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Many small organisms capture food particles, locomote through water or air, or
create currents using appendages bearing arrays of long bristles. The performance
of these arrays of hairs depends on the movement of fluid relative to them. We have
modeled the fluid flow around such hairs, and have used the model to predict, for
a range of biologically-relevant circumstances: (1) the steepness of the shear
gradients adjacent to the hairs, (2) the leakiness of the gaps between pairs of hairs,
and (3) the drag force on hairs with neighbors. We point out the circumstances
under which bristled appendages function as rakes versus those under which they
operate as paddles. Our results suggest that a simple change in size or speed of a
bristled appendage can lead to a novel mode of functioning under some circum-
stances, whereas in other situations differences in morphology or behavior have
little effect on performance.

Introduction

Many organisms move bristled appendages through the water or air around them.
Among the numerous examples of bristled feeding appendages are the particle-
capturing structures of such ecologically important planktonic animals as
euphausids, cladocerans, and copepods, and of abundant benthic organisms such
as barnacles. In addition, many organisms other than crustaceans use arrays of
cylindrical structures to catch particulate food, including some heterotrophic micro-
flagellates and aquatic insect larvae. Numerous planktonic organisms also use
bristled appendages to locomote or to produce water currents. Furthermore, there
are many examples of bristled structures used in air, such as the feather-like antennae
of moths and the hairy (rather than membranous) wings of very small insects. If
we are to understand the mechanisms by which these arrays of cylindrical bristles
move fluids and catch particles, we must first elucidate some of the basic patterns
of fluid behavior when groups of cylinders move through it.

Most of the setae, setules, and other biological fibers mentioned above and listed
in Table 1 operate at Reynolds numbers of the order of 10" to 1. Reynolds number
(Re = UL/ v, where U is velocity, L is a linear dimension (in this case the diameter
of the cylinder), and v is the kinematic viscosity of the fluid) represents the ratio
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of inertial forces to viscous forces for a particular flow situation. Hence, viscosity
is more important than inertia in determining the flow around these biological
cylinders. Whenever a viscous fluid flows over a solid surface, the layer of fluid in
contact with the surface sticks to it and a shear gradient exists between the surface
and the freestream flow. The lower the Re, the thicker this shear gradient layer is
with respect to the dimensions of the object. The same is true for a hair moving
through a stationary fluid—some fluid sticks to and moves along with the bristle,
and a shear gradient exists in the fluid around it.

The amount of fluid moving with bristles affects a number of important biological
processes such as feeding, locomotion, and chemoreception. Consider, for instance,
just one of these examples: the flow around hairs determines the mechanisms that
organisms with bristled appendages can use to catch particulate food. If shear
gradients are thick around setae, they can’t reach out and grab a food particle
because the particle is pushed away by the water moving with the setae (e.g. Koehl
& Strickler, 1981). Furthermore, if little fluid moves through the spaces between the
setae on an appendage, how effective can that structure be as a sieve to strain
particles from the fluid? In addition, the steepness of the shear gradient next to a
fiber affects the ability of the fiber to filter particles out of the surrounding water
by mechanisms other than sieving (e.g. Davies, 1973; Speilman, 1977). Some setu-
lated appendages may function as the rakes, sieves, and scoop-nets that they resemble
in structure, whereas others may operate more like paddles that move parcels of
water containing food. A debate has grown in the biological literature about whether
or not the setulose appendages of certain ecologically important planktonic animals
operate as leaky sieves or as paddles (for example, cladocerans, e.g. Gerritsen and
Porter, 1982; Porter et al., 1983; Ganf and Shiel, 1985; Brendelberger et al., 1986;
copepods, see e.g. the review by Koehl, 1984; Price and Paffenhofer, 1986).

In this paper we present a mathematical description of fluid motion with respect
to cylinders (e.g. bristles, setae, hairs) at a variety of biologically relevant sizes,
spacings, and velocities. OQur purpose is to explore the circumstances under which
the setulose appendages of small organisms are functionally paddles and those
under which they act like leaky rakes. We also investigate the drag on setae, and
hence the mechanical load they structurally must bear. The intent of this paper is
to present some general predictions of the model and to outline broadly their
biological implications. Elsewhere we consider cases of specific organisms, utilizing
results of this model as well as empirical data (moths and black fly larvae: Cheer
& Koehl, 1987, copepods: Koehl & Cheer, in prep.).

The Model

We consider here the case of appendages bearing a finite number of hairs; many
examples of such appendages can be found among planktonic crustaceans. Water
is free to move around the sides of the setae on such appendages as well as to move
through the spaces between neighboring setae. Therefore, it is not appropriate to
model such setae as an infinite row of cylinders between which all the fluid is forced
to move {¢.g. Tamada & Fujikawa, 1957; Miyagi, 1958). Rather, as a first approxima-
tion to the flow in the vicinity of setae on an appendage of finite width, we consider
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F1G. 1. Examples of fluid motion with respect to a pair of circular cylinders (shown as black circles).
The lines represent the velocity vectors in the v direction (see Fig. Al}. Note that the vectors are all
drawn to the same scale with respect to the freestream velocity { U, shown by the line to the left of the
figure), although the U,’s in each example are quite ditferent tfrom each other. (a) A pair of cylinders
0-1 um in diameter operating at a Re of 10 ' with a gap between them of 5 um. (b) A pair of cyhnders
of the same Re and spacing as in (a), but I pm in diameter. (¢} A pair of cylinders of the same diameter
and spacing as in (b), but operating at a Re of 10 °

the flow around and between a two-dimensional cross-section of a pair of circular
cylinders (Fig. 1). We consider the case where the direction of motion is perpen-
dicular to the line intersecting the centers of both cylinders.

