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Abstract. We discuss student conceptual difficulties with Gauss’s lawobserved in an upper-division Electricity and Mag-
netism (E&M) course. Difficulties at this level have been described in previous work; we present further quantitative and
qualitative evidence that upper-division students still struggle with Gauss’s law. This evidence is drawn from analysis of
upper-division E&M conceptual post-tests, traditional exams, and formal student interviews. Examples of student difficulties
include difficulty with the inverse nature of the problem, difficulty articulating complete symmetry arguments, and trouble
recognizing that in situations without sufficient symmetryit is impossible (rather than “difficult”) to calculate the electric field
using Gauss’s law. One possible explanation for some of these conceptual difficulties is that even students at the upper level
may struggle to connect mathematical expressions to physical meanings.
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1. INTRODUCTION

Gauss’s law,
∮

E · dA = Qenc/ε0, is commonly taught in
both introductory and upper-level physics courses. It has
been shown through student interviews and a diagnostic
exam that in introductory physics courses students have a
number of problems with Gauss’s law [1]. Similar difficul-
ties have also been observed at the upper-level, based on a
diagnostic exam, but these upper-division difficulties were
not probed further with interviews [1].

Anecdotally, we find most instructors do not expect that
juniors taking an advanced course in electricity and mag-
netism will have significant difficulties with Gauss’s law.
However, we show that even the best juniors still struggle
with aspects of Gauss’s law using evidence from the Col-
orado Upper-Division Electrostatics (CUE) diagnostic [2],
exam questions, and student interviews.

In order to use Gauss’ s law as a technique to solve for
the electric field the student must be able to distinguish
between problems that can and cannot be solved this way.
For Gauss’s law to be useful one must (1) be able to
determine from the symmetry of the charge distribution
what directionE points and on what variablesE depends
so that one can (2) create a Gaussian surface on which
E · dA is known to be either constant or zero. Once such
a Gaussian surface has been created, one can then (3) solve
for E by pulling it out of the integral.

2. QUANTITATIVE EVIDENCE

Singh presents evidence that both introductory and upper-
level students do poorly on a Gauss’s law diagnostic while
graduate students score much higher [1]. Both introduc-
tory and upper-level students score 49% post-instruction,
though the sample size of upper-level students is much
smaller (N= 28).
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Figure 1. Illustrations from CUE diagnostic questions. Students
are askednot to solve the question, but to give “the easiest method
you would use to solve the problem” (half credit) and “why you
chose that method (half credit).”(a) “A solid non-conducting
sphere, centered on the origin, with a non-uniform charge density
that depends on the distance from the origin,ρ(r) = ρ0e−r2/a2

.
Find E (or V ) at pointP.” (b) “A charged insulating solid sphere
of radiusR with a uniform volume chargeρ0, with an off-center
spherical cavity carved out of it. FindE (or V ) at point P, at a
distance 4R from the sphere.”

We also see evidence of some students struggling with
Gauss’s law in the results of the CUE diagnostic, which
we have given for the last 6 semesters at the University
of Colorado (CU) as well as in several semesters at other
institutions. Of the 325 total students who took the CUE
after an E&M1 course, 33% did not recognize a radially
symmetric problem as most easily solved with Gauss’s law
(see Fig. 1a for full problem). Of the 77% who correctly
identified Gauss’s law as the easiest solution technique, the
average score forexplanation of why and how Gauss’s law
was used was 59%.

In a second CUE question, involving a problem without
sufficient symmetry for Gauss’s law to be directly useful,
students make the opposite mistake, and misidentify direct
application of Gauss’s law as an appropriate technique (see
Fig. 1b for full problem). Of 325 students, 24% incorrectly
chose Gauss’s law as the easiest technique for this problem.

Students also revealed difficulties with Gauss’s law on a
midterm exam question asked in three different semesters
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of E&M1 at CU. This question asked

Suppose I evenly fill a cube (lengthL on a side)
with electric charges. Then imagine a larger,
closed cubical surface neatly surrounding this
cube (length 2L on a side). A) Is Gauss’s law
TRUE in this situation? (Briefly, why or why
not?) B) Can one use Gauss’s law to simply com-
pute the value of the E-field at arbitrary points
outside this charged cube? (Don’t try, just tell me
if you could, and why/why not?)

