains secondary tropical rain forest of the Parque National Soberania in 
central Panama. The Rio Frijoles was once a tributary of the Chagres River 
but after construction of the Panama Canal, now empties into Lake 
Gatun. Four loricariids occur in streams of the Parque National 
Soberania: Ancistrus spinosus (Eigenmann et Eigenmann) , Hypostomus 
(Plecostomus) plecostornus (Linnaeus) , Rineloricuriu (Loricaria) urucunathu 
Kner et Steindachner, and Chaetostornus fischeri Steindachner. Most of my 
observations are on Ancistrus spinosus, the most common loricariid in 
deeper stream pools of the Rio Frijoles. Here, I review field observations 
from a 28-month field study, describing loricariid responses to variation in 
their algal food, threats from various types of predators, physical stress 
from deposited fine sediments, and seasonal expansion and contraction of 
their habitat. The factors that limit these catfish vary as fish grow from 
eggs to juveniles to subadults and reproductive adults, and also seasonally, 
with hydrologic contractions and expansions of their habitat. Their 
responses to heterogeneity and change in their environments are 
constrained by their adaptations and may well influence their fates as 
Neotropical streams change under increasing impact from human land 
use. 
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MORPHOLOGICAL EQUIPMENT 

Loricariids are not only speciose, but remarkable for their aspect diversity 
(sensu Rand, 1967). Body forms range from stout and compact to thin and 

including bizarre, often sexually dimorphic spines, tentacles, and fin 
filaments, whose functions are largely unknown. Nonetheless, loricariids 
share characters that bespeak their benthic habits. Dermal bony plates 
armor most of the body except for the ventral belly. Swim bladders are 

comblike tooth plates with which they scrape food from surfaces. They also 
cling with their mouths, resting upside down under ledges or logs, or 
locomoting up waterfalls (Gradwell, 197 1; Grzimek, 1984). Opercles of 
loricariids are small and entirely ventral (Fig. 19. I) ,  protecting the Gills 
from nipping characins or poeciliids, but possibly exposing them to fouling 
or abrasion on sandy or silty surfaces. Several species of loricariids can use 
their digestive tracts as accessory air-breathing organs under hypoxia 

I 
I 

elongate. Certain species have striking color patterns and appendages 

reduced or absent. Their entirely ventral suctorial mouths have four i 
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- 
Fig. 19.1 Small ventral opercle slit of a male Ancistrus spinosus 

(Gradwell, 107 I ;  Gee, 1976; Kranier and Graham 1976), or in acidic or 
H;S-rich waters (Brauncr ct al., 1995; Armbrustcr, 1998). 

REPRODUCTION 

Many loricariids exhihit inale parental care of eggs and carlv fry. While 
males of some species carry eggs under large flaps of thcir lower lip, iiiost 
loricariid fathers guard eggs and hatchlings in protected nest cavities. 

Young Rineloricaricz urucmtfiu aiid Ancistrus spitwstts bcgin their livcs as 
eggs in their father’s nests (Fig. 19.2; Power, 1981; Moodie and Power, 
1982). Suitable nest sites appear to be in short supply for both species arid 
may limit recruitment in rhe Rio Frijoles. Most of the Ancistrus nests 1 
observed were in hollow logs, although I found one male Ancistrus, snialler 
than other breeding males, tending eggs in a narrow hole i n  a limestone 
bedrock. He occupied this cavity when it was only IO ctii beneath the 
water surface and abandoned it as the water level fell during thc d r y  
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- 
Fig. 19.2 Life cycle of Ancistrus spinosus. Top: The brooding male is larger than drawn 
here and usually braced by his pectoral spines so as to block access to the nest. Middle: 
Young of the year that escape from pool predators after fledgings move into nursery riffles. 
Bottom: When they attain Standard Lengths of about 4-5 cm, young fish move back into 
deeper pool Habitats. 