The flow fields around pairs of cylinders were calculated as described in Appendix
1. Calculations were done for cylinders 1 um and 0.1 um in diameter operating at
Re’s of 10 " to 0-5. The width of the gap between the cylinders varied between
0-3 wm and 50 um. These values were chosen to represent a range of biological
setae, hairs, and bristles for which the appropriate data could be found in the
literature (see Table 1). Flow fields around isolated cylinders of the same Re’s were
also calculated using solutions to the Oseen and Stokes equations.

A simpier alternative approach to modeling the flow through a setulose appendage
is to treat the appendage as a porous plate. This approach is outlined in Appendix
2, as are our reasons for preferring the two-cylinder model.

Shear Gradients Near Moving Cylinders

The steepness of the shear gradient near a hair can affect a number of biological
processes. If the hair is involved in filtering particulate food from the water, the
flow field in its vicinity can affect the efficiency of capture of particles of various
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characteristics (e.g. Davies, 1973; Speilman, 1977). The shear gradient near the seta
can also affect the flux of dissolved materials to its surface (e.g. Gavis, 1976), which
in turn can affect processes such as chemoreception and gas exchange. The shear
gradient around a cylinder also affects the deflection of any mechanosensory bristles
it may bear.

Some examples of flow fields around pairs of hairs are illustrated in Fig. 1. It can
be seen that the steepness of the shear gradients in the fluid near the setae can be
quite different under various circumstances.

One simple measure of the steepness of the shear gradient near a hair is the
velocity ratio u,/ U.., where u, is the fluid velocity with respect to the seta in the
y direction at some point x near the surface of the seta, and U, is the free-stream
velocity with respect to the seta (see Fig. Al). The higher this velocity ratio, the
less fluid at point x is being moved along with the seta and the steeper the shear
gradient is along the surface of the seta. The velocity ratio varies between zero
(where the fluid at x is moving along with the seta at the same velocity as the seta)
to one (where x is outside the shear gradient and is not moved as the seta passes
by). An example of how velocity ratio varies with spacing betwecen neighboring
bristles and with their Re is illustrated in Fig. 2. These results indicate a number of
biologically interesting features of flow around hairs:

(1) As Re increases, the velocity ratio increases. At the higher end of the Re
range examined, little fluid is dragged along with the setae and the shear gradients
around them are steep. In contrast, at very low Re’s, much water is dragged along
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FiG. 2. Ratio of velocity at a point 0-3 um from the surface of a cylinder (Uy.3,,,,) to the free-stream
velocity (U..), plotted vs. the width of the gap between neighboring cylinders. Numbers at the right end
of each curve indicate the Re (based on cylinder diameter); in this example the cylinders are 1-0 um in
diameter. Solid lines represent flow between a pair of cylinders; dashed lines represent flow around the
outside of a pair of cylinders.
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with the setae, shear gradients are gentle, and the shear gradients can be thicker
than the space between neighboring hairs.

(2) If an organism changes the velocity of its appendages (i.e. changes the Re),
this will have a bigger etfect on velocity ratio at the upper end of the Re range
examined. This means that for organisms whose hairs operate at very low Re’s,
changes in the speed of movement of a finite group of bristles will have little effect
on the steepness of the shear gradients around them. In contrast, for organisms
whose hairs operate at Re’s of about 10~ to 0-5, changing speed can be a mechanism
of changing how much fluid is dragged along with the setae.

(3) As a pair of setae are moved closer together, the velocity ratio decreases,
especially when the inter-setal distance is already small. This effect is most pro-
nounced at Re’s of the order of 107", For setae operating at very low Re’s, the shear
gradient is so gradual and so thick that a change in spacing doesn’t make much
difference to the velocity at a point, even when the hairs are quite far apart. For
setae operating at Re’s approaching one, a neighbor doesn’t have much effect, even
when quite close, hence a change in spacing again doesn’t make much difference
to the velocity at a point. This suggests that, for setulose appendages of finite width,
the spacing between neighboring hairs will have little effect on those aspects of
performance that depend on shear gradients near the hairs if they operate at very
low Re’s or at Re’s approaching 1. In contrast, the performance of setulose appen-
dages operating at Re’s of order 1077 would be expected to change as a function
of intersetal spacing.

(4) Flow at a given distance from a seta is slower between adjacent setae than
it is around their outer sides. Not surprisingly, this difference in flow between vs.
around a pair of hairs becomes pronounced as the spacing between them is reduced.
The greatest effect that a change in spacing produces on this difference in flow
occurs at Re’s in the middle of the range examined. Thus, again we would expect
that if intersetal spacing has an effect on performance, that effect would be seen
for organisms whose hairs operate at Re’s of order 10 °.

