Introduction

Beta diversity, the change in species identities across sampled locations (sensu Anderson et al. 2011), has been used to identify the spatial, temporal, and environmental patterns that result from different ecological, evolutionary, and biogeographic processes. Historically, beta diversity research has focused on taxonomic beta diversity (species composition turnover; Whittaker 1960; Condit et al. 2002), but taxonomic beta diversity does not account for shared evolutionary history or similarity in functional morphology among species (Faith 1992; Graham and Fine 2008). Recent efforts to identify and interpret differences among spatial patterns of these three beta diversity dimensions (taxonomic, trait, and phylogenetic) have yielded new insights into the origin and maintenance of biodiversity (Bryant et al. 2008; Graham and Fine 2008; Devictor et al. 2010; Fine and Kemel 2011; Morlon et al. 2011; Swenson 2011a; Huang et al. 2012; Lansing et al. 2012). However, a general a priori approach as to why and when beta diversity dimensions differ has yet to emerge. The lack of a predictive approach represents a gap in our knowledge and impedes connections between idiosyncratic studies in different systems. We propose an approach to evaluate geographic and environmental mechanisms influencing regional patterns of taxonomic, phylogenetic, and trait beta diversity. We test hypotheses for mechanisms generating the causes of occurrence of each combination of beta diversity dimensions using the ecologically diverse Neotropical hummingbird clades.

There are eight possible combinations of high versus low taxonomic, phylogenetic, and trait beta diversity between assemblages (fig. 1) Due to phylogenetic constraints on niche and trait evolution, we anticipate that, in most cases, taxonomic, phylogenetic and trait dimensions of beta diversity across a region will be similar (e.g., all low or all high; Cadotte et al. 2009; Safi et al. 2011; Swenson 2011b; Fritz and Rahbek 2012). However, beta diversity dimensions may be decoupled, where decoupling is identified by greater differences in one dimension than expected by chance based on differences in other dimensions. We expect greater differences in taxonomic beta diversity
Figure 1: Conceptual figure outlining the five major steps of the analytical approach. First, we calculate taxonomic, phylogenetic, and trait dissimilarity between all pairwise combinations of assemblages (A). Second, we compared observed taxonomic beta diversity to a null model controlling for richness (B). Third, we compared the observed phylogenetic and trait beta diversity to a null model that maintains both richness and taxonomic beta diversity (C). Based on these null models, we delineated different combinations of beta diversity (e.g., high taxonomic, high phylogenetic, high trait). Fourth, we quantified the environmental dissimilarity and geographic distance between assemblages (D). Finally, we used these results to test hypotheses of predicted mechanisms for each combination of beta diversity (E).

This content downloaded from 128.12.166.171 on Thu, 4 Sep 2014 15:22:48 PM
All use subject to JSTOR Terms and Conditions
than expected by chance if recent geographic barriers are
limiting dispersal (Condit et al. 2002; Fine and Kembel
2011; Kraft et al. 2011; Myers et al. 2013), whereas we
expect decoupling associated with phylogenetic beta di-
versity to be most influenced by historical factors such as
historical connectivity or environmental stability (Bryant
et al. 2008; Morlon et al. 2011; Jetz and Fine 2012), and
decoupling associated with trait beta diversity resulting
from local adaptation (Cornwell et al. 2006; Kraft et al.
2007; Rosenblum et al. 2010; Lansing et al. 2012). Spec-
cifically, given two assemblages that occur in similar en-
vvironments, we hypothesize that (1) adaptation to similar
environments with no dispersal limitation will lead to low
taxonomic, low phylogenetic, and low trait beta diversity;
and (2) recent speciation due to geographic isolation, but
with historical connectivity, will lead to assemblages with
high taxonomic, low phylogenetic, and low trait beta di-
versity because sister (or closely related) taxa will replace
each other on either side of recent geographic barriers
(Graham et al. 2009). If assemblages in similar environ-
ments are currently and historically isolated, there may be
long branch lengths among species in these assemblages,
leading to (3) high taxonomic and high phylogenetic beta
diversity but low trait beta diversity due to similar eco-
logical roles of species in a given environment and con-
vergent adaptation (i.e., traits are labile and driven by
adaptation to environmental factors). Finally, convergent
adaptation between recently connected, but historically
isolated assemblages should result in (4) low taxonomic,
high phylogenetic, and low trait beta diversity.