season. The hollow logs in which Ancistrus nest must have openings close 
in diameter to the width of the anterior body of the breeding male. The 
father served as a kind of “armored cork”, plugging the entrance against 
potential predators of his young, such as characin fishes (e.g., the active 
and ubiquitous Astyanax ruberrimus) and freshwater crabs (Potamocarcinus 
richmondi). Crabs are found in hollow nest logs when these are not 
occupied by breeding male Ancistrus. The size at which the& exposed 
dorsal armor is hard enough to resist puncture by large crabs may set the 
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occupied and reproduced in 2.54 cm diameter PVC pipes that Moodie 
deployed in the Rio Frijoles. Mature male Rineloricaria have wider, 
rounder snouts than females and, unlike females, develop jaw bristles 
along their lateral edges. Moodie also noted a second dimorphism: males 
could swing their pectoral spines forward to lie nearly parallel with their 
jaws, while females could only swing their pectoral spines far enough 
forward to project out from the body at a 90" angle (Moodie and Power, 
1982: fig. 1). This posture potentially created a grasping organ for the 
males (by pinching objects between the jaw bristles and the pectoral 
spine), which Moodie thought might be used to manipulate females in the 
nest. It is possible (although not an interpretation favored by Moodie) that 
males might use their grasping ability to prevent superfluous females from 
entering nests and injuring or dislodging older eggs, once nests were filled. 
Multiple females laid eggs in his artificial nests and like Ancistrus, 
Rineloricaria males would stay with the nests even after they had been 
withdrawn from the water, opened to inspect eggs, closed and returned to 
the stream. Like Ancistrus, Rineloricaria males that have obtained a nest 
will brood several successive clutches of eggs (up to five for Rineloricaria 
(Moodie and Power 1982)). 

I never observed nests of Hypostomus or Chaetostoma in the Rio 
Frijoles. These species may have nested deep under rock ledges or in holes 
that appeared in clay banks. Hypostomus plecostomus occupied burrows dug 
in firm clay banks. I observed a large individual rubbing the rough leading 
edge of its pectoral spine against a clay bank near a group of other holes. 
This motion looked like digging behavior. The holes could have been 
made by prawns (Mucrobrachium sp.) that occurred in the stream, 
however, or by tree roots projecting into the flow that had rotted away. 
Neither Chaetostoma nor Hypostomus showed any apparent sexual 
dimorphism. Hypostomus (Lowe-McConnell 1967) and possibly 
Chaetostomu rear their young in bank holes. 

ONTOGENETIC HABITAT SHIFTS (FIG. 19.21 

When young loricariids are 18 mm long SL (Ancistrus) or 12 mm SL 
(Rineloricaria), they leave the father's nest. While I have never witnessed 
a fledging episode, these must be times of great mortality, as soft, weakly 
swimming young catfish are readily eaten by common fishes in the stream 
(Astyunax, Brycommericanus, Piabucimj . Young loricariids must exit from 
a pool that is full of swimming predators, many of which are active 24 
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hours a day. Those that survive move into shallow riffles, where they can 
take cover in interstices among cobbles. I rarely observed armored catfish 
less than 3 cm SL in pools, or in water > 30 cm deep. O n  the few occasions 
when I witnessed a young of the year (yoy) Ancistrus (ca. 2 cm SL) 
traversing pools, it would edge across the stream margin near the surface, 
harassed by characins that struck at it in rapid forays from deeper water. 
Young loricariids reared in shallow riffles where they grazed algae. 
(Juvenile Rineloricaria include insect larvae in their diets and become more 
exclusively algivorous with size or age (Pineda, 1975). Young riffle- 
dwelling loricariids did not appear to be food limited, as algal standing 
crops in riffles were higher than in pools (Power, 1984a). Primary 
productivity was also probably elevated by the greater flux of dissolved 
nutrients in flowing water (Whitford and Schumacher, 1964) and 
increased insolation relative to beds in deeper pools. Although their 
armor was not yet hardened, predation pressure on young loricariids was 
probably reduced by their habitat selection. The Gape-limited aquatic 
predators to which they were most vulnerable avoided water shallower 
than 20 cm, where these characins, gobies, and other larger fishes were 
themselves at risk from diving and wading birds that frequented the river 
(Power 1984a, 1987). Loricariids smaller than 3-4 cm could hide under 
cobbles from these birds. When they outgrew this cover, at 4-5 cm SL, they 
also began to outgrow their vulnerability to most of the Gape-limited 
swimming predators in pools, and juveniles at this size (probably within 
their first year of life) moved into deeper pools. 

