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In marine plankton, many swimming species can perceive their environment with flow sensors. Can
they use this flow information to travel faster in turbulence? To address this question, we consider plankters
swimming at constant speed, whose goal is to move upward. We propose a robust analytical behavior that
allows plankters to choose a swimming direction according to the local flow gradients. We show
numerically that such plankters can “surf” on turbulence and reach net vertical speeds up to twice their
swimming speed. This new physics-based model suggests that planktonic organisms can exploit turbulence
features for navigation.
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Plankton are small organisms drifting in oceans. While
they are carried by the ambient turbulent flow, many can
swim and are equipped with hairlike mechanosensory
organelles used to sense flows relative to their bodies,
i.e., velocity gradients [1–4]. Besides, many can sense
gravity or light [5–7], both indicating which direction is up.
Here we focus on a planktonic navigation problem in
turbulence: can motile planktonic organisms use local
hydrodynamic signals to travel faster than their swimming
speed along the vertical direction?
Vertical migration is an important task for many types of

plankton. For instance, copepods are abundant millimetric
crustaceans that move upward to food-rich surface waters at
night and downward away from visual predators during the
day [5,8]. Various planktonic larvae migrate up or down
into currents at particular depths that transport the larvae
horizontally [9–11]. Some larvae, when ready to settle, sink
or swim downward in response to chemical cues [12] or
mechanical stimuli due to turbulence [13–16].
The navigation task faced by plankters has two features:

(1) plankters only sense local flow information, and
(2) plankters only sense velocity gradients, not flow
velocities. This makes planktonic navigation different from
the Zermelo’s navigation problem [17] (where agents sense
the full velocity field) and the bird soaring problem [18,19]
(where birds sense the vertical flow velocity).
Problems of planktonic navigation have been recently

approached using reinforcement learning [20–25]. These
studies showed that strategies based on local gradients can
be learned in simple flows. Training a microswimmer in
unsteady 3D turbulence remains, however, challenging
[23,24]. Besides, the strategies learned are not necessarily
optimal or easily interpretable.
Different models of zooplankton in turbulence have

explored the consequences of various behaviors [26,27].
For example, models of slowly swimming planktonic

larvae of different shapes in turbulent flow [28–30] or in
shear [31] have shown how steady swimming or sinking, or
behavioral responses to chemical or hydrodynamic cues
can affect where they are transported by the ambient flow.
A model of copepods finding patches of prey in turbulence
included sensory cues, but not transport by ambient water
motion [32]. These data-based models are, however, purely
empirical.
In this Letter, we propose an approach based on physical

principles. We model the navigation problem of going
upward and we derive an approximate solution, within
well-defined hypotheses, where the response (preferred
swimming direction) is an analytic function of the envi-
ronmental signal (local velocity gradient). This behavior
can be interpreted as “surfing” on the flow (Fig. 1): to
exploit upward fluid motions, the plankter chooses a
swimming direction by assuming that the flow is locally
steady and linear.

(a) (b)

FIG. 1. Plankters can exploit velocity gradients to “surf” on the
flow: (a) 2D Taylor-Green vortex flow; (b) 3D turbulent flow. We
compare the trajectories of surfers (red) to those of bottom-heavy
swimmers (blue), which always swim upward. We also show
trajectories of passive particles (black). In (a), arrows show the
swimming direction. In (b), the gray line shows the depth of the
initial positions and circles show the average final vertical
position for the same turbulent flow.
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We consider a plankter in homogeneous, isotropic
turbulence. Its task is to go as fast as possible in a target
direction, which is chosen to be ẑ, the vertical, without loss
of generality. We model the plankter as an active particle
with position XðtÞ, swimming in direction p̂ðtÞ at constant
swimming speed Vswim in a 3D flow velocity field uðx; tÞ.
The plankter is assumed to be inertialess, neutrally buoyant,
and small compared to the Kolmogorov scale η (the scale of
the smallest turbulent flow features [33]). It actively
controls its orientation by choosing a direction n̂. We start
by assuming that the swimming direction p̂ is always
aligned with this chosen direction n̂. This corresponds to
the limit of instantaneous reorientation (the effect of a finite
reorientation time will be addressed below). Under these
assumptions, the equations of motion are

dX
dt

¼ uðX; tÞ þ Vswim p̂; ð1aÞ

p̂ðtÞ ¼ n̂ðtÞ: ð1bÞ

We assume that the plankter senses the local flow
velocity gradient ð∇uÞ and the vertical direction ẑ. It
responds to this information by choosing a direction
n̂ð∇u; ẑÞ, without any memory. The metric used to quantify
the performance of the plankters is the effective velocity,
Veff , defined as the long-time average velocity along ẑ:

Veff ¼ lim
T→∞

XðTÞ − Xð0Þ
T

· ẑ: ð2Þ

In the language of control theory (reinforcement learning),
n̂ð∇u; ẑÞ is the control (policy), and Veff is the objective
function (return).
Using a Taylor expansion of uðx; tÞ in the neighborhood

of the current time t0 and position X0 ¼ Xðt0Þ, the velocity
field can be approximated as

uðx; τÞ ≈ u0 þ ð∇uÞ0 · ðx − X0Þ þ
�
∂u
∂t

�
0

ðτ − t0Þ; ð3Þ

where the subscript 0 indicates a variable evaluated at time
t0 and location X0 [e.g., u0 ¼ uðX0; t0Þ]. Inserting Eq. (3),
into Eq. (1) and integrating [34], one can show that the
displacement along ẑ between time t0 and t0 þ τ is
maximized when

nðt0 þ tÞ ¼ exp ½ðτ − tÞð∇uÞT0 � · ẑ; ð4Þ

with 0 ≤ t ≤ τ, expð·Þ the matrix exponential, and ½·�T
denoting the transpose. For a plankter continuously sensing
the flow, we can set t ¼ 0 and drop the subscript 0. After
normalization, the preferred direction of the surfing strat-
egy is thus

n̂surf ¼
nsurf
jnsurf j

; with nsurf ¼ ½exp ðτ∇uÞ�T · ẑ; ð5Þ

with the time horizon τ a free parameter of this surfing
strategy.
The fully turbulent flow that models the plankter

environment is obtained from the Johns Hopkins
Turbulence Database [40,41]. It is a direct numerical
simulation of a 3D homogeneous isotropic turbulent flow
with Reλ ¼ 418. The Lagrangian equations of plankter
motion, Eq. (1), are integrated with an in-house open-
source code, SHELD0N [42], using a fourth-order temporal
Runge-Kutta scheme and a sixth-order spatial interpolation
scheme to obtain the flow velocity at the plankter position.
In a turbulent flow, the smallest flow features are

described by the Kolmogorov time τη and Kolmogorov
velocity uη:

τη ¼ ðν=ϵÞ1=2; uη ¼ ðνϵÞ1=4; ð6Þ

with ν the kinematic viscosity and ϵ the average dissipation
rate [33]. The largest flow features are characterized by the
large-eddy turnover time TL and the root-mean-square
velocity urms, with TL ≈ 47τη and urms ≈ 10uη here.
Unless mentioned otherwise, the performance is evaluated
after a time T ≈ 5TL, using Eq. (2), and averaged over N
plankters with random initial positions. Averaged quantities
are noted h·i. N varies from 10 for Vswim ¼ 20uη to 16384
for Vswim ¼ uη=2 to ensure similar uncertainties on
performance.
We now assess the performance of surfers, which

actively choose a preferred direction n̂ ¼ n̂surf , given by
Eq. (5). For that purpose, we compare them to bottom-
heavy swimmers, which passively align upward, that is,
n̂ ¼ ẑ. In Fig. 2, we show that surfers can reach effective
speeds, Veff , as large as twice their swimming speed when
Vswim ≲ uη. They systematically outperform bottom-heavy
swimmers, whose performance is Veff ¼ Vswim in the limit
of instantaneous reorientation [Eq. (1b)]. This is because
turbulence acts as a random noise of zero mean for bottom-
heavy swimmers. In contrast, surfers can exploit the
turbulent flow by biasing the sampling of vertical flow
velocities [34]. This shows that sensing flow gradients is
beneficial for navigation in turbulence and that surfing
allows one to exploit this information.
To determine the optimal value of the time horizon τ�, we

look numerically for the best performance when τ varies in
the range ½0; 10τη� [Fig. 3(a)]. For all swimming velocities
Vswim, the performance Veff has a clear velocity-dependent
maximum at τ�ðVswimÞ ¼ OðτηÞ. When τ ≪ τη, surfers do
not use gradient sensing and swim upward [see Eq. (5)].
Acting as bottom-heavy swimmers, their performance is
Veff ¼ Vswim. When τ ≫ τη, the steady linear approxima-
tion of the flow, given in Eq. (3), breaks down and the
planned route becomes irrelevant. The optimal value τ� can
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thus be interpreted as the time interval over which the
steady linear approximation of the flow is reasonable. For
Vswim ¼ uη, the optimal time horizon is τ� ≈ 4τη. Although
our results are based on a single simulation at large
Reynolds number, we expect our conclusions to be quali-
tatively independent of Re because of the universality of
turbulence at small scale in the limit of large Re [33].