In contrast to similar environments, assemblages in dif-
fering environments should have higher-than-expected
trait beta diversity resulting from local adaptation to dif-
fering selection pressures. We expect that trait beta diver-
sity will change independent of phylogenetic similarity
when there is a strong environmental filter or recent adap-
tive radiation (Losos 2008). Therefore, we hypothesized
that (5) current geographic and potential historical barriers
will result in a pattern of high phylogenetic, high taxo-
nomic, and high trait beta diversity, and (6) beta diversity
among assemblages that were recently connected but his-
torically isolated and in different environments should
have low taxonomic beta diversity, high phylogenetic beta
diversity, and high trait beta diversity. These assemblages
should occur along environmental gradients in the absence
of large current geographic barriers. Finally, (7) low taxo-
nomic, low phylogenetic, but high trait beta diversity
should occur between assemblages with no dispersal lim-
itation and high trait lability; and (8) high taxonomic, low
phylogenetic, and high trait beta diversity should result
from recent geographic isolation of historically connected
assemblages coupled with labile traits responding to en-
vironmental change. While our framework outlines all
possible combinations of beta diversity dimensions, we do
not necessarily expect all combinations to be important,
or possible, in our system. The rate of diversification, the
pattern of trait evolution, and the geographic configura-
tion of barriers will vary between systems, and thereby
effect which combinations of beta diversity dimensions are
most prominent.

Hummingbirds of the northern Andes are an ideal
group to evaluate these hypotheses. There are nine clades
in the region, each with a distinct biogeographic history,
distribution, and set of traits (Stiles 2008; Parra et al. 2011;
Graham et al. 2012). The basal clades of hermits, mangoes,
and emeralds are predominately lowland and largely di-
versified within Amazonia (Bleiweiss 1998; McGuire et al.
2007). The origin and diversification of the coquettes and
brilliants coincided with the uplift of the Andes. The
mountain gem and bee clades diversified in Central and
North America, and representatives of these clades have
moved into the Andes and associated lowlands. The com-
bination of diversification within environments and col-
oration from outside the region create different patterns
taxonomic, phylogenetic, and trait beta diversity among
assemblages. Previous work has shown that taxonomic
beta diversity in the northern Andes and associated low-
lands is generally greater than phylogenetic beta diversity
on either side of the Andes, given a null model of taxa-
nomic turnover, highlighting the potential role of isolation
in generating patterns of beta diversity across different
dimensions (Graham et al. 2009). Here we compare the
three dimensions of beta diversity (taxonomic, trait, and
phylogenetic) at a broad geographic scale and evaluate our
predictive framework with hummingbirds. We expect our
approach can be employed across an array of taxonomic
groups and geographic and environmental contexts.

Methods

Overview of Approach

Our approach for exploring the dimensions of beta di-
versity consists of five steps. First, we used commonly
employed beta diversity metrics to calculate taxonomic,
phylogenetic, and trait dissimilarity between all pairwise
combinations of assemblages (fig. 1A). We then delineate
high and low beta diversity in this system by taking the
30% highest and lowest quantiles. To test whether these
assemblage comparisons were different from random, we
compared observed taxonomic beta diversity to a null
model controlling for richness (fig. 1B). Third, we com-
pared the observed phylogenetic and trait beta diversity
to a null model which maintains both richness and tax-
onomic beta diversity (fig. 1C). Based on these null mod-
els, we delineated different combinations of beta diversity
Table 1: Patterns of environment and distance for each dimension of beta diversity

<table>
<thead>
<tr>
<th>Beta diversity dimension</th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxonomic</td>
<td>Assemblages in different environments separated by large distances</td>
<td>Assemblages in similar environments and separated by small distances</td>
</tr>
<tr>
<td>Phylogenetic</td>
<td>Strong historic isolation between assemblages or weak trait labiality limiting adaptation to the new environments</td>
<td>Weak historical isolation or recent connectivity between assemblages or strong trait labiality permitting adaptation to new environments</td>
</tr>
<tr>
<td>Trait</td>
<td>Assemblages in different environments</td>
<td>Assemblages in similar environments</td>
</tr>
</tbody>
</table>

(e.g., high taxonomic, high phylogenetic, high trait). Fourth, we quantified the environmental dissimilarity and geographic distance between assemblages (fig. 1D). Finally, we used these results to test hypotheses of predicted mechanisms for each combination of beta diversity (fig. 1E, table 1).