In pools, subadult loricariids entered a crowded environment in which 
they became limited by food for most of the year. Standing crops of algae 
in pools were so scant that on substrates > 20 cm deep, algae were not 
macroscopically detectable (substrates did not even feel slippery). 
Microscopic sampling revealed only scant cover of very small, adnate 
diatoms (primarily Achnanthes sp. (Power, 198413)). Visible accumulations 
of algae occurred, however, along pool margins on substrates c 20 cm 
deep, which grazing catfish appear to avoid due to their vulnerability in 
shallow water to wading and diving birds (Power, 1984a, 1987; Power et 
al., 1989). These birds fish most commonly and effectively in water < 20 
cm deep, possibly because fish there have too little time to escape between 
the surface splash and the strike (Kramer, 1983; Power, 1984a). Along the 
Rio Frijoles, these shallow substrates were largely avoided even at night 
(Fig. 19.3), although there was some tendency for loricariids, particularly 
the smaller size classes and more cryptic species (Rineloricariu) to shift to 
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slightly shallower Habitats in darkness (Power, 1984a). Night-fishing tiger 
Herons occurred along the Rio Frijoles. In other Habitats, these Herons 
have been found with “fair-sized, bony fish” in their stomachs (Wetmore, 
1965). The avoidance of shallow water by grazing catfish allow “bathtub 
rings” of algae to accrue along shallow pool margins, which persist even 
in the dry season, when larger catfish in pools are most food limited. 

SEASONAL CHANGES 

Pool-dwelling loricariid catfish showed zero or negative Growth in the dry 
season (Power, 1984a). These weight measurements may have 
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Season - 
Fig. 19.3 a. Depth quartiles (shallowest depth such that at least 25% of the indivic-als 
of a given species and size class occur at that depth or less) for four species and six size 
classes of armored catfish. Quartiles estimated from data taken over two years during six 
snorkeling censuses of 180 m2 quadrats distributed over a 3 km reach. Twice during the 
rainy season (August, October), the dry season (March and April), and during transitional 
months (January and June), physical conditions within each quadrat were measured, and 
then loricariid numbers in quadrats were counted on two days and two nights during the 
following week. b. Growth rates of Ancisfrus of different length intervals, with two standard 
errors. ED = early dry season (December through February); LD = late dry season (March 
and April); ER = early rainy season (May and June) and LR = Late rainy season (July 
through November). Records are from marked, recaptured, and reweighed individuals; 
only records that fell within the seasonal intervals delimited were used. (After Power, 
1981). 
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underestimated nutritional deprivation during the dry season, as a 
subsequent study (Power, 1984c) suggested that starving Ancistms could 
substitute water for fat in tissues. With the onset of the rainy season, as 
stream flow deepened, the catfish were able to move into areas formerly 
too shallow to graze and showed a Growth pulse (Fig. 19.3b). Growth 
slowed after they had depleted the higher standing crops of algae formerly 
refuged in shallow water but remained positive throughout the rainy 
season. Seasonal changes in base flow discharge in the Rio Frijoles were 
modest and the channel habitat did not obviously expand, because much 
of the channel was fairly trapezoidal in cross section. What did expand by 
a factor of three, however, was the amount of substrate under > 20 cm of 
water. The expansion of this “safe” habitat was tracked by a corresponding 
3-fold decrease in the density of loricariids. During my first field season, 
I was surprised after the transition from the dry to the rainy season to find 
loricariids suddenly sparser. I searched the entire river for migrating 
groups of loricariids and investigated episodic predation (by migrating 
cormorants or aquarium collectors) as a possible cause for drop in 
loricariid density, mistaking it for a drop in abundance. It was only after 
constructing bathymetric maps of the 3-km study reach, drawn from 
detailed surveys that enabled resolution of 10-cm depth contours in the 
channel habitat, and learning of the depth tolerances of loricariids, that 
I appreciated that seasonal expansion of this critical habitat stratum was 
the cause of the density changes. This interpretation was confirmed 
during the next year’s transition from the dry to the rainy season, when the 
first flood elevated stream stage. After this flood, the water table in the 
surrounding watershed remained low, so stream discharge subsided within 
days. Censuses of quadrats marked on the bed showed that catfish spread 
out with the high flow, becoming 3-fold less dense, then reconcentrate 
with the abating flow, regaining their preflood density within a week, i.e., 
within such a short period that migration or recruitment could not have 
accounted for the observed density fluctuation (Power, 1981). 

