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Herbivorous fishes form a keystone component of reef ecosystems, yet the
functional mechanisms underlying their feeding performance are poorly
understood. In water, gravity is counter-balanced by buoyancy, hence fish
are recoiled backwards after every bite they take from the substrate. To over-
come this recoil and maintain contact with the algae covered substrate, fish
need to generate thrust while feeding. However, the locomotory perform-
ance of reef herbivores in the context of feeding has hitherto been ignored.
We used a three-dimensional high-speed video system to track mouth and
body kinematics during in situ feeding strikes of fishes in the genus Zebra-
soma, while synchronously recording the forces exerted on the substrate.
These herbivores committed stereotypic and coordinated body and fin
movements when feeding off the substrate and these movements deter-
mined algal biomass removed. Specifically, the speed of rapidly backing
away from the substrate was associated with the magnitude of the pull
force and the biomass of algae removed from the substrate per feeding
bout. Our new framework for measuring biting performance in situ demon-
strates that coordinated movements of the body and fins play a crucial role in
herbivore foraging performance and may explain major axes of body and fin
shape diversification across reef herbivore guilds.
1. Introduction
Feeding is a complex task, requiring the coordinated operation of multiple func-
tional systems, working in concert to locate, pursue, capture, process, digest
and assimilate resources [1–3]. Successful feeding requires the integration and
control of the locomotory, sensory and prey capture systems. Because feeding
success is tightly linked to the individual’s fitness, the functional tasks that
affect it are expected to be under strong selective pressures. Indeed, mor-
phologies that enhance locomotory performance on the one hand, and prey
capture and processing on the other hand, are often considered major axes of
vertebrate diversification [2,4–8], and are expected to co-evolve in response to
the functional demands of feeding and locomotion. In birds, both the aspect
ratio of the wings and beak morphology are strong predictors of the bird’s
trophic niche [7,9–11]. For example, nectar-feeding birds are characterized by
a thin long beak and high-aspect ratio wings, whereas raptors are characterized
by wings with intermediate aspect ratio, and short, sturdy, curved beaks [12,13].
The functional coupling of locomotory apparatus (e.g. wings, legs or fins) and
prey capture apparatus (e.g. teeth, beaks, talons or claws) is most evident in pre-
dators of mobile, evasive prey [5–7]. By contrast, this functional coupling might
be less evident in animals that feed on non-motile prey. In herbivores, func-
tional diversification is mostly explained based on the adaptation of their
feeding apparatus (e.g. teeth and jaws) to shear, tear, cut and grind plant
material [14–17], and adaptations of the digestive system to process and
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Figure 1. Documenting in situ feeding kinematics of herbivorous reef fishes feeding in the Red Sea. (a) An aerial view of the fringing reef and algal turfs at the
study site, the Interuniversity Institute for Marine Sciences (IUI) in Eilat, Israel. (b) The underwater video system, positioned on the algal turf, was comprised of two
high speed cameras and a synchronized force transducer. The system allowed the three-dimensional tracking of the movements of the fish’s body, fins and mouth
during feeding, while simultaneously measuring the forces they exerted on a feeding plate naturally colonized by turf algae. (c) We focused on two species of
Acanthuridae, Zebrasoma xanthurum (left) and Zebrasoma desjardinii (right), both characterized by a deep body shape, elongated dorsal and anal fins, protruding
snout and a small mouth, as well as serrated teeth that allow them to tear algae. Photos by (a) Yoav Lindman and (c) François Libert. (Online version in colour.)
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digest it [18–21]. Herbivore locomotory capabilities are tra-
ditionally viewed only in the context of spatial movement
between food patches and predator avoidance [8,22–25].