Hummingbird Data

Our taxonomy followed the current version of the South American Classification Committee (Remsen et al. 2010). Our data set included 219 hummingbird assemblages containing 126 species across Ecuador and Colombia (fig. A1; figs. A1, B1–B5 available online; McGuire et al. 2007, 2009; Graham et al. 2009; Altshuler et al. 2010; Parra et al. 2010). Lists from eco-lodges with a high density of hummingbird feeders were excluded, as the presence of these artificial resources may cause range extensions. Each species was projected on to a map and occurrence in an assemblage was corroborated by comparing localities to known distributions based on field guides. For data-poor areas, species were also compared to expert range maps and citizen science data to support data cleaning (Sullivan et al. 2009). We used a densely sampled regional phylogeny that includes each of the 126 hummingbird species evaluated in this study and has been used extensively to analyze phylogenetic community structure in this system (McGuire et al. 2007; Parra et al. 2010; Graham et al. 2012).

We compiled measurements of three traits in adult males: body mass, wing chord (i.e., closed-wing length), and length of exposed culmen (Graham et al. 2012). The three traits represent important morphological interfaces for hummingbird flight, physiology, feeding, and behavior. Body mass is related to thermoregulatory adaptations to high elevation habitats, as well as aggressive interactions among territorial species (Altshuler and Dudley 2002; González-Gómez et al. 2011a, 2011b). Wing chord is a component of hovering flight, which becomes more difficult at high elevations due to lower air density (Altshuler et al. 2004; Stiles et al. 2005). Bill length is associated with resource use, foraging efficiency, and the matching between bill lengths and corolla lengths in hummingbird pollinated plants (Feinsinger et al. 1979; Smith et al. 1996; Temes et al. 2002). These three traits show a predicted trait environment-relationship when all species in an assemblage are considered: body mass increases with elevation, wing chord increases with elevation and bill length decreases with elevation (high-elevation flowers have short corollas; Stiles 2008). All three traits can be well described by a Brownian motion model of trait evolution, indicating phylogenetic signal (Blomberg’s $K \sim 1$ for all traits; Graham et al. 2012). Within-species trait variation was lower than among-species variation, indicating that intraspecific variation should not distort our beta diversity analysis. Morphological data are deposited in the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.1qg13 (Weinstein 2014).

Environmental Data

Based on previous analyses of the relationship between phylogenetic structure of hummingbird assemblages and the environment (Graham et al. 2009, 2012; Parra et al. 2010, 2011), we chose three variables to describe environmental gradients: annual precipitation, elevation, and vegetation structure. Elevation and climate were extracted from the Shuttle Radar Topography Mission data (30-m resolution) and the Worldclim database (accessed September 11, 2013; Hijmans et al. 2005), respectively. Since elevation is highly correlated with temperature ($r = 0.98$), we used elevation because of its higher spatial resolution. Vegetation structure was quantified using the annual horizontal mean of Quick scatterometer data (30-m resolution), which is a measure of surface roughness and provides inference on biomass density and forest height and spacing and has been shown to be an informative variable for modeling species distributions in the region (Buermann et al. 2008; Parra et al. 2011).

Geographic Distance

We measured geographic isolation by calculating Euclidean distance and cost distance among all localities. Euclidean distances were computed for all combinations of localities...
in R (R Development Core Team 2012) using the package maptools (Bivand 2012). Cost distance represents the environmentally weighted friction of moving between two points in a landscape and has been shown to be a strong predictor of dispersal limitation and population genetic structure (McRae and Beier 2007; Wang et al. 2009). Calculating cost distances among locations requires (1) construction of environmentally weighted cost surface and (2) calculation of a least-cost path between two locations. We used elevation to build our cost surface because it is a proxy for environmental turnover, and large changes in elevation can be barriers to dispersal in hummingbirds (Chaves and Smith 2011). We built a unique cost surface for each assemblage based on the difference in elevation from a given assemblage to each of the cells in our study region. We then calculated the least-cost path between all pairwise localities using the R package gDistance (Etten 2011).