In a recent semester of a transformed course [3], most
students correctly answered “yes” to the first part of the
question, with an average score for that part of 89%. How-
ever, on the second part of the question students scored, on
average, only 46% (this includes points for answer and ex-
planation), and 31% of students received no points for their
answer to this part of the question. Some common student
responses will be discussed in Sections 3.1 and 3.3.

3. EVIDENCE FROM INTERVIEWS

In order to understand why upper-level students struggle
with Gauss’s law we conducted video-taped student in-
terviews where students were asked to solve E&M prob-
lems in a think-aloud protocol. Interviews were somewhat
open-ended and the interviewer asked follow-up or clar-
ification questions. Four students who had completed an
E&M1 course in the previous semester were asked a series
of questions about Gauss’s law.

Below we discuss several difficulties with Gauss’s law
observed during the course of these interviews. Due to the
small sample size of students interviewed (who all got A’s
and B’s in E&M1), we do not attempt to generalize to the
larger population of upper-division E&M students.

3.1. Incorrect inferences about E based on
the flux and an inverse problem

Two of the four students interviewed had the same diffi-
culty when addressing the problem of an unevenly-shaped
insulator of uniform charge density,ρ . These students in-
correctly inferred from Gauss’s law that the electric field at
any point on such a Gaussian surface was determined only
by the charge enclosed. Both students also did not clearly
distinguish between the electric field at a single point on
the surface and the flux through the entire surface, which
may be partially leading to their struggle to correctly apply
Gauss’s law.

The first student claimed that

... the only thing that determines the flux out
of it [the Gaussian surface] is the total enclosed
charge. And so, if we took a sphere, and filled
it completely with a completely uniform charge

Figure 2. Student drawing from Gauss’s law interview.

density in a spherical shape [draws an isolated
solid circle with arrow’s pointing outwards and
spaced uniformly – see the left side of Fig. 2],
say, then we could get a flux coming out of that
area... ’cause then it would be uniform.

When asked if the electric field would be the same for the
spherical Gaussian surface drawn inside the blob of insula-
tor as for the isolated sphere she had drawn during her ex-
planation, this student claimed “Yes. Because Gauss’s law
shows us that only the enclosed charge, um, matters.” She
proceeded to explain, that this was the case because “E-
field lines only start and end on charges” so the lines from
a point charge external to the Gaussian surface will pass
through “so the only contributions that matter are the en-
closed... charge contributions.” It seems that she has inap-
propriately inferred that, because the flux depends only on
the enclosed charge, the electric field will be uniform and
radial on any spherical surface inside any insulator with
uniform charge densityρ . Here she is also not specific
about whether these contributions are to the flux through
the Gaussian surface or to the electric field at an arbitrary
point on the Gaussian surface.

Another student brought up the situation of an uneven
shape of constantρ on his own when asked to give exam-
ples of situations where Gauss’s law is and is not useful for
finding E. He used the uneven shape as an example where
you could use Gauss’s law to find the electric field. He ex-
plained that “the E-field... that passes through a Gaussian
surface is only dependent on theQ enclosed.” He then uses
this statement to justify that one can findE using Gauss’s
law for a Gaussian surface inside the shape:

On the inside, once again if it’s [ρ is] con-
stant, then that’s fine, because there’s... because
it doesn’t matter what the shape is looking like
‘cause we’re not looking on the outside. We’re
only looking... it’s only dependent on theQ en-
closed.

Here the student is not clear on what the “it” is that is
only dependent on theQ enclosed – he could be thinking
(correctly) about the flux, or (incorrectly) about the electric
field. This student later states that he thinks thatE is the
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same throughout a Gaussian surface inside this object, but
expresses some discomfort with his understanding, saying
“’Cause if there’sQ on the outside, the charge, you know,
is making an E-field as well... and therefore it must affect
theE field at that point [points to a point on the Gaussian
surface] as well. So I’m still... I’m still not really happy
with Gauss’s law.”

