The tissues of an embryo change shape and move relative to each other during morphogenesis. Physically, deformations of any object are caused by mechanical forces acting on and within it. The nature and extent of these deformations depend on the geometry and mechanical properties (e.g., stiffness) of the object. Thus, all processes that affect morphogenetic tissue movements and deformations must do so by influencing, either directly or indirectly, the distribution, magnitude, or timing of forces or mechanical properties within the embryo.

To understand morphogenesis, we must work out the connections between molecular events and the mechanical events occurring at higher levels of organization (cell, tissue, embryo). An important step toward that goal is the development of experimental systems in which the biomechanics of morphogenetic processes can be quantified during experiments that manipulate the expression of particular genes or the function of their products. In this paper, we measure normal changes in the mechanical properties of the involuting marginal zone (IMZ), prechordal mesoderm and vegetal endoderm of *Xenopus laevis* embryos during gastrulation (Fig. 1A). We focus primarily on the IMZ, because it plays an important biomechanical role in gastrulation, and because it serves as an excellent system for studying the molecular and cellular basis of a fundamental morphogenetic process: convergent extension.

SUMMARY

Physically, the course of morphogenesis is determined by the distribution and timing of force production in the embryo and by the mechanical properties of the tissues on which these forces act. We have miniaturized a standard materials-testing procedure (the stress-relaxation test) to measure the viscoelastic properties of the dorsal involuting marginal zone, prechordal mesoderm, and vegetal endoderm of *Xenopus laevis* embryos during gastrulation. We focused on the involuting marginal zone, because it undergoes convergent extension (an important and widespread morphogenetic process) and drives involution, blastopore closure and elongation of the embryonic axis. We show that the involuting marginal zone stiffens during gastrulation, stiffening is a special property of this region rather than a general property of the whole embryo, stiffening is greater along the anteroposterior axis than the mediolateral axis and changes in the cytoskeleton or extracellular matrix are necessary for stiffening, although changes in cell-cell adhesions or cell-matrix adhesions are not ruled out. These findings provide a baseline of data on which future experiments can be designed and make specific, testable predictions about the roles of the cytoskeleton, extracellular matrix and intercellular adhesion in convergent extension, as well as predictions about the morphogenetic role of convergent extension in early development.

Key words: biomechanics, gastrulation, *Xenopus*, convergent extension, mesoderm
embryo where its deep mesenchymal cells form the notochordal and somitic mesoderm and its superficial epithelial cells form the endodermal roof of the archenteron; the dorsal NIMZ remains on the outside of the embryo and forms the posterior neural plate (Keller, 1975; 1976) (Fig. 1A). Cultured explants of both the dorsal IMZ and the dorsal NIMZ autonomously converge and extend, demonstrating that these movements are active, intrinsic to these regions and independent of forces generated elsewhere in the embryo (Keller and Danilchik, 1988).

Convergent extension of the IMZ is more forceful than that of the NIMZ. Sandwiches of two dorsal marginal zones (Keller and Danilchik, 1988) can push anteroposteriorly with a force of 1.2 μN (Moore 1992; 1994), corresponding to at least 0.6 μN per dorsal axis. During these measurements, the combined length (IMZ + NIMZ) was fixed and IMZ extension overpowered NIMZ extension, compressing the NIMZ (Moore, unpublished observations).

Moreover, convergent extension of the IMZ plays a major role in X. laevis gastrulation. Convergence of the IMZ occurs in the mediolateral direction, around the circumference of the blastopore, causing its involution and squeezing the blastopore shut (Keller, 1986; Keller et al., 1992; Keller and Jansa, 1992). Extension occurs in the anteroposterior direction, thus elongating the body axis (Jacobson, 1981; Keller et al., 1991; 1992) (Fig. 1A). When these movements do not occur in embryos ventralized by UV irradiation, gastrulation is abnormal and the embryo remains spherical (Scharf and Gerhart, 1980).