Beta Diversity Metrics

For taxonomic beta diversity, we calculated Sorenson’s index for each pairwise comparison of assemblages (Whittaker 1960). For phylogenetic beta diversity, we used 1-PhyloSor, which computes the proportion of unshared branch lengths between species in each assemblage comparison (Bryant et al. 2008). Trait beta diversity was calculated by standardizing the trait matrix, performing a principal components analysis and then measuring the nearest taxon distance for each species between an assemblage (mean nearest taxon distance [MNTD]; Webb et al. 2008; Swenson et al. 2012b). We chose this approach because it is a simple representation of the trait spacing between species and is computationally tractable. Since there is a wide variety of beta diversity metrics, we compared our results to several alternate methods, including the phylogenetic community dissimilarity (PCD) metric, a recent integrative metric of taxonomic and tree-based dissimilarity (Ives and Helmus 2010). We also compared MNTD to tree-based methods (Petchey and Gaston 2007) and convex hulls for our observed 219 assemblages (Villéger et al. 2013). The results using PCD, tree-based methods, and convex hulls are qualitatively similar to those obtained using our approach (app. B; apps. A and B available online).

We performed randomization tests to test the significance of the correlations between environmental and distance dissimilarity with the beta diversity dimensions. We used the nonparametric test proposed by Ives and Helmus (2010) instead of Mantel tests, because Mantel tests can suffer from inflated Type I errors (Rafuste and Rouset 2001). We first estimated Spearman’s correlation between each environmental and distance variable and the beta diversity values. We then randomized the labels of the assemblages for the environmental or distance variables 10,000 times, each time correlating the permuted data to the actual beta diversity values. The highest correlation in each of 10,000 permutations was recorded and used as a null distribution for the highest observed correlation. To generate the null distribution for the second-highest observed correlation, we removed one variable at random for each of the 10,000 permutations and recorded the new highest correlation. We repeated this method for all 18 combinations of taxonomic, phylogenetic, and trait beta diversity values and the six distance and environmental variables. We then compared the true correlation value to the null distribution of correlation values. Significant correlations were delineated as outside the lower fifth or upper ninety-fifth quantile of the null distribution.

Evaluating Hypotheses Associated with Combinations of Diversity Dimensions

We divided the dissimilarity values into all three-way combinations of beta diversity (e.g., high taxonomic, high phylogenetic, high trait; table 1), and used these assemblage comparisons to evaluate our environment and distance measures predictions for the combinations of beta diversity dimensions. We compared observed taxonomic beta diversity to a null distribution of comparisons between randomly generated assemblages with the same richness as the observed data (fig. 1A). We then compared our observed Sorenson value with the null distribution and considered it high if it was greater than the ninety-fifth quantile and low if less than the fifth quantile (fig. 1B). Values between the fifth and ninety-fifth quantiles were considered not different from randomly sized assemblages of similar richness. A null model of phylogenetic and trait beta diversity was generated by maintaining both richness and the number of shared species in observed assemblages but randomizing species identity (fig. 1C). We compared the observed taxonomic and phylogenetic beta diversity of a comparison to 500 generated null assemblages and designated higher-than-expected beta diversity between assemblages when observed values were greater than the ninety-fifth quantile of null values and lower-than-expected beta diversity when observed values were less than the fifth quantile of the null values.

We evaluated how well environmental dissimilarity and geographic distance variables predicted each combination of beta diversity by comparing the observed median value for each predictor with the median of 1,000 random draws, where the number of comparisons in each draw was equal to the number of comparisons in each hypothesis (fig. 1D). We chose the median rather than the mean because the environmental and distance variables, especially cost...
distance, have very long positive tails, and the mean is not an accurate summary of the distribution. We used the medians of the randomly sampled data to form a null distribution to compare to our observed medians. If the observed median was outside the fifth or ninety-fifth quantile of the null distribution, we considered the median value significantly different than the overall data set. Finally, we mapped the assemblage comparisons to compare patterns of spatial beta diversity within this system. We stress that this analysis focuses on the emergent patterns of the dimensions of beta diversity rather than on any individual assemblage comparisons.