Fishes are an excellent model system to study the relation-
ships between form and function, yielding many insights
regarding the functional morphology of the feeding and
locomotory systems [26–29]. For example, fused teeth and
short lower jaws have repeatedly evolved in fishes that crush
armoured prey or excavate hard surfaces to access boring
organisms [30,31] whereas comb-like teeth enable raking
organic material trapped in dense algal mats [14,32]. The loco-
motory behaviours of ambush predators during feeding
strikes are well characterized and rely on explosive, short-
ranged movements to capture prey from close distance;
including extended jaw protrusion, large gape and strong pec-
toral fins that are used to accelerate the body forwards [33,34].
The shape of the pectoral fins, namely their aspect ratio,
determines the speed of labriform swimmers and has been
tightly linked to their habitat use and their location in the
water column, but has yet to be linked to their feeding kin-
ematics [35–37]. In herbivores, body shape and fin aspect
ratio distinguish between species that feed on large macroal-
gae and those that scrape encrusting algae from hard
substrates [38]. Furthermore, a fusiform body shape and
high aspect ratio fins are associated with species that forage
in sites exposed to strong currents [38–40]. However, it is still
unclear what role the body and fins play in the feeding process
of herbivores or other fish that feed from the substrate.

From a mechanical standpoint, the body of an aquatic
herbivorous fish should be expected to play an important
role in facilitating feeding. When a tearing or sheering force
is applied to an alga or a macrophyte, an equal and opposite
reaction is applied on the animal. If the body is not anchored
to the ground, the ensuing recoil could hinder the fish’s abil-
ity to cut or dislodge the plant material from the substrate.
In the terrestrial realm, these recoil forces are countered by
anchoring the body to the ground, and the animal’s weight
and muscles are used to produce static forces rather than to
generate fast, broad movements. In water, neutrally buoyant
fish need to use dynamic forces, rather than static ones, to
produce thrust that will counteract feeding recoils and
enable successful feeding. In most fishes, this thrust is gener-
ated primarily using the pectoral and caudal fins, as well as
the body surface itself [41]. Therefore, for fishes that bite
from hard substrates, we predict that feeding bouts will be
characterized by coordinated movements of the mouth,
body and fins. These movements are expected to generate
thrust, which affects the force exerted on the substrate and
ultimately determines the fish’s ability to successfully
remove the prey. Indeed, Rice et al. [42,43] have noted that
such coordination exists in parrotfishes and wrasses. How-
ever, it is still unclear as to whether and how these
movements generate thrust and facilitate feeding.

In the present study, we describe the body and fin
movements of herbivorous fishes while feeding from the sub-
strate in situ on an exposed patch of fore reef on the Red Sea.
We then quantified how these movements affect feeding
performance in the relevant field context. Specifically, we
sought to: (i) characterize the kinematics of the body, fins
and mouth of herbivorous fishes feeding in the wild;
(ii) examine how feeding kinematics influences the forces
exerted by fishes on the substrate during feeding; and (iii)
examine the relationship between the forces exerted and the
amount of algae removed from the substrate. To achieve
these goals, we developed a new in situ underwater system
comprising two high-speed video cameras and a force
transducer. The system provides detailed high-speed three-
dimensional kinematics, accompanied by synchronized
high-resolution measurements of the push and pull forces
exerted by the fish on a feeding plate naturally colonized by
algae. We focused on two species of roving reef herbivorous
fishes, Zebrasoma xanthurum (Acanthuridae; Blyth, 1852) and
Zebrasoma desjardinii (Acanthuridae; Bennett, 1836; figure 1).
Both species are common in coral reefs across the Indo-Pacific
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Figure 2. Zebrasoma xanthurum, a browsing herbivorous fish, feeding from the substrate. Biting the substrate constitutes a mouth ‘opening phase’ that spans from
the initiation of mouth opening until peak gape; a mouth ‘closing phase’ that spans from peak gape until the mouth is closed, and a ‘post mouth closer’ phase in
which a rapid ‘head-flick’ is performed upon breaking contact with the substrate. Biting from the substrate is followed by transporting the detached algae into the
mouth using rapid mouth opening to generate suction flows. See ‘video analysis’ subsection in the electronic supplementary material for complete description of the
phases within a feeding event.
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region and are among themost abundant herbivorous fishes at
our study site [44]. In the Red Sea, these fish mainly feed from
the shallow beach-rock, where turf algae dominates the algal
cover [45] (figure 1).
2. Results
(a) Characterization of coordinated locomotory and