SENESCENCE 

Another indication that their conservative space use protects larger 
Ancistms from predation is that a few older individuals (large males) grew 
increasingly easy to capture over time, as if they were becoming diseased 
or senescent. Some of these individuals showed aberrations of the eyes- 
the iris which normally projects down to make a horseshoe-shaped pupil 
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Fig. 19.4 Senescent Ancistrus with eroded iris and cloudy pupil 

was eroded and hence these older individuals had raggcd, circular pupils 
that also appeared cloudy (Fig. 19.4). Despite their blindness or other 
infirmities, these older individuals persisted many months in their natural 
environments, suggesting that they remained safe from predators if they 
avoided shallow waters where mammals and birds fished. 

HA6 ITAT PART IT I 0 N I N G 

Loricariids are the only major grazers of algae in deeper pools of thc Rio 
Frijoles; macroinvertebrate scrapers were sparse and virtually absent in 
deeper Habitats. Frog tadpoles occurred seasonally but only along shallow 
stream margins (depths generally < 15 cm). Some poeciliids, cichlids, and 
characoids browsed algal filaments but did not scrape surfaces. Given that 
larger loricariids were food limited for much of the year (as evidenced by 
the fact that they grew at less than their potential maximum rates), one 
could infer that they compete with each other for limited food or grazing 
substrate. According to classical niche theory, one might expect that 
species would partition grazing substrate to reduce interspecific 
competition. 
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There were some differences among the species in tendency to use 
particular substrates. Ancistrus was common on large submerged logs, 
which they grazed and used for cover (nimbly circling around logs to keep 
out of my reach, for example). They also grazed bedrock, large boulders, 
cobbles, and consolidated clay banks. These substrates were also 
commonly used by Hypostomus, which were particularly abundant on  the 
clay banks. Rineloricaria, with its narrower mouth and more cryptic body, 
was abundant on clay and bedrock and also on cobbles and pebbles in the 
shallower pool heads and tails, and in shallower mid-pool environments. 
Chaetostoma fischeri, the one species in the Rio Frijoles that could not use 
its stomach as an accessory air-breathing organ, was restricted to 
constricted reaches where the flow was both fast and deep. There was 
some rough color matching among the species with the substrates- 
Chaetostoma was dark brown with gold glints and often matched the dark 
rocks in the rapids where they occurred, while Hypostomus and 
Rineloricaria were both dun colored, matched to clay and mudstone 
substrates. Black Ancistrus was the color of submerged logs that retained 
their dark bark. I was not overly impressed with substrate specialization or 
partitioning among the species, however. In the dry season, as food became 
more limited, species overlapped more in the types of substrate they used 
(Power, 1981, 1983), as documented by Lowe-McConnell (1975) for 
Neotropical fish stranded in isolated pool “lifeboats” in northern South 
America. These observations contradict theoretical predictions of 
increased niche separation to reduce competition during periods of 
resource limitation (Zaret and Rand, 1971). 

RESPONSES TO FOOD QUALITY AND RENEWAL 

Armored catfish generally live within bounded pool Habitats and 
eventually regraze sites on pool substrates. If an individual returns to a 
previously grazed site too early, scant algae will have regrown. Buck and 
Sazima (1995) observed that sites cleared by loricariids in the Ribeirao da 
Serra, a small, clearwater forest stream in Southeastern Brazil, presented 
new algal Growth in about 24 h. Average return times of armored catfish 
in sunny pools of the Rio Frijoles, where the loricariids were most dense, 
were about 9-10 h (Power, 1984b), much shorter than the potential 
doubling time of diatoms even in productive environments. These short 
return times, along with the scant algal standing crops observed, suggested 
that Rio Frijoles substrates were heavily overgrazed. Undergrazing might 
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also be disadvantageous for loricariid catfish, however. If loricariids 
returned after long time intervals, substrates would become silted. The 
deposited sediment could be either a stress or a food for grazers, depending 
in part on its organic content. 