Results

We analyzed the taxonomic, phylogenetic, and trait beta diversity among 219 hummingbird assemblages in northern South America. Beta diversity was correlated between the taxonomic and phylogenetic dimensions \(r = 0.89 \) and taxonomic and trait dimensions \(r = 0.64 \). Phylogenetic and trait beta diversity dimensions were also correlated \(r = 0.58 \); however, after accounting for taxonomic beta diversity, the partial correlation between phylogenetic and trait beta diversity was 0.29 (Spearman’s \(r, n = 23,871, P < .01 \)). For taxonomic beta diversity, 23.8% of the randomized compared assemblages were more similar than expected given a null model of richness, and 45.9% were less similar than expected (app. A). For phylogenetic beta diversity, 3.2% of the compared assemblages were less similar than expected, and 29.1% were more similar than expected given a null model of taxonomic beta diversity. For trait beta diversity, 6.0% of the compared assemblages were less than expected, and 6.1% were more similar than expected given a null model of taxonomic beta diversity.

Using all pairwise combinations, environmental parameters were stronger predictors of beta diversity than distance metrics across all dimensions (table 2). In particular, all dimensions of beta diversity were correlated with changes in elevation, while precipitation and canopy structure explained a smaller, but significant, amount of variation in each of the three dimensions. Cost distance was a stronger predictor of taxonomic beta diversity than either Euclidean or cumulative elevation distance, the latter of which was not significant. Neither Euclidean nor cumulative elevation distance metrics strongly explained phylogenetic nor trait beta diversity (table 2). To test predicted patterns of environmental dissimilarity with combinations of the beta diversity dimensions, we chose the two best predictors for environmental (elevation, annual precipitation) and distance metrics (Euclidean, cost distance).

We found mixed support for our hypothesized relationship between environmental and distance variables and each measure of beta diversity. Our results supported the prediction that assemblages separated by large distances would have high taxonomic beta diversity (table 1). Assemblage comparisons that had high taxonomic beta diversity also had higher median Euclidean and cost distance than the median of the entire data set. Assemblage comparisons that had low taxonomic beta diversity had lower median distance than the median of the entire data set (fig. 2). In contrast, there was no consistent relationship between phylogenetic beta diversity and either measure of distance. Assemblage comparisons with high phylogenetic beta diversity also had high dissimilarity in elevation and precipitation, and assemblages with low phylogenetic beta diversity had low dissimilarity in elevation and precipitation. Assemblage comparisons with high trait beta diversity had greater dissimilarity in elevation and annual precipitation, while assemblage comparisons with low trait beta diversity were more similar in elevation and annual precipitation. Low trait beta diversity in precipitation was not different from random.

When we combined taxonomic, phylogenetic, and trait dimensions of beta diversity into the eight three-way combinations of beta diversity dimensions (i.e., high taxonomic, high phylogenetic, and high trait), 1,145 of the 23,871 (4.8%) comparisons were significantly high or low for all three beta diversity dimensions (fig. 2). These comparisons were used to address hypotheses of the combinations of beta diversity dimensions (fig. 3). Seven of the eight possible combinations of taxonomic, phylogenetic, and trait beta diversity were observed (fig. 4). High taxonomic, low phylogenetic, high trait beta diversity did not occur among any assemblage comparisons. Three of the eight combinations were consistent with our predictions for both environmental dissimilarity and distance. Three of the eight combinations were consistent with our predictions for either environmental dissimilarity or distance. Two combinations were observed in less than 10 assemblage comparisons.

<table>
<thead>
<tr>
<th>Table 2: Environmental and distance correlates of beta diversity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Elevation</td>
</tr>
<tr>
<td>Precipitation</td>
</tr>
<tr>
<td>Canopy structure</td>
</tr>
<tr>
<td>Euclid</td>
</tr>
<tr>
<td>Cost distance</td>
</tr>
</tbody>
</table>