The difficulties these students have making incorrect in-
ferences about the electric field from Gauss’s law’s state-
ment about flux through a surface are similar to difficul-
ties discussed by Singh [1], and by Wallace and Chasteen
in regards to Ampere’s law [4]. In both cases, the authors
describe students incorrectly inferring that because the in-
tegral is zero, the field in the integrand is zero as well.
The students we observe may also be using reasoning in
which students consider the right hand side of an equation
the cause and the left hand side its effect [5] – in this case
thinking thatQenc is the only cause of the electric field on
the Gaussian surface.

Our observations of these students discussing Gauss’s
law show that advanced students may make incorrect in-
ferences from the integral to the integrand in more gen-
eral circumstances. It is notable that the two students dis-
cussed above were top students in their E&M course; both
received above 95% for their overall course score. The
problem of confusing the electric field and flux, or making
incorrect inferences in the context of an inverse problem
whereE cannot be solved for algebraically persists even
among the best upper-level students.

We also occasionally observe a more basic problem
with the inverse nature of Gauss’s law. As is common for
introductory students [1, 6], a few upper-level students use
Gauss’s law in a rote way by just solvingEA = Qenc/ε0
without considering symmetry or visualizing the electric
field. This type of solution was seen in one interview, and
in work for solutions to the exam problem involving a cube,
described in Section 2.

3.2. Difficulty with symmetry arguments

In order to create a proper gaussian surface, one must use
the symmetry of the problem to determine what direction
the electric field points and on which variables it depends.
Many of the students interviewed could make these predic-
tions in highly symmetric situations, but could not justify
one or both of the direction or the dependence of the elec-
tric field.

A common expert-like argument to justify the direction
and dependence of the electric field relies only on the ge-
ometry of the charge distribution. One student in a previous
set of interviews makes such an argument when describ-
ing the electric field around a long charged cylinder with
ρ =Ks, wheres is the radial cylindrical coordinate: “If you
rotate the cylinder, the E-field should be the same. So there

can’t be anyφ dependence,” and “if you go up and down
it looks the same” so there can’t be anyz dependence. This
argument can be extended to include the direction of the
electric field by arguing that an infinite cylinder looks the
same looking in+ẑ as in−ẑ, so that an electric field point-
ing in ẑ would be contradictory. An analogous argument
can be made to eliminate âφ component.

A second type of symmetry argument, based on superpo-
sition and Coloumb’s law, can be employed to deduce the
direction of the electric field. For instance, when consider-
ing the electric field at an arbitrary point above an infinite
line charge, one can imagine that for every small piece of
the line to the right of the point of interest, there is another
small piece of the line at the same distance from the point
on the left, and that when the electric field from these two
pieces are added at the point of interest, the horizontal com-
ponents cancel, leaving only a radial component. In Grif-
fiths’ upper-division E&M textbook [7], this type of super-
position symmetry argument is commonly used; it is made
directly in a worked example for an infinite line charge,
and students are often asked in homework to use this same
technique to solve for the electric field on the symmetry
axis of rings, squares, and disks of charge [7, p. 62]. On
the other hand, Griffiths models a geometry-based symme-
try argument only once [7, p. 70] in the context of Gauss’s
law (and this in a footnote) and the other Gauss’s law ex-
amples simply state the direction with statements like “by
symmetry” or “symmetry dictates” [7, p. 73].

Perhaps it should not be surprising, then, that students al-
most exclusively make superposition symmetry arguments,
even when these arguments are unproductive. All four stu-
dents who were asked about an infinite line of charge dis-
cussed only the lack of a z-component and made superposi-
tion symmetry arguments. When asked directly about why
there was no z-dependence of the electric field in this sit-
uation, three of the students used a superposition symme-
try argument that horizontal components ofE cancel and
leave only z components, despite the fact that they had been
asked about dependence, not direction. One of these stu-
dents also tried to use a similar superposition argument to
explain why the electric field points radially outward from
a sphere. While this argument is possible, the student did
not succeed, and from an expert’s perspective, it is easier
to make this argument based on geometry rather than su-
perposition of electric fields. It seems that superposition
symmetry arguments are the predominant type of symme-
try arguments students use.