The relative surfer performance, Veff=Vswim, decreases as
the swimming speed increases (Fig. 2). This is because the
correlation time of the flow gradients measured by a
plankter decreases as Vswim increases. In other words,
when plankters swim faster, the surrounding flow changes
faster. Therefore, τ� and Veff decrease with swimming
speed. Supported by this observation, we hypothesize that
the optimal time horizon τ� scales as a correlation time τcorr.
We define τcorr as the integral of the period, 2π=ω, weighted
by the spectrum of Trð½∇u�2Þ1=2 measured along trajecto-
ries of plankters:

τcorrðVswimÞ ¼
R hIðωÞi 2πω dωR hIðωÞidω ; ð7Þ

where IðωÞ is the modulus of the temporal Fourier trans-
form of Trð½∇u�2Þ1=2 and depends on the swimming
velocity. Figure 3(b) shows that, up to a multiplicative
constant, τcorr is a good predictor of the optimal time
horizon with τ� ≈ 0.55τcorr. The choice of I in Eq. (7) is not
unique, but other invariants of the velocity gradient yield
similar results [34].
We now discuss the applicability of the surfing behavior

to more realistic situations relevant to planktonic naviga-
tion. First, the turbulence intensity of plankton environ-
ments fluctuates on short timescales [43]. This may appear
as a problem since surfers need to evaluate the value of τη of
their local environment to choose the optimal time horizon
τ�. But in practice τη can be estimated from the velocity
gradient itself since τη ∼ 1=jsymð∇uÞj, where j:j is the
Frobenius norm [44]. This suggests a refinement of the
surfing strategy where τ in Eq. (5) is replaced by

τ ¼ α

jsymð∇uÞj ; ð8Þ

with α a dimensionless parameter, which can be viewed as a
dimensionless time horizon. In Fig. 4(a), we show surfers
using this modified strategy perform as well as surfers with
a constant time horizon τ. For Vswim ¼ uη, the optimal
value of parameter α is α� ≈ 2. This value is presumably
independent of the turbulence intensity.
Second, sensing and motor control of real organisms

may be subject to noise. We show in the Supplemental
Material [34] that the surfing strategy is robust to noisy
measures of ẑ or ∇u and to noisy control of its preferred
direction n̂: for all noise sources, the performance remains
practically unchanged for noise up to 25%.
Third, the equations of motion given in Eq. (1) assume

an instantaneous reorientation. This assumption would
require the plankter to exert an infinitely large torque on
the fluid. For a finite torque, the equation of orientation,
Eq. (1b), should be replaced by [45]

(a) (b)

FIG. 3. Influence of the time horizon on the surfing strategy.
(a) Effect of the time horizon [τ, Eq. (5)] on the effective velocity
[Veff , Eq. (2)], for different swimming velocities Vswim. Shaded
area represents the 95% confidence interval. Solid lines represent
a fit with Chebyshev polynomials of degree 3. (b) Correlation
time τcorr, defined in Eq. (7), and optimal time horizon τ� as a
function of swimming velocity (τ� is evaluated using the fitted
polynomial).

FIG. 2. Effective upward velocity [Veff , defined by Eq. (2)] as a
function of the swimming velocity (Vswim) for a surfer (n̂ ¼ n̂surf
with optimal time horizon τ ¼ τ�) and for a bottom-heavy
swimmer (n̂ ¼ ẑ), here assuming instantaneous reorientation
time [Eq. (1)]. Velocities are normalized either by the Kolmo-
gorov velocity [uη, Eq. (6)] (bottom x axis) or by the root-mean-
square velocity urms (top x axis). The inset presents the same data
where the effective upward velocity is normalized by the
swimming velocity. The solid line represents Veff ¼ Vswim.
Shaded areas correspond to 95% confidence intervals.
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dp̂
dt