Note: Spearman’s coefficients for environment dissimilarity and distance metrics for the dimensions of beta diversity. Randomization tests with 1,000 permutations showed that all correlations were significant. We chose the top two variables for environment and distance to compare to our combination of beta diversity dimensions.
Figure 2: Summary of the environmental dissimilarity and distance measures for each beta diversity dimension. The dashed line represents the median value of all comparisons in the entire data set. Due to the long tail of the cost distance data, we eliminated the outliers from this boxplot by excluding all values greater than the ninety-fifth quantile. Dimensions of beta diversity (taxonomic, phylogenetic, and trait) are considered high or low based on a null model of community assembly. Variables that are not significantly different from the entire data set ($P > .05$) are labeled NS.
Figure 3: Summary of the environmental dissimilarity and distance measures for the combinations of beta diversity dimensions. The dashed line represents the median for the entire data set. Due to the long tail of the cost distance data, we eliminated the outliers from this boxplot by excluding all values greater than the ninety-fifth quantile. The labels at the bottom denote the three-way combination of beta diversity dimensions (order = taxonomic, phylogenetic, and trait). Dimensions of beta diversity are considered high or low based on a null model of community assembly. Variables that are not significantly different from the entire data set ($P > .05$) are labeled NS.
Figure 4: The mechanistic explanations for the eight combinations of beta diversity dimensions (taxonomic, phylogenetic, and trait). Beta diversity dimensions are delineated into high or low taxonomic beta diversity based on a null model of richness. Phylogenetic and trait dimensions are delineated into high or low based on a null model of taxonomic beta diversity. The predicted environmental and distance dissimilarity is shown along with check mark if supported by at least one variable in distance or environmental dissimilarity. The bottom panel depicts the study area and black lines connecting each pair of assemblages for each beta diversity combination.
Low beta diversity in all dimensions resulted where there was less-than-expected change in elevation and precipitation, whereas high beta diversity resulted where there was greater-than-expected change in elevation and precipitation. Where phylogenetic beta diversity was high, combinations with low trait beta diversity still showed a pattern of low environmental change. Assemblages with high taxonomic, low phylogenetic, and low trait beta diversity were located among lowland comparisons on either side of the Andes. These assemblages had large distances, but little environmental change. Combinations of beta diversity dimensions between assemblages in differing environments were predicted to be associated with high trait beta diversity. This was supported only for assemblages with high beta diversity in all dimensions, which showed the largest distances and changes in environments (fig. 4). Spatially, these patterns occurred most often between low-elevation assemblages and high-elevation assemblages on the Andean western slope (fig. 4). The additional three combinations of beta diversity that included high trait beta diversity did not show large changes in environment.

Discussion

The relative importance of environmental and geographic factors varied across the three dimensions of diversity. Environmental distance was correlated with beta diversity across all three dimensions, while geographic distance was only correlated with taxonomic beta diversity. The variation in relative importance of these predictors indicates that different processes likely influence the dimensions of diversity. Taxonomic beta diversity was related to both cost distance and environmental dissimilarity, suggesting that dispersal limitation, potentially combined with allopatric speciation and environmental filtering, influences patterns of assemblage turnover (Cavender-Bares et al. 2004; Emerson and Gillespie 2008; Pavoine and Bonsall 2011; Lansing et al. 2012; Myers et al. 2013). Previous work within biomes, such as tropical rain forests, found that Euclidean distance has a strong influence on beta diversity (Condit et al. 2002; Tuomisto et al. 2003; Pellissier et al. 2010; Fine and Kembel 2011). In addition, the stronger predictive power of environmentally weighted distance compared to Euclidean distance is not a surprising result since the Andes are a known biogeographic barrier to current dispersal (Hafer 1969; Bleiweiss 1998; Chaves et al. 2007; Chaves and Smith 2011) and suggests that measures that incorporate landscape connectivity may be particularly important in understanding patterns of biodiversity.

We found support for most of our a priori expectations about the relationship between the three dimensions of beta diversity and environmental and distance dissimilarity. Comparisons with high taxonomic, phylogenetic, and trait beta diversity had the highest environmental differences and geographic isolation as predicted. We infer that local adaptation to contrasting environments between isolated assemblages is an important mechanism generating spatial patterns of hummingbird beta diversity (Bleiweiss 1998; McGuire et al. 2007; Parra et al. 2010). High beta diversity exists between assemblages in all dimensions on both sides of the Andes, highlighting the role of the uplift of the Andes in the diversification of hummingbirds. The role of the uplift of mountain ranges in generating beta diversity is well established in avian evolutionary history and indicates the importance of allopatry and subsequent adaptation to differing environments in driving patterns of diversification (Fjeldså et al. 2012).