Students also used superposition arguments when not
applicable. For instance, one student discussed the use of
Gauss’s law near an unevenly-shaped insulator with uni-
form ρ . He drew a Gaussian surface close to the surface of
the object with the same shape as the object, and was try-
ing to decide whether it was possible to use Gauss’s law on
that surface. He explains that he is trying to think what the
electric field looks like by mentally adding up the contribu-
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tions from the different parts of the shape. This is a difficult
task, and the student ended up incorrectly deciding that the
electric field was perpendicular to the Gaussian surface and
uniform on the Gaussian surface. It is possible that students
misapplying superposition arguments, rather than employ-
ing geometrical symmetry arguments are leading to student
difficulties applying Gauss’s law in novel situations.

Intriguingly, none of the students interviewed made a
complete argument for both the dependence and the di-
rection of the electric field – perhaps because completely
determining both is difficult without employing some
geometry-based symmetry arguments.

Manogueet al. point out in the context of Ampère’s law
that even immediately after explicit instruction in expert-
like geometrical symmetry arguments, students struggle to
recreate them when solving a new problem [8]. It seems
that these sort of arguments are difficult and non-intuitive
even for upper-division students.

We occasionally also observe other student difficulties
related to symmetry, such as non-expert definitions of sym-
metry. For instance, one student seemed to use the word
symmetry to mean that her Gaussian surface had a “uni-
form” electric field (i.e. that the field was constant on the
surface), and even said at one point that “it’s [the electric
field is] symmetric coming out through this circular part of
the cylinder,” whereas we think her intended meaning was
that the electric field was constant on that surface.

3.3. Belief that the solution is messy rather
than impossible

Another issue we see at the upper-level is students be-
lieving that it will be complex, “difficult,” or “messy” to
use Gauss’s law to find the electric field of a charge dis-
tribution, when it is actually impossible. For instance, in
the exam question described in Section 2, 36% of students
in a recent semester of our E&M course (N=59) said it
would be difficult but possible to use Gauss’s law to solve
for the electric field of a uniformly charged cube. In ac-
tuality we cannot determine the direction and dependence
of the electric field without resorting to direct integration
of Coulomb’s law. We therefore cannot create a Gaussian
surface on which we knowE can be removed from the in-
tegral.

In our interviews discussing a similar problem from
Singh’s survey [1, Appendix B, #22] all four students made
this mistake. Students are asked to choose all the Gaussian
surfaces which can be used to determine the electric field at
a point near an infinite uniform line charge. While the stu-
dents recognized a cylinder as the easiest option, they also
said that the spherical and cubic Gaussian surfaces shown
would be difficult but possible. For instance, one student
said, referring to using the spherical Gaussian surface to
find the electric field: “I would have to think some more.

Maybe do some trig identities...figure it out. It would be a
little more complicated [than the cylinder], but we could
figure that out.”

It could be that students are not yet familiar with solving
inverse problems (i.e. whereE cannot be simply solved for
algebraically), so do not realize that they are sometimes
not possible to solve. It could also be that students just
are not thinking through the problem, and that once they
tried to solve for the electric field, they would realize
that the problem is impossible. However, in interviews,
this did not seem to be the case; rather, students required
much prompting from the interviewer before reaching this
conclusion. It could also be that students at the upper
division have seen so many fancy tricks to solve seemingly-
impossible problems that they have some faith that all
problems are solvable if one just knows the right trick.

4. CONCLUSION

While conceptual difficulties with Gauss’s law are often
thought of as an issue only for introductory students, we
show that a complete understanding of Gauss’s law is
still lacking for many juniors, including some top stu-
dents. Upper-level students interviewed make incorrect in-
ferences about the electric field based on Gauss’s law, are
unclear in distinguishing flux and electric field, struggle to
articulate complete symmetry arguments, and believe using
Gauss’s law will be difficult rather than impossible in some
situations. In upper-level courses it may be helpful to pro-
vide instruction that explicitly addressees these conceptual
pitfalls
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