¼ 1

2
ωðX; tÞ × p̂þ 1

2τalign
½n̂ − ðn̂ · p̂Þp̂�; ð9Þ

whereωðx; tÞ ¼ ∇ × u is the flow vorticity, and where τalign
is a characteristic reorientation time that arises from the
balance between the viscous torque and the aligning torque
[34]. Figure 4(b) shows how the performance of surfers
(n̂ ¼ n̂surf ) and bottom-heavy swimmers (n̂ ¼ ẑ) decreases
as τalign increases. This loss of performance is essentially
due to the flow vorticity, which acts as a noise tilting the
swimmer away from its preferred direction. Nevertheless
surfers always outperform bottom-heavy swimmers with
the same reorientation time. Besides, as long as τalign ≲ 2τη,
the effective speed of surfers Veff remains larger that their
swimming speed Vswim.
Vertical migration of plankton is essential to ecologically

important activities such as daily migration, dispersal, and
larval settlement. Here, we assess the expected benefit of
the surfing strategy over bottom-heaviness for vertical
migration in different marine habitats. To perform this

comparison, we use three typical plankters: a copepod, an
invertebrate larva, and a dinoflagellate, whose sizes, velo-
cities, and reorientation times are given in Table I. The
performance of these typical plankters over a wide range of
turbulence conditions [35] is shown in Fig. 5. This figure
uses empirical fits deduced from our simulations [34] that
account for the performance drop when Vswim ≳ uη or when
τalign ≳ τη. Although it has been suggested that oceanic
turbulence might be weaker than initially thought [43], this
figure shows that typical zooplankton species could benefit
from the surfing strategy across a wide range of habitats
where vertical migration is crucial, in particular continental
shelves, estuaries, and open oceans.
It is interesting to compare the proposed surfing strategy

to agents trained by reinforcement learning. In Ref. [24], a
swimming agent was trained to minimize the time to reach

(a) (b)

FIG. 4. (a) Performance (Veff=Vswim) of surfers using a time
dependent τ as a function of the dimensionless constant α
[Eq. (8)] for different swimming velocities Vswim. Solid lines
represent a fit with Chebyshev polynomials of degree 3.
(b) Veff=Vswim of surfers and bottom-heavy swimmers as a
function of the reorientation time τalign. Vswim ¼ uη. Shaded area
represents the 95% confidence interval.

TABLE I. Characteristics of typical plankters: size d (in mm),
swimming velocity Vswim (in mm s−1), and reorientation time
τalign (in s). The reorientation time depends on the origin of the
alignment torque [34]. For surfers, this torque is due to active
swimming and τsurfalign ¼ d=ð3VswimÞ with d the plankter size. For

bottom-heavy swimmers, it is due to gravity and τb-halign ¼ 3ν=ðgδÞ
[45], with g the acceleration of gravity and δ the distance between
the center of mass and the geometrical center (we choose
δ ¼ d=200, a value typical for zooplankton [46,47]).

d Vswim τsurfalign τb-halign

Copepod 1 3 0.1 0.008
Invertebrate larva 0.2 2 0.03 0.02
Dinoflagellate 0.03 0.3 0.03 0.2

FIG. 5. Expected vertical migration speed (effective vertical
velocity, Veff , Eq. (2), relative to swimming velocity Vswim) as a
function of the turbulence dissipation rate ϵ [34]. We consider
three typical plankters: a copepod, an invertebrate larva, and a
dinoflagellate, whose characteristics are given in Table I. Two
strategies are compared: the proposed surfing strategy (red) and
bottom-heavy swimmers (blue) orienting upwards due to gravity.
In the upper panel, we indicate the range of turbulence intensity
for different marine habitats (data from [35]) and the correspond-
ing range of Kolmogorov time τη and Kolmogorov velocity
uη, Eq. (6).
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a fixed target using a local measure of vorticity in 3D
turbulence. We evaluated the performance of this trained
agent on our task by placing the target infinitely far and
using a similar turbulence level (Reλ ¼ 21). For the same
swimming parameters (Vswim ¼ 1.5urms, τalign ¼ 0.5τη),
surfers are able to perform 1.5 times better than agents
trained by reinforcement learning [34]. Although the
comparison remains indicative as reinforcement learning
agents were trained with a slightly different objective, it
shows that the surfing strategy is performant and should be
used as a reference in reinforcement learning problems.
In summary, we have shown that the planktonic navi-

gation problem of going upward has an approximate
analytical solution, which we called surfing. The proposed
surfing strategy has three important properties: (1) it is
efficient, the effective upward velocity being as large as
twice the swimming speed; (2) it is adaptive to different
turbulent intensities; (3) and it is robust to finite-time
reorientation and various sources of noise. We showed that
surfing involves a single adjustable parameter, interpreted
as a time horizon and related to the correlation time of the
flow gradient seen by the swimmer in turbulence. Finally,
we have shown that surfing, which exploits information
provided by local velocity gradients, provides a clear
benefit over bottom-heaviness for vertical migration of
various planktonic species across a wide range of marine
habitats.
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