(5) The patterns described above are evident for setae both of 0-1 um diameter
and of | wm diameter, although in the latter case the velocity ratios are lower for
the given Re’s and spacings (which is not surprising since, to operate at a given Re,
the wide hairs must move more slowly than the slim hairs). Nonetheless, as illustrated
in Fig. 3, for a given width of space between adjacent setae moving at a given speed
U, , slimmer setae do have slightly faster flow between them than do wider hairs.
This difference is somewhat more pronounced if the appendage is moving rapidly.

The width of a row of bristles may aftect the shear gradients that develop in the
fluid near them. This effect is due to the difference in the behavior of fluid near a
finite array of hairs (as examined here) and that of fluid near an infinite array {(as
examined by e.g. Tamada & Fujikawa, 1957). In the case of an infinite array, the
fluid is forced to move between the hairs and the shear gradients become steeper
as the hairs are moved closer together. In contrast, when fluid is free to move around
the outside of a pair of hairs, the shear gradient between the hairs becomes less
steep as they are moved closer together. Thus, we might expect shear gradients in
the mid-region of a setulose appendage to be greater than we have predicted here
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F1G. 3. Ratio of the maximum velocity (U,,,,) reached at the midpoint between a pair of cylinders
to the free-stream velocity (U.), plotted vs. the log of the free-stream velocity (U, ). In this example,

the cylinders are separated by a space that is 1 wm wide. The dashed line shows results for cylinders
0-1 pm in diameter, and the solid line for cylinders I wm in diameter.

if the row of setae is wide enough that it is more difficult for fluid in the mid-region
to move around the edges than to move through the intersetal gaps. This suggests
that the effect on local shear gradients of the width of an entire array of bristles is
an important area to investigate (in addition to the effects of bristle diameter and
spacing examined here) if we are to understand the functional morphology of
setulose structures.

Leakiness of Bristled Appendages: Paddles vs Rakes

While the velocity ratio is a measure of the steepness of the shear gradient next
to a seta, a better measure of the degree to which the appendage operates as a rake
vs. as a paddle is its “leakiness”. We define leakiness here as the ratio of the volume
of fluid that actually moves between a pair of setae to the volume across which that
setal pair sweeps in a unit of time (Fig. 4). We have determined the volume of fluid

(a) (b) -

Fi1G. 4. Leakiness is defined here as the ratio of the volume of fluid that actually moves between a
pair of cylinders of unit length in a unit of time (shown in (a)), to the volume between the cylinders
across which they sweep in that unit of time (shown in (b)).
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moving between a pair of hairs of unit length by taking the area of the velocity
profile between them. The leakiness of pairs of hairs of various spacings and Re’s
are plotted in Fig. 5, which illustrates the following points:

(1) Appendages bearing hairs that operate at very low Re’s are paddle-like with
little fluid leaking between the hairs, whereas those whose bristles operate at Re’s
approaching one are much leakier and more rake-like. This suggests that many of
the arrays of hairs on small organisms that biologists have described as sieves may
in fact be functioning more like slightly leaky paddles. If such structures are involved
in particle capture, they may do so by moving parcels of water containing particles
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Fici. 5. Leakiness (defined in Fig. 4) of a pair of cylinders plotted vs. the width of the gap (spacing)}
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1. Flow profiles used for points indicated by open circles were calculated using Lamb’s solution for
QOseen’s approximation to the Navier-Stokes equations of motion (see Appendix 1).
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rather than by straining the particles out of the fluid {as appears to be the case for
certain feeding motions of calanoid copepods, Koehl & Strickler, 1981).

(2) A change in the Re of the motion of the hairs has little effect on leakiness at
Re’s of order 10" and smaller, and, for widely-spaced hairs, at Re’s approaching
1. Therefore, we would expect that changes in speed would only be an effective
mechanism of changing leakiness for organisms with fairly closely-spaced setae
operating at Re’s of about 10 ~ and above.

(3) Changes in spacing between neighboring setae have the most pronounced
effects on leakiness when the setae are already fairly close together. At Re’s approach-
ing 1, altering the width of the gap between widely-spaced hairs has no effect on
leakiness; however, once the setae are moved close enough to ““feel” their neighbors,
further reductions in spacing cause a dramatic decrease in leakiness. The lower the
Re, the smaller the effect on leakiness of changes in the spacing between hairs.
(Note that we have not considered here separation in flow when two bodies are
very close to each other (e.g. O Neill, 1983); if eddies are thus formed in cases
where hairs are very near to their neighbors, the leakiness should be even lower
than we have predicted.)

(4) The slimmer the setae, the greater the leakiness for a given spacing and Re.
This effect is most pronounced at Re's of order 10 * and 10 .

Drag Force on Individual Hairs

The magnitude of the drag on a seta determines how much that seta deforms and
whether or not it breaks when it is moved, and may represent a physical constraint
on the behaviors available to an organism of a given morphology. Theretore, drag
was caiculated (as described in Appendix 1) for individual setae, both with a
neighbor and when isolated. Although the drag coeflicient of the hairs decreases,
the drag force per unit length increases as Re increases {Fig. 6).