Seasonality influences the quality and persistence of sediments that 
are deposited on the substrates grazed by armored catfish. In the rainy 
season, these sediments are derived from clay-rich soils that wash into the 
stream during floods. Suspended sediments are deposited, or flushed 
downstream, depending on the concentration of suspended load in the 
water column on the recession limb of the flood hydrograph (Power, 
1981). With several floods a month, the probability is high that large 
floods would scour away deposited sediments. Also, sediment accrual is 
reduced during the rainy season because even at base flow, currents over 
the bed are faster and boundary layers thinner. During the dry season iow- 
flow period, sediment sifts down more continuously as organic matter in 
the water column settles onto substrates in still pools. This silt is displaced 
by Ancistrus and Hypostomus with head-shaking behavior with which they 
sometimes initiate grazing on heavily silted patches. It is also ingested and 
passed as consolidated feces. A feeding experiment in Panama suggested 
that the sediment was not a food for prereproductive (6 cm)Ancistrus and, 
in fact, imposed energetic costs estimated at  up to 20% of their daily 
energy budgets (Power, 1984~). This cost may have been due to the costs 
of clearing sediment from their small, entirely ventral Gills (Fig. 19.1) by 
unknown mechanisms, possibly mucus sloughing or coughing. In 
Venezuela, however, Alex Flecker and colleagues have observed that 
another species, Ancistrus trirudiatus, could grow on silt (A. Flecker, pers. 
comm.) . Whether this disparity is due to difference in sediment quality or 
different adaptations of the Panamanian versus Venezuelan Ancistrus is 
not presently known, but merits further investigation, given the 
importance of identifying potential energy sources for these ecologically 
significant fish. 

Siltation is a stress for Panamanian and apparently also for four 
species of Brazilian loricariids, which Buck and Sazima (1995) observed to 
initiate similar wiggling head-down movements when they commenced 
grazing on heavily silted substrates, movements which wafted sediment 
away from the area to be grazed. In both Habitats, previously cleared spots 
were regrazed by the same individual or other catfish (Fig. 19.5; Power, 
1984c; Buck and Sazima, 1995). I often observed smaller loricariids 
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Selectivity of Ancistrus for cleared substrate in enclosures. Points are the % of 
g&ng bouts initiated on a given day on cleared substrate, plotted against the % of the 
substrate in an enclosure cleared on that day. If grazing bouts were initiated at random with 
respect to sediment, equal numbers of points should fall above and below the line X=Y 
(adapted from Power, 1981 and 1990). 

regrazing sites opened in silted areas by larger loricariids. To test whether 
small fish would select such sites, I built a choice cage out of coarse plastic 
screen (6-mm mesh Vexar) with three chambers (Power, 1984~) .  The 
central chamber housed a small test Ancistrus (4-7 cm SL) and one of the 
side chambers housed a large individual (10-14 cm SL). Holes in the 
chamber partitions allowed the small but not the large catfish to move 
among chambers. When the cage was placed in heavily sedimented-areas, 
the small individual moved into the chamber with the large individual 
more frequently than would be expected by chance. When the choice cage 
was placed in sediment-free areas in the stream, there was no effect of the 
larger individual on the position of the small catfish (Power, 1984~) .  

In another experiment, catfish densities were reduced to ca. 0.1 their 
ambient densities in 4 m2 enclosures built in a sunny pool that had 
previously supported up to 6 10-g individuals m-’. Catfish regrazed small 
sites opened within enclosures significantly more than sites that had not 
been opened by grazing (Fig 19.5; Power, 1990). At these low densities, 
catfish grazing significantly reduced sediment standing crops and 
enhanced epilithic algal productivity and, surprisingly, algal abundance. 
Attached algal productivity and abundance were lower in the open habitat 
under the more intense ambient grazing regimen but still higher than in 
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fish-free exclosures, in which thick carpets of silt accrued after several 
weeks (Power, 1990). This result suggested that loricariids could have 
“optimized” their harvests while grazing by foraging less frequently, and 
allowing more algal recovery between grazing bouts. That they in fact 
“overgrazed” in the open habitat suggested that they lacked a social 
mechanism, like territoriality, that could have increased the likelihood of 
“prudent grazing” by catfish. 