feeding kinematics during herbivorous biting
We recorded the three-dimensional movements of the body,
fins and mouth of the dominant reef herbivores Z. xanthurum
andZ. desjardinii freely feeding on turf algae under natural tur-
bulent conditions in the intertidal zone of the Red Sea. We
analysed 40 feeding events (18 feeding events performed by
seven Z. xanthurum individuals and 22 feeding events by nine
Z. desjardinii individuals), inwhich the fish fed fromaplate con-
nected to a force transducer. A feeding event was defined as a
single bite from the feeding plate, followed by a transport
event, i.e. the movement of detached algae from outside the
mouth further into the buccal cavity [46] (electronic sup-
plementary material, movies S1 and S2). The three-
dimensional movements of the body, fins and mouth were
reconstructed by tracking a set of 13 landmarks (electronic sup-
plementary material, figure S2). Ten of the landmarks were
located on the ‘outer contour’ of the fish and were therefore
trackable regardless of the fish’s orientation with respect to
the cameras. Three landmarks (base and tip of the pectoral fin
and the base of the caudal fin) were only visible from either
the left or right side of the fish, depending on the fish’s orien-
tation with respect to the cameras. Thus, pectoral fin
kinematics were based on only one fin per feeding event (27
right and 13 left). We only analysed feeding events in which
all relevant landmarkswere visible fromboth cameras through-
out the feeding event.

Our high-speed videos revealed that bothZ. xanthurum and
Z. desjardinii did not scrape the substrate with their teeth.
Rather, these fish closed their mouth on the protruding algal
filaments and then, using a sharp sideways movement of the
head (hereafter ‘head-flick’; figures 2 and 3), yanked and tore
the filaments from the substrate. Consequently, we categorize
this behaviour as browsing, i.e. herbivory that does not involve
the mouth contacting the substrate.

Feeding events were defined as a sequence that included
the biting of the algae, a ‘head-flick’ and a transport event
(figures 2 and 3). Typically, fish approached the plate and
oriented themselves head-down, with the dominant axis of
movement roughly perpendicular to the plate. Fish opened
their mouth well before contact with the plate, with peak
gape occurring at 0.067 ± 0.04 s prior to contact (figure 3a,b).
Gape closing was roughly synchronized with contact (occur-
ring at 0.022 ± 0.035 s) and with the maximum push force
applied on the feeding plate (0.033 ± 0.052 s). Closing of the
mouth was followed by a head-flick which occurred 0.082 ±
0.034 s after contact and was roughly synchronized with the
maximum pulling force applied on the plate (0.088 ± 0.040 s).
The head-flick was accompanied by a forward motion of
either both pectoral fins (29 of the 40 events) or the fin on
the body side of the movement (i.e. the right pectoral fin
when flicking the head to the right; 10 of 40 events). Addition-
ally, the head-flick was accompanied by the movement of the
caudal fin towards the same direction as the head in 31 of the
40 events, while in nine other events the tail-body angle did
not change during the head-flick.

Following retraction from the plate, fish rapidly opened
their mouth, generating suction flows that transported the
detached algae into the mouth. At least one such transport
event was evident in all 40 digitized feeding events, as well
as in more than 100 events that could not be digitized. We
used the coupling of biting and transport to compare the
kinematics of biting from the substrate to that of suction-
feeding within the same individual and during the same feed-
ing event.We hypothesized that fish will display characteristic
body kinematics only during the bite. Indeed, a discriminant
function analysis revealed that the mouth and body kin-
ematics clearly distinguished between feeding from the
substrate and transport events (error rate = 3.9%; 73 of 76
events correctly assigned; figure 4; electronic supplementary
material, tables S1 and S2). Transport events were
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distinguished by faster gape opening speed, smaller peak
gape, and shorter times to peak gape and mouth closure. Sub-
strate-feeding was distinguished by fast movements of the
body and fins including rapid head-flick and forward move-
ment of the pectorals, both occurring well after mouth
closing (hereafter post mouth closure head and fin angular
speeds; figure 4). Taken together, these findings show that
grazing turf algae from the substrate is defined by the coordi-
nated movement of the entire body including the mouth, tail,
pectoral fins and head. Furthermore, we show that stereo-
typed body locomotory events associated with substrate
feeding extend beyond only the gape cycle, which usually
brackets a predatory strike in studies of fish feeding.