Our results point out some patterns in how the drag on a seta in a finite array is
atfected both by morphology and by speed of movement (Figs 7 and 8):

{1) When setae are far apart, their drag is the same as if they were isolated.
However, drag on a seta is reduced as the spacing between neighbors is reduced.
This drag reduction occurs because fluid is ““traveling with” the neighbor, hence
the velocity of that fluid with respect to the hair in question is less than it would
be if the hair were alone. This result for a pair of setae 1s the opposite of that for
the case of an infinite array of cylinders, in which the drag on a cylinder at a given
free-stream velocity is increased as neighbors are moved closer and all the fluid
must be forced through smaller spaces.

(2) A neighbor reduces drag by a greater proportion when the setae operate at
lower Re’s.

(3) Atverylow Re’s a neighbor affects drag even when far away, whereas at Re’s
approaching 1, a neighbor must be very close to affect drag.

(4) Changing intersetal spacing has a bigger effect on the drag of setae that are
already close together than on those farther apart.
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Fi1G. 6. (a) The log of the drag coefficient (Cp,), and (b) log of the drag force per unit length of an
isolated cylinder (O}, and of a cylinder with a neighbor 50 um away (¥) and 0-3 um away (A), plotted
vs. the log of Re. In this example, the cylinders are 0-1 um in diameter.

(5) If setae are slim relative to the space between them, they must be closer
together to ““feel” the effect of neighbors on their drag at a given Re.

The results suggest that if an organism has closely-spaced setae in a row of finite
width, it can get away with setae that are less stiff and strong than if it had them
more widely spaced, especially at lower Re’s.

The power requirement (and hence the energetic cost per time) for various
behaviors by setulose appendages is a function of the force with which an organism
must move those appendages. One might consider the force on the entire array of
setae to be the sum of the forces on the individual setae. However, in cases where
the setae are closely-spaced and the Re of the whole array is large enough that
inertial effects on the array become important, such summing would not provide a
good estimate of the force on the appendage. The work to move a bristled appendage
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F1G. 7. Drag force per unit length on a cylinder plotted vs. the width of the gap (spacing) between
it and the neighboring cylinder. The cylinders in this example are 0-1 pm in diameter and operate at a
Re of 1077, Solid triangles (A) represent a cylinder with a neighbor, and the open triangle (A) represents
a cylinder with no neighbor.

might better be analyzed by considering the structure as a porous plate of finite
width than by considering its individual setae as we have done here.

Discussion of Biological Implications
FUNCTIONAL MORPHOLOGY OF BRISTLED APPENDAGES

The steepness of the shear gradients near bristles and the leakiness of bristled
appendages affect a number of biological processes, including: (i) the mechanisms
by which such appendages can capture food particles (e.g. grabbing food vs. filtering
vs. paddling water containing particles), (ii) the flux of dissolved substances to and
from the surfaces of the hairs, and (iii) their performance while moving fluid to
locomote or to create currents for respiration or feeding. Our results point out those
aspects of the setae, bristles, and hairs of small organisms that are important to the
flow around them. Our results can also be used to predict those circumstances under
which particular changes in morphology or behavior are likely to affect, or to make
little difference to, the performance of a finite row of hairs.

Although the width of the space between adjacent cylinders is perhaps the most
often measured feature of rows of biological fibers, this morphological parameter
alone is not an adequate predictor of the leakiness of such a structure for a small
organism. The shear gradient next to a bristle depends primarily on the Re at which
the appendage’s bristles operate (that is, on the diameter and velocity of a bristle),
but also on the ratio of the diameter of the hairs to the spacing between them.
Therefore, it is critical to know the velocity at which setulose structures operate as
well as to know their morphology if their function is to be interpreted. It is also
important to consider the width of the row of bristles as well as the restrictions on
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a seta 0-1 um in diameter in (b). The ratio (s/d) of spacing between neighbors to cylinder diameter is
indicated by arrows at selected spacings.

fluid motion caused by structures neighboring the appendage, as will be discussed
below.

Our results should be kept in mind when considering the functional morphology
of setulose appendages that are attached to the body at one end and hence sweep
through an arc as they flap. As these appendages move, the distal ends of their setae
travel at a greater velocity than do their basal ends; thus the distal ends not only
have the potential of “processing’ a greater volume of water per time, but also
experience steeper shear gradients if the setal diameter and spacing are uniform
base-to-tip. (Often setae are slimmer and more widely-spaced distally, both of which
would further increase the leakiness of the distal portion of the appendage.) Thus,
the performance by an appendage of any activity affected by shear gradient or
leakiness is likely to be a function of position along the appendage. Different portions
of an appendage that are morphologically identical may be quite different in function.
Furthermore, portions of an appendage that look quite different from each other
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may in fact be operating in a similar manner if the differences in structure compensate
for the differences in velocity.

MECHANISMS OF INCREASING LEAKINESS

Because the effects of morphology on the flow through a finite array of cylinders
is quite different from those on flow through an infinite row, it is important to know
whether fluid can move around the edges of a row of hairs on an organism. When
fluid is free to move around as well as through an array of hairs, shear gradients
become less steep and drag on a hair is reduced as the width of the gap between
the hairs is made smaller. In contrast, all the fluid is forced to move between the
bristles in an infinite array, hence shear gradients become steeper and drag on
individual bristles becomes higher as they are moved closer together. Therefore,
especially in the case of closely-spaced setae, the performance of the setae can be
changed if they are surrounded by structures that inhibit fluid movement around
the perimeter of the array. This suggests that an organism might change the function
of an appendage (for example from a swimming paddle to a particle-straining rake)
by altering the neighborhood in which the appendage moves; such a switch in
function might even occur as an appendage changes position within one cycle of
flapping. No doubt, under certain conditions the width of a row of setae will affect
the difficulty with which fluid can escape around the edges of the row, and hence
will affect leakiness and drag. Although we point out the potential importance of
this effect, we do not explore it quantitatively in this paper.