AGNOSTIC INTERACTIONS 

Given the intense intraspecific and interspecific competition for attached 
algae that Rio Frijoles loricariids experience for much of the year, one 
might expect to see interference as well as exploitative competition. I 
observed the four species grazing on gridded bedrock platforms in four 
stream pools by day and night (using dim underwater lights at night) and 
in the dry and rainy seasons over a two-year period. Most of the loricariids 
using these substrates were Ancistrus, with Hypostomus next in abundance. 
Interspecific interactions were relatively rare. In the few that I observed, 
Hypostomus and Rineloricaria rarely initiated interactions with Ancistrus 
and were almost always displaced by them. Hypostomus intraspecific 
interactions involved prolonged, gentle body contact and ended when fish 
drifted apart. The most common and intense interactions occurred 
between grazingAncistrus. Out of a total of 647 5-minute Ancistrus grazing 
bouts observed, 11 1 bouts were interrupted by agnostic interactions 
(Power, 198413). These occurred when two individuals of similar size 
grazing in close proximity bumped into each other and flared their 
opercular spines. In the most intense interactions that I observed, 
individuals pushed against each other with these spines. Such skirmishes 
were rare, brief, and immediately followed by flight of both participants 
out of sight to shelter under a rock ledge adjacent to their grazing 
platform. This behavior suggested that grazing catfish avoided more 
frequent or prolonged interference behavior because of the risk of 
attracting attention from aerial predators. 

One observation of marked individuals suggested that Ancistrus knew 
each other as individuals. Two marked 6-7 cm SL Ancistrus hid after a 
skirmish. One returned and resumed grazing in the middle of a group of 
twelve conspecifics of similar size. Several minutes later the other 
Ancistrus returned and worked its way through this group, ignoring 
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first catfish and resume the skirmish. Olfactory individual recognition in 
ictalurids has been demonstrated experimentally (Todd et al. 1967). 

The frequency of skirmishes did not influence Ancistrus Growth. 
Although interference episodes were 2-4 times more frequent in crowded 
groups of Ancistrus in sunny, productive pools than in sparse groups in 
dark pools, the average Growth rates of individuals in all of these pools was 
statistically indistinguishable. Similar somatic Growth rates, particularly of 
prereproductive individuals, suggested that the interference behavior 
imposed insignificant energetic costs (Power, 1984.b; Oksanen et al., 1995) 
and did not impede individuals from closely tracking variation in algal 
Growth rates on the pool-to-pool scale over kilometers of stream reach. 

IDEAL FREE DISTRIBUTION AND PRODUCTIVITY 
TRACKING 

Because they are not apparently constrained by social dominance or pool- 
dwelling predators, all pool-dwelling loricariids could presumably 
enhance their fitness by closely tracking large-scale (pool-to-pool) 
variation in the availability of their algal food. In fact, loricariids tracked 
algal productivity quantitatively in pools distributed over a 3 km reach of 
the Rio Frijoles. Algal Growth rates varied 16-fold among these pools, 
because of variation in forest canopy shading stream substrates. I censused 
16 pools distributed over the 3 km study reach of the river for 12 
consecutive months by snorkeling through them and counting loricariids, 
including individuals hiding under ledges, which I detected with a small 
underwater flashlight. Catfish densities (both in terms of individuals and 
biomass) scaled to the area of grazeable (flat bedrock) substrate was 
linearly related to the relative productivity of a given pool. Measurements 
of algal Growth and depletion by collective loricariid grazing suggested 
that these rates were similarly balanced in the 6 dark, 6 half-shaded, 6 
moderately sunny, and 3 very sunny pools. As Fretwell and Lucas (1970) 
predicted for animals able to achieve an Ideal Free Distribution, standing 
crops of algal food, somatic Growth rates of prereproductiveAncistms, and 
survivorship of all Ancistrus were similar among the 16 sunny, half- 
shaded, and dark pools censused monthly for one year (Power, 1984b; 
Oksanen et al., 1995). 
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growth adaptation produces cave-like undercuts that extend several 
meters under the bank, which are excellent Habitats and breeding sites for 
larger fish. 

Like many fishes, loricariid populations may be potentially quite 
resilient. Adults are long lived (several decades) with moderate lifetime 
fecundity. Many species have adaptations to cope with stresses such as 
transient hypoxia and intermittent substrate sedimentation. Long-lived 
loricariids, can therefore, persist in unsuitable Habitats with many years of 
successive recruitment failure, via the “storage effect” (Warner and 
Chesson, 1985). As environmental stresses grow more prolonged or 
chronic, however, habitat loss will constrict the life history bottlenecks of 
loricariid catfish past the point of recovery. We are at risk of losing many 
loricariid species before we have even begun to appreciate their 
spectacular diversity and the highly evolved morphological, behavioral, 
and ecological adaptations that mold their lives in nature. 
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