(b) Effect of feeding kinematics on force and removal of
algal biomass

We predicted that kinematics of the fins and body will
influence the forces exerted by fishes on the substrate during
feeding, and that these forces will eventually determine the
amount of algae removed from the substrate. Indeed, a
mixed-effect generalized linear model indicated that the
swimming speed away from the plate was positively and
significantly ( p = 0.003) correlated to maximal pull force
(figure 5a;wholemodel likelihood ratio test p = 0.047;marginal
and conditional R2 = 0.16 and 0.71, respectively). All other
kinematic variables included in the model (e.g. standard
length or species, gape diameter, pectoral fin speed; see the
electronic supplementary material, ANOVA tables S3 and S4)
did not significantly affect pull force. In turn, the pull force
was positively and significantly ( p = 0.033) correlated with
the weight of algae removed from the plate during each
feeding bout (figure 5b; linear regression on log-transformed-
force and weight; empirical p = 0.015 estimated by
permutation, adjusted R2 = 0.16; each bout consisted of mul-
tiple bites). Taken together, these results (figures 4 and 5)
show that body movements, rather than mouth kinematics,
are the dominant factor in herbivorous browsing from the sub-
strate, determining the pulling force exerted on the algae and,
in turn, the amount of algae removed from the substrate.
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3. Discussion
Herbivory plays a pivotal ecological role on coral reefs, main-
taining and protecting adult corals from overgrowth by algae
while also facilitating coral recruitment by clearing reef sub-
strate [47,48]. Overfishing of herbivorous coral reef fishes
results in rapid reef deterioration which can eventually lead
to a phase shift, in which the community becomes algal domi-
nated insteadof coral dominated [49–51].Despite the ecological
importance, themechanisms that underlie successful feeding in
herbivores are poorly understood. Here we demonstrate that
coordinated body and mouth kinematics are a fundamental
component of algae-browsing performance in coral reef
fishes. We developed an integrated three-dimensional
high-speed camera and force system for capturing in situ
measurements of biting kinematics and performance within
the natural reef environment. This systemwill be broadlyappli-
cable for measuring organismal performance in the relevant,
but so far highly inaccessible, natural field context in which
these performance tasks take place. It is essential to measure
how organisms perform these vital tasks in the context of
their natural environment to understand the complexity of
these behaviours and their relevance to evolutionary fitness
[52]. Using this framework,we show that feeding from the sub-
strate is characterized by stereotypic body, head and fin
movements (figures 2 and 3); that these movements determine
the force exerted on the substrate (figure 5a); and the amount of
algae removed from the substrate (figure 5b). Altogether, we
show that body kinematics is the dominant factor that deter-
mines feeding performance in browsing herbivores in their
natural coral reef environment. Our results contrast expec-
tations arising from studies of suction feeding fishes, where
gape kinematics are considered dominant [53,54], and suggests
that bodymorphologyandkinematics are anoverlookedaxis of
feeding performance in other fishes that bite the substrate.

Suction feeding is the dominant feeding mode in fishes, in
which aquatic predators rapidly reduce the distance between
the prey and the mouth while expanding the buccal cavity,
protruding the jaws, and generating a flow of water that car-
ries the prey into the mouth [55,56]. Feeding success in
suction feeding fishes thus depends on the integration of
three hydrodynamic forces: the escape force of the prey, the
forward thrust of the predator, and the force exerted by the
suction flows [57–60]. By contrast, our results indicate that
feeding success in herbivorous browsers depends on the inte-
gration of the backward thrust generated by the pectoral fins
and the sideways force generated by the head flick, both pro-
ducing a pulling force that overcomes the tensile strength of
the algae, tearing or detaching it from the substrate (figure 5).
Subsequently, suction flows are generated to transport the
detached algae from the mouth into the buccal cavity. There-
fore, the ability of substrate-feeding herbivorous fishes to
generate thrust and fast bodily movements after the mouth
is closed is a key component in determining their feeding suc-
cess, rather than the traditional gape opening and closing
cycles emphasized in previous studies of fish feeding
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kinematics [61]. In fact, it could be that the role of fins and
body movements when feeding on suspended prey is also
underappreciated, and their functional significance should
be re-examined.