Arrays of hairs operating at low Re’s can be made leakier than our model predicts
by a number of mechanisms. In addition to placing flow barriers at the perimeter
of a fibrous structure or to having a very wide row of hairs, other possible mechanisms
of increasing the flow between the cylinders might be: (i) to draw fluid between the
bristles by moving another structure away from the downstream side of the row of
bristles (for example, perhaps this occurs when the first maxillae move away from
the downstream side of the setulose second maxillae of a calanoid copepod, as
described by Koehl & Strickler, 1981); and (ii) to push fluid between bristles by
moving the bristles towards some other structure, such as another appendage or the
surface of the body (perhaps this happens, for instance, when the second maxillae
of a copepod do their “squeeze” motion, as shown in Koehl & Strickler, 1981). Of
course leakiness-enhancing mechanisms also increase the drag on a hair operating
at a given Re. Comparison of measured leakiness with that predicted by our model
may prove useful for pointing out when leakiness-enhancing mechanisms are being
used by an organism.

CHANGES IN FUNCTION DURING ONTOGENY OR EVOLUTION

The effects outlined above of differences in morphology or velocity on the water
flow near setulose structures also apply to changes in size, shape, or speed of
movement that occur through ontogenetic or evolutionary time. We suggest the Re’s
at which changes make little difference in performance versus those at which specific
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changes have particular consequences. We hope these physical rules prove useful
in future analyses of larval forms of and growth by bristled organisms, as well as
in studies of evolutionary changes of such creatures.

As an organism increases in size, its Re increases unless it simultaneously lowers
its velocity a concomitant amount. If growth carries an organism from very low
Re’s (where viscous forces predominate) to Re’s of order one and above (where
inertial effects become important as well), we would expect to find changes in the
physical processes by which the organism deals with the fluid around it. For example,
Batty (1984) describes how the swimming mechanisms of larval fish change as they
increase in Re. Similarly, our results suggest that as bristled organisms (such as the
setulose larvae of crustaceans) get bigger, their hairy appendages become leakier.
Structures physically constrained to be paddies at small size acquire the potential
to be strainers at larger size. Conversely, if setulose appendages are to remain
paddles when big, gaps between setae should be filled in (for example, by setules
or membranes). Furthermore, as the Re of paddies increase above 1, the role of
inertia in the generation of propulsive force becomes greater; therefore, ditferent
physical rules become important in governing paddle performance.

Our suggestion that a novel function can accompany a simple change in the size
of a bristled structure of a small organism may have evolutionary implications.
Kingsolver & Koehl {1985), studying the evolution of wings in insects, have demon-
strated an example of how an isometric change in the size of an animal can lead
to a radically new function, and have suggested that this phenomenon might
represent an important mechanism of evolutionary change. {In the case of insect
protowings, function can change from thermoregulatory to aerodynamic, whereas
in the case of the setulose structures considered here, function remains hydrodynamic
as size increases, but paddles can become rakes.) If, as in these examples, a structure
acquires a novel function, it is probabiy open to a new suite of selective pressures
on its form. We suggest that further examination of biological phenomena involving
fluid motion at Re’s approaching one might prove a rich source of other examples
of changes in mechanism of operation accompanying simple changes in size.

The same effects expected from an increase in size would also be expected from
an increase in velocity, which likewise raises the Re. This effect of velocity suggests
another possible avenue by which novel function can arise without requiring drastic
changes in morphology.

This research was supported by N.S.F. (U.S.A.}) Grants #0OCE-8201395 and #OCE-
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suggesting inclusion of the material in Appendix 2.

REFERENCES

BRENDELBERGER, H., HERBECK, M., LANG, H. & LAMPERT, W. (1986). Arch. Hvdrobiol. 107, 197.
Creer, AUY. L& Korre, MOAD R (1987). LM A, J. Math. Appl. Med. Biol 4, 185.

CRrAIG, D, & CHANCE, M. M. (1982), Can. J. Zool. 60C4, 712.

Davies, C. N, (1973). Air Filiration. New York: Academic Press.



32 A. Y. L. CHEER AND M. A. R. KOEHL

ELLINGTON, C. P. (1975). In: Swimming and Flving in Nature Vol. 2. (Wu, T. Y, Brokaw, C. J. &
Brennan, C., eds). p. 783. New York: Plenum Press.

ELLINGTON, C. P. (1980). J. Exp. Biol. 85, 129.

FENCHEL, T. (1980). Limnol. Oceanogr. 25, 733.

FeENCHEL, T. (1982). Mar. Ecol. Prog. Ser. 8, 21.

GANEF, G. G. & SHIEL, R. J. (1985). Austr. J. Mar. Freshw. Res. 36, 371.

GAvVis, J. (1976). J. Mar. Res. 34, 161.

GERRITSEN, J. & PORTER, K. G. (1982). Science 216, 1225.

KApPLUN, S. (1957). J. Math. Mech. 6, 595.