Consistent with the finding that environmental differences and isolation lead to high beta diversity across dimensions, we found low beta diversity across all dimensions are low when both environmental and geographic distances between assemblages was low. Beta diversity is low across all dimensions in the Andes, with only a few instances of this combination in lowland comparisons. The low phylogenetic beta diversity in the Andes highlights the recent nature of the Andean diversification; few lineages have colonized high-elevation environments resulting in low phylogenetic beta diversity because related species occur in all assemblages (Stiles 2004; Parra et al. 2010). In contrast, species from many clades occur in Amazonia; therefore, there is a greater chance that the species from different clades exist in lowland comparisons, resulting in relatively high phylogenetic beta diversity in this region as compared to the Andes.

Decoupling of one or more beta diversity dimensions provides potential insights into mechanisms influencing spatial patterns of diversity. Assemblage combinations where trait diversity is low relative to taxonomic and/or phylogenetic beta diversity indicates that morphologically similar species, potentially from different clades, inhabit different assemblages. Convergence in morphological characters may be responsible for these patterns. For example, comparisons with high taxonomic, high phylogenetic, and low trait beta diversity mainly occur between geographically distant lowland and Andean assemblages. In these cases, environmental distance was not lower than expected by chance. Convergence of behavioral and foraging roles could lead to this pattern, as most hummingbird assemblages include species with distinctive roles (e.g., trap-liner, territorial; Feinsinger and Colwell 1978; Stiles 1995; Altshuler 2006) and, generally, distinctive morphologies. These role-specific morphologies, however, vary by elevation because air density presents a significant constraint to high-elevation flight (Altshuler et al. 2004). Two exemplary species are Discosura popelairii and Myrmia micrura, which are distantly related but are small-bodied and
small-billed trap-liners. These species inhabit different environments; *D. popelairii* occurs in humid foothill montane forests and *M. micrura* in the dry southwestern lowland. Species converging on similar traits and behaviors could explain the occurrence of high taxonomic, high phylogenetic, and low trait beta diversity comparisons.

Comparisons with high taxonomic, low phylogenetic, and low trait beta diversity also occur between distant assemblages on either side of the Andes but in similar environments. In this case, related species with similar ecological roles replace each other in similar environments, consistent with the findings of (Graham et al. 2009). For example, *Glaucis, Threnetes*, and *Phaethornis* hermits all have morphologically similar sister species present in the western Choco lowlands and the eastern Amazonian lowlands. High taxonomic beta diversity relative to trait beta diversity is predicted in the tropics due to small range sizes, increased rates of speciation, and niche conservatism (Safi et al. 2011). These mechanisms would result in tight packing of related species over relatively short geographic distances but with biogeographic barriers between them (Haffer 1969). We find evidence for this proposed mechanism consistent with Safi et al.'s (2011) predictions.

Low taxonomic, high phylogenetic, and high trait beta diversity occurs along the Andean elevation gradient, which has rapid clade replacement over short distances. We show that clades that turn over across the gradient are also morphologically distinct, suggesting that different clades may have evolved specific adaptations for different conditions along the elevation gradient. The presence of a few very morphologically distinct species, most notably *Patagona gigas*, may explain the occurrence of these combinations with one assemblage along the inner Andean slopes. We expected that high environmental dissimilarity would be associated with low taxonomic, high phylogenetic, and high trait beta diversity, but this was not observed. The lack of association is likely because of the rapid turnover of species across a relatively continuous and steep gradient; such environmental changes are relatively small in comparison with our null model, which included assemblages in very different environments. Rapid turnover in vegetation communities along the gradient, not captured with our environmental measures, may also cause rapid replacement of species with different bill morphologies. For example, in hummingbird food plants, low-elevation nectar resources are dominated by *Heliconia* and Rubiaceae and replaced by Gesneriaceae at midelevations and Ericaceae at high elevations. This shift also corresponds to decreasing floral corolla length, which could promote rapid taxonomic turnover across short geographic distances (personal communication, G. Stiles). In addition, low taxonomic diversity but high phylogenetic diversity could occur either where (1) assemblages were originally isolated for long periods of time, allowing local clade diversification, but then recently connected due to relaxed dispersal limitation; or (2) there was a recent local extinction of a phylogenetically distinct lineage. Furthermore, the relative nature of analysis does not distinguish between absolutely high phylogenetic diversity and more phylogenetic diversity than expected given taxonomic diversity. While we believe this is the most intuitive approach to combine beta diversity dimensions, it cannot distinguish between the absolute causes of phylogenetic beta diversity, which depend greatly on the evolutionary history and biogeography of the system.