Furthermore, we suggest that the traditional categoriz-
ation of reef herbivores into browsers and grazers needs
revision. Reef herbivores are classified as either grazers,
which feed on epilithic algal turfs and early successional
macroalgae, or as browsers that feed on large protruding
macroalgae, select individual algal components and remove
only algae and associated epiphytic material with no
interaction with the substrate during feeding [14,62,63]. How-
ever, the diets of individuals from the same species can be
dramatically different owing to different algal communities
in their habitats. For example, in the Red Sea, large brown
macroalgae are not a dominant part of the reef algal commu-
nity. Rather, smaller brown, red and green turf algae occupy
the role of macroalgae [45,64,65]. Nonetheless, these algae
are fed upon by the same species who constitute grazers in
the eastern Indo-Pacific Region. We suggest that this categor-
ization should be inspired by terrestrial ecology and be
based on the interaction of the mouth with the algae and/or
the substrate, and the forces that the fish exert via mouth
and body kinematics. Accordingly, grazers should be defined
as fishes that scrape the substrate to remove the algae from its
base, using body and fin kinematics to exert a push force
towards the substrate and keep the mouth in close contact
with it. Browsers should be defined as fishes that tear, shear
or cut the algae somewhere along the thallus, using body
and fin kinematics to exert a pull force on the algae without
necessarily interacting with the substrate. According to this
categorization species of the genus Zebrasoma, which are tra-
ditionally viewed as grazers, should be defined as browsers.

Previous research on the functional morphology of
fishes that feed from the substrate has been largely based on
morphological measurements, diet data or filming of feeding
kinematics in a controlled laboratory environment. These
studies identified numerous modifications of the feeding
apparatus that facilitate forceful bites, algal tearing, efficient
raking or large gape. Such modifications include the fusing
of bones in the skull, resulting in reduced cranial mobility,
and short and heavy jaws characterized by low mechanical
advantage [30,31]. The evolution of the novel intra-mandibular
joint within the lower jaw is considered an adaptation for
larger gape and the ability to close the mouth when the jaws
are protruded [15,66,67]. Modified teeth are also evident in
fish that feed from the substrate. In Scaridae and Tetraodonti-
dae, fused beak-like teeth are used for scraping algae and
corals or crushing the exoskeleton of armoured invertebrates
[16,68], while in Acanthuridae serrated teeth are used for
raking organic material from algal mats [14]. However, the
functional morphology of the body and fins of fishes that
feed from the substrate is far less clear. Our results show that
bodily movements determine feeding performance in herbi-
vorous fishes. Hence, the evolution of body and fin
morphologies that facilitate the fish’s ability to exert force on
the substrate should be expected in herbivores and other sub-
strate-biting fishes. For example, the laterally-compressed
body morphology and the extended dorsal and anal fins of
substrate-feeding reef fish families such as Acanthuridae,
Chaetodontidae, Siganidae and Pomacanthidae could facili-
tate rapid sideways head motions (‘head-flicks’), because the
projected area of the body and extended fins increase the
drag force, resisting the force of the head that accelerates later-
ally. Thus, this body shape may contribute to the species’
ability to shear and tear attached prey. The elongated head
and snout of these speciesmay be an adaptation for generating
faster lateral speed of themouth, that could facilitate tearing of
attached prey. Overall, our results demonstrate that body and
fin morphology contribute to overcoming the functional
demands of feeding from the substrate and that locomotory
performance should not be relegated only to studies of habitat
use and routine swimming.
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