KAPLUN, S. & LAGERSTROM, P. A. (1957). J. Math. Mech. 6, 585.

KINGSOLVER, J. G. & KoeHL, M. A. R. (1985). Evolution 39, 488.

KOEHL, M. A. R. (1984). In: Trophic Dynamics Within Aquatic Ecosystems. (Strickler, J. R. & Meyers,
D. eds). p. 135. New York: Westview Press.

KOEHL, M. A. R. & STRICKLER, J. R. (1981). Limnol. Oceanogr. 26, 1062.

KUETHE, A. M. (1975). In: Swimming and Flving in Nature, Vol. 2 (Wu, T. Y.-T., Brokaw, C. J. &
Brennen, C., eds.). p. 803. New York: Plenum Press.

Lams, H. (1911). Phil. Mag. S. 6, 21, 112.

McCLATCHIE, S. & Boyp, C. M. (1983). Can. J. Fish. Aquatic Sci. 40, 955.

Mivacl, T. (1958). J. Phys. Soc. Japan 13, 493.

O'NEILL, M. E. (1983). J. Fluid Mech. 133, 427.

OseeN, C. W. (1910). Ark. Math. Astronom. Fys. 6, 29.

PORTER, K. G., FEIG, Y. S. & VETTER, E. F. (1983). Oecologia 58, 156.

PrRICE, H. J. & PAFFENHOFER, G.-A. (1986). Limnol. Oceanogr. 31, 189.

PROUDMAN, I. & PEARSON, J. R. A. (1957). J. Fluid Mech. 2, 237.

Ross, D. H. & CrA1G, D. A. (1980). Can. J. Zool. 58, 1186.

S1LVESTER, N. R. (1983). J. Theor. Biol. 103, 265.

SPEILMAN, L. A. (1977). Ann. Rev. Fluid Mech. 9, 297.

StokEs, G. G. (1851). Trans. Camb. Phil. Soc. 9, §.

TaMAaDA, K. & FulsikaAwa, H. (1957). Quart. J. Mech. Appl. Math. 10, 425.

UMEMURA, A. (1982). J. Fluid Mech. 121, 345.

APPENDIX 1

Consider a circular cylinder of diameter D in steady translation motion, with
speed U, through an otherwise undisturbed fluid of density p and dynamic viscosity
w. The inertial forces on the fluid are of order pU’/ D and the viscous forces of
order wU/ D*. The Reynolds number (Re = pUD/ ) is thus a measure of the relative
importance of the viscous terms and the inertial terms in the equations of motion.
The motion through water of the setae, bristles, or hairs of small organisms can be
described by equations for flow at very small Re’s.

The Navier-Stokes equations of motion and the respective boundary conditions
for a cylinder moving in an infinite pool of water are:

(u.V)u=-Vp+(1/Re) Au
divu=0
u=0 on the boundary of the cylinder,
where u=(u, v) is the velocity vector in two dimensions, p is the pressure, V the
gradient operator and A the Laplacian. When Re« 1, Stokes (1851) reasoned that
the viscous terms ([1/Re]Au) dominate while the convective terms ([u. V]u) may
be neglected. With this approximation, the above equations reduce to:
Vp=(1/Re) . Au
diva=90
u=0 on the boundary.
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The boundary condition at infinity (relative to the coordinate system fixed at the
center of the body) is u= U, where U, is the free-stream velocity far from the body.

The velocity distribution satisfying these Stokes equations and the no-slip boun-
dary condition is given by:

u= U, +CU.{—(1/2)log (r/a)—(1/4)+(1/4)(a’/ ")}
+ Cx(Uxx/r){(1/2) = (1/2)(a?/ ")},

where a is the radius of the cylinder, U, the freestream velocity, r the distance
from the center of the cylinder, and C a constant. However, there is no choice of
the constant C that will satisfy the condition at infinity; Stokes’ solution indicates
that the quantity of fluid carried along with the moving cylinder increases indefinitely.
Stokes reasoned that the inertial forces, which involve first order spatial derivatives,
are insignificant relative to the viscous forces, which involve second order derivatives.
However, upon examination of the magnitudes of these terms we see that the local
inertia forces calculated from this solution are in fact comparable to the viscous
forces when ris large. Although the above solution is not a self-consistent approxima-
tion of the flow field at large values of r, it is valid for small values of r (i.e. close
to the cylinder).

Oseen (1910) proposed that the convective terms, rather than be neglected
altogether, be approximated by their linearized forms, which are valid far from the
cylinder where the difficulties with Stokes’ approximation arise. He suggested that
the Stokes equations be replaced by:

(1/Re)Av+ (U, .V)v==1/p Vp
divv=0, where v=u—U.,.

This amounts to linearizing the Navier-Stokes equations about U. whereas the
Stokes equations amount to linearizing them about 0.

Lamb (1911) gave a solution to Oseen’s equations which showed that Oseen’s
approximation gave significant improvement at o, but was less accurate near the
surface of the cylinder. Near the surface this solution only approximately satisfies
the surface boundary conditions.

In order to obtain approximations for all values of r, one can employ the method
of matched asymptotic expansion. For small Re’s, let Stokes approximation be the
leading term in an asymptotic expansion, which we shall call the Stokes expansion.
Because of the limitations of Stokes’ approximation mentioned previously, this
series is not valid far from the cylinder where r is of order O(1/Re). For the region
far from the cylinder, a second asymptotic expansion is introduced which we call
the Oseen expansion.