While distance was informative in delineating combinations of beta diversity dimensions, neither of our distance measures incorporated past connectivity, which has been shown to be a better predictor of beta diversity than current connectivity (Graham et al. 2006; Basalga et al. 2012). The majority of hummingbirds evolved within the past 10 million years, concurrent with major uplifts in the Andes (McGuire et al. 2007). Thus, a historical cost surface, or a dynamic cost surface over time, may provide more robust insight into the phylogenetic beta diversity of this system. In particular, historical information may allow us to better understand how connectivity through time might influence decoupling between dimensions of beta diversity, where taxonomic beta diversity may be influenced by recent speciation event or colonization and phylogenetic beta diversity may be influenced by historical connectivity. A fruitful avenue for future research would be to integrate shifting climate, geology, and species distributions over time to quantify the influence of isolation and environment on current patterns of species richness and composition (Antonelli et al. 2009; Hoorn et al. 2010).

Combining the predictive approach proposed here with time-calibrated phylogenies and geological data would further mechanistic explanations of community structure and biodiversity.

We found support for the majority of our hypothesized environmental and distance dissimilarities for each combination of taxonomic, phylogenetic, and trait beta diversity, indicating that our approach provides insight into mechanisms leading to biodiversity in this highly diverse and complex system. Where data are available, we expect our approach is applicable across taxonomic groups, and testing our hypotheses in other groups would be a productive step toward understanding how diversity is generated and maintained across systems.

Acknowledgments

We would like to thank M. Helmus and A. Ives for their helpful insight on the null models and the phylogenetic
community dissimilarity metrics used in the appendix. B.G.W. and B.T. were supported by National Science Foundation (NSF) grant 0820490 to C.H.G. and J.L.P. and an NSF Dimensions grant to C.H.G. B.G.W. also thanks support from the NSF through a Graduate Research Fellowship Program fellowship. J.A.M. was supported by NSF grants DEB-0330750 and -0543556. R. Colwell, A. Machac and S. Scheiner gave constructive feedback on the ideas and preliminary results. B. Holt provided additional important comments and approaches for the trait beta diversity metrics. We would further like to thank the associate editors and three anonymous reviewers for their constructive feedback. All R scripts have been placed or an online repository (https://github.com/bw4sz/DimDiv). This work used the Extreme Science and Engineering Discovery Environment (XSEDE) and the Stampede supercomputing platform, which is supported by National Science Foundation grant number OCI-1053575. Author participation: B.G.W., B.T., J.L.P., L.M.B., and C.H.G. developed the conceptual ideas for the manuscript; B.G.W. conducted the analyses; C.H.G., J.L.P., F.G.S., and J.A.M. provided data; B.G.W. and C.H.G. wrote the manuscript; and all authors commented on the manuscript.

Literature Cited

Losos, J. B. 2008. Phylogenetic niche conservatism, phylogenetic sig-
nal and the relationship between phylogenetic relatedness and eco-

Myers, J. A., J. M. Chase, I. Jiménez, P. M. Jørgensen, A. Araujo-
Murakami, N. Paniagua-Zambrana, and R. Seidel. 2013. Beta-
diversity in temperate and tropical forests reflects dissimilar mech-

Pavoine, S., and M. B. Bonsall. 2011. Measuring biodiversity to ex-

Peres-neto, P. R., J. D. Olden, and D. A. Jackson. 2001. Environ-
mentally constrained null models : site suitability as occupancy criterion. Oikos 1:110–120.

Safi, K., M. V Cianciaruso, R. D. Loyola, D. Brito, K. Armour-
sophical Transactions of the Royal Society B: Biological Sciences 366:2536–2544.

Scheiner, S. M. 2012. A metric of biodiversity that integrates abun-

Smith, C., J. Stevens, E. Temeles, P. Ewald, R. Hebert, and R. Bon-

This content downloaded from 128.32.146.174 on Thu, 4 Sep 2014 15:02:48 PM
All use subject to JSTOR Terms and Conditions

Associate Editor: Susan Harrison
Editor: Troy Day

A violet-tailed sylph (Aglaiocercus coelestis). Photo credit: Dr. Donald Powers, George Fox University.