A uniformly valid composite expansion can be constructed by combining the
Stokes expansion (which approximates the flow near the cylinder) with the Oseen
expansion (which approximates the flow far from the cylinder). Since both of these
expansions are approximations to the same Navier-Stokes equations of motion, it
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is not unreasonable to impose that the two expansions must agree in some overlap-
ping intermittent region (see Kaplun, 1957; Proudman & Pearson, 1957; Kaplun &
Lagerstrom, 1957).

In this paper the velocity vector field around and the forces on two equal circular
cylinders moving in a fluid of infinite extent is calculated using the matched-
asymptotic analysis of Umemura (1982).

Consider the flow past two equal cylinders, each of radius a and at a distance d
apart (Fig. Al). The resulting flow field between and around these two cylinders
can be viewed as the flow past two setae in translational motion with speed U.. in
a fluid of infinite extent. The mathematical problem consists of finding an approxi-
mate solution to the equations of motion satisfying the no-slip boundary condition
on each cylinder and a uniform stream at infinity.

y
&//
OO
§=-aT ] T E=+a
d
Uofe
Ueo

Fi1G. Al. Two-dimensional cross-section of a pair of eylinders of radius “"a’” whose centers are distance
~d™ apart. Free-stream velocity with respect to the cylinders (U} is in the y direction and is indicated
by the wide arrows.

To use matched asymptotic expansions the space around the cylinders is divided
into two separate but overlapping regions, and an appropriate expansion valid in
each region is considered. For the inner region close to the cylinders where (Re)(r) =
0(1), the Stokes expansion is utilized. This inner expansion is valid asymptotically
as Re~ 0 for fixed r, and satisfies the no-slip boundary condition on both cylinders.
Since the geometry of the problem affects the flow in this region, the appropriate
coordinate system to represent the Stokes expansion will be the bi-polar coordinate
system (&, 7).

For the outer region where (Re)(r)=0(1), Oseen’s expansion is utilized. This
outer expansion takes inertial effects into consideration and is valid asymptotically
as Re— 0 for a fixed value of r lying in the outer region. This expansion also satisfies
the condition at infinity. Since flow far from the obstacle is less affected by the
geometry, the Oseen expansion will be represented by the polar coordinate system
(r,8).
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The inner and outer expansions must agree in an overlapping region where
(Re)(r)~0(1). This matching condition will give the necessary boundary conditions
to determine the constants in the expansion. Furthermore, in the overlapping region
a transformation between the two coordinate systems is used so that both expansions
are valid in this region. The flow field close to the cylinders (i.e. [Re][r]=0[1]),
will be described by Stokes expansion in bi-polar coordinates, and the flow field
far from the cylinders (i.e. [Re][r]>0[1]) will be described by Oseen’s expansion
in polar coordinates.

For the inner expansion the stream function is given by

¢ ¢

" d cosh £—cosn

Y

where ¢ and d are constants determined by the conditions a = ¢ cosech «, and
d =2 coth a. Then ¢ is determined so that the stream function ¢ satisfies the no-slip
boundary condition on each of the cylinders:

{i,e. oy/an(ta)=0, and d¢/oé(+a)=0}.

Hence,
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and
d ) . . .
§=2— (non-dimensional distance between the axes of the two cylinders).
a

P and Q are constants to be determined by the matching conditions.
The expansion in the outer region in polar coordinates is given by:

V=G z A"(%,),w
n=1

= cos n(6—
FH Y (nr<me=o)
n-=1
where: A, =2K,I,+K,(I,_,+1,,,), and x,=K,(Il,_;—1I,.,). I, and K, are the
Bessel function of the first and second kinds respectively of order n.
Upon matching the inner to the outer expansions, the multiplying factors P and
Q are given by:

p= (InR+5—g+gq)sino
[InR—-g+3(p+q)—i[(F—q)*+2(p—q) cos 20 +1]’

and

InR+3—g+p)coso
(InR-g+3(p+q) P —il(p—q)°+2(p—q) cos 20 +1]’

where o is the angle at which U, hits the cylinders (Fig. Al) (o =90° in our
calculations), and where

Q=

g=3—y+2In2, v = Euler constant=0-5772. . .,

ﬁ;lnuydy+%®nz—é+-§ «n+1ﬂ;+(n-ndJ},

and
1 x oA
q:ln(c/d)+5|:ln2+ Y n(a,+c¢, ]
n=1

After including the inertial effects and assuming that the flow can be expressed
as a superposition of ® and ¢, we get:

sinh £ sin 7 + sinh® ¢ —sin’ 7

‘coshé—cosny ' coshé—cosn’
where:
E £ cos?2 L
.= ———cos 20, . =—sin 20,
16d 324 °
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and
b= E(.[DA;E sinn+ Y {6/, sinh (n+1)é+ d! sinh (n—1)¢}sin nn}
n=1
+E, [f(cosh &—cos n)In (cosh £ —cos n)
+é_£ sinh &+ Z {a, cosh{n+1)é+ ¢, cosh (n—1)&} cos nn:!
n=1
where:
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and [ is determined by the condition Y,_, (a,+¢,)=0.

The u and v velocities of the flow are obtained by applying the relationships
u=—¢, and v=14,, where ¢ is the stream function, ¢, =d¢//dy and ¢, =¥ /ax.
The derivatives ¢, and ¢, are approximated numerically by a second order finite
difference formula.

The infinite sums needed to determine I, ¢, and ¥ are replaced by a finite sum.
Since each successive term in these sums goes to zero exponentially, it is sufficient
to include only the first five terms. The difference in the calculations of the stream
functions between taking five and ten terms in the infinite sums is less than 107",

The drag coefficient is given by

Cp=8m(D cos o+ Csino)l.
where D = [A)E(,, C= (Ang, and { =d/(2a). The drag force per unit length is given
by:
Drag=aC,U"p

where a is the cylinder radius and p the density of the fluid.
For more details please refer to Umemura (1982).
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APPENDIX 2

If bristled appendages are considered as porous plates, the flow through them
might be estimated using Darcy’s law. Approaches similar to this are given in
examples such as Speilman and Goren (1968) and Silvester (1983). Other methods
for estimating flow through and around screens submerged in fluid are given by
Taylor & Batchelor (1949) and Koo & James (1973).

Let us consider an appendage consisting of a finite number ( N) of equally-spaced
cylinders (setae, bristles, etc.) each of diameter s. The flow through the appendage
may be approximated by flow through a porous plate in the following way.

Let U, denote the velocity of the flow passing around the appendage, L the width
of the gap between the cylinders, / the width of the appendage (I= N[L+s]+s),
and A= L/s (Fig. A2). The velocity of the flow through the appendage is denoted
by w. If u is small, then the flow field between the cylinders can be described by
the solution to Stokes’ equations. For a Stokes flow the drag F on each cylinder is
approximately ~uus (leaving numerical constants aside), where u is the viscosity
of the fluid and u is the mean velocity of flow passing through the appendage. The
net resistance per unit area of this appendage is thus approximately F/A’s", and
the mean pressure gradient Vp is approximately s/A’s”. This says that Darcy’s law
may be used in the form

pus/A'st ~-—Vp.
Solving for u we get
u~-A's'Vp/pu. (n

Substituting eqn (1) into the equations of continuity, we see that the pressure field
satisfies the Laplacian. Upon taking the derivative with respect to {, we see that
Vp ~ p/ I Substituting this back into eqn (1) we get:

u~[A*s’pl/ ul. (2)

The appendage Reynolds number (for flow around the entire appendage) is
R, =(U.,pl)/ u, where p is the density of the fluid. For the case where R, is small,
the viscous forces are dominant and the pressure field is approximated by p~u U . /1L

L S
000000
3 .
L
U ﬁ i
Uo
Fi. A2. Two-dimensional cross-section of an appenduage of width /" composed of cylinders of

diameter 5™ that are distance L™ apart. Free-stream velocity with respect to the appendage (U ) is
indicated by the wide arrow.
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For cases where R, is large, the inertial terms dominate in the flow and p~ pU~
This pressure field drives the flow through the porous plate. Substituting these terms
into eqn (2) we obtain:

L'/sl® if R,<1
u/U,~9 y
L*R,/dI’ if R,>1.

The value u/ U, obtained using this approach is analogous to our ‘“‘leakiness™,
as plotted in Fig. 5. For comparison, we have plotted u/ U, values calculated for
an appendage composed of 20 setae with various setal diameters, intersetal spacings,
and setal Reynolds numbers (Fig. A3). Although the results are qualitatively some-
what similar to those shown in Fig. 5, they are quantitatively comparable only for
the 1 um setae at Reynolds numbers of 10" and lower.

(0) () Re=05
Re—05 Re—10'
10k 140

i e — TRe=10"3
Re=10"" NS 2
/ 08 Re=10"
086
Re=10"%&1075

’ / Re—10'
z‘ g 1 Re=10" ‘810 / | i L L

2 30 40 50 10 20 30 40 50
Spacing (pm)

F1G. A3, Ratio of the velocity of flow through a porous plate {u) to the velocity of flow passing around
it (U,.) vs. the width of the gap (spacing) between the cylinders of which the plate is composed. Numbers
at the right of each curve indicate the Re (based on cylinder diameter). Results for cylinders I pm in
diameter are shown in (a), and for those 0-1 um in diameter in (b).

Modeling a bristled appendage as a porous plate has the advantages of being a
much simpler calculation than that described in Appendix 1, and of providing
information about the effects of overall appendage width as well as of bristle
morphology; it has the disadvantage of providing no description of the shear gradient
next to the individual hairs in the appendage.

We have compared the predictions of the two-cylinder model and the porous
plate model with empirical data for water flow through cephalic fans of aquatic
black fly larvae. For this example, the two-cylinder model gives leakiness values
that are 0-6 to 0-8 of medsurcd values, whereas the porous plate model gives values
that are 3x 10 * to 2x 107" of measured values (Cheer & Koehl, 1987).

Therefore, we have chosen the two-cylinder model to be a more appropriate
approximation for the biological questions addressed in this paper than the porous
plate model, both because the former provides a description of the shear gradient
next to individual bristles, and because the results of the former more closely
approximate the biological data we have tested to date.