Stiffness of the IMZ

There are several compelling and interrelated reasons to analyze changes in the stiffness (resistance to deformation) of the IMZ during convergent extension:

1. During convergent extension, the IMZ becomes both longer and narrower. Beam theory tells us that the maximum force a column can support without buckling (collapsing by bending), is proportional to the column radius raised to the fourth power and inversely proportional to the column length squared (Wainwright et al., 1976). Thus, in an elongating column of constant volume, halving the radius quadruples the length and reduces the force that can be supported by 64-fold! Buckling force is also proportional to the stiffness of the column material, so the IMZ could compensate for its increasingly slender geometry by increasing its stiffness, thereby allowing it to extend and distort neighboring, passive tissues without buckling under the load.

2. Increased stiffness must be developmentally regulated to occur only after the IMZ bends sharply around the blastopore lip during involution. Grafts of postinvolution IMZ from a mid-gastrula embryo to the outer preinvolution region of an earlier embryo do not involute when they reach the blastoporal lip but sit on the lip like a canoe at the edge of a waterfall (Keller, 1986), as if too stiff to turn the corner.

3. The cell motility underlying convergent extension of the IMZ is known (see Shih and Keller, 1992a). Convergent extension occurs as the deep mesodermal cells form protrusions directed medially and laterally in the embryo. This bipolar activity apparently exerts anisotropic traction on adjacent cells, pulling them together and narrowing the tissue mediolaterally, while extending the tissue anteroposteriorly (Fig. 2). Thus, this region is an ideal experimental system in which to explore how cell motility, cell adhesion and the molecules involved in these processes function in the mechanical processes of convergent extension and gastrulation.

Fig. 1. (A) Diagrammatic sagittal sections through early and late X. laevis gastrulae. Dorsal is to the left and anterior is upward. (B) Location on embryo from which IMZ, prechordal mesodermal and vegetal endodermal explants were taken.

Fig. 2. (A) Anteroposterior extension of a tissue by mediolateral cell intercalation. (B) Probable mechanism of convergent extension in the IMZ: cells crawl mediolaterally, wedging between neighbors and forcing them apart along the anteroposterior axis.
Specifically, for cell intercalation to push and form a stiff tissue column able to bear a load, the cells must be tightly adherent at their medial and lateral ends and reinforced against excessive mediolateral elongation. This anisotropic behavior could involve changes in the cytoskeleton, changes in the extracellular matrix, changes in cell-cell or cell-matrix adhesions, or changes in any combination of the four. It is essential to establish baseline measurements of morphogenetically important mechanical properties of the IMZ and to know how these change during gastrulation so that the specific mechanical roles of various cytoskeletal, matrix and adhesion molecules can be tested experimentally.

Objectives of this study

We used standardized engineering methods (described below) to quantify mechanical properties of *X. laevis* gastrula tissues. We focused on the dorsal IMZ, which undergoes convergent extension, and compared it with the prechordal mesoderm, which undergoes the contrasting morphogenetic movement of directed migration (Winklebauer et al., 1991), and with the vegetal endoderm, which is passively squeezed into the interior of the embryo during gastrulation (Keller and Winklebauer, 1992). Using this information, we have developed simple network models that quantitatively describe essential features of the viscoelastic behavior of these tissues, and we have answered the following questions important in our understanding of how these tissues function in morphogenesis:

1. Does the IMZ stiffen during development? To answer this question, we compared the stiffness of explants of the IMZ prior to its involution and after its involution.
2. Is IMZ stiffness anisotropic? We answered this question by measuring the stiffness of IMZ explants compressed either anteroposteriorly or mediolaterally, both before and after IMZ involution.
3. Does the mechanical response of the IMZ to an imposed strain depend on cell-shape changes or on cell rearrangement? Measurements of cell shapes and positions during stress-relaxation tests answered this question and enabled us to make predictions about the role of intracellular versus intercellular or extracellular components in the changes in mechanical properties observed.
4. If the IMZ becomes stiffer, is this change a general property of all gastrula tissues, or is it specifically related to convergent extension of the IMZ? To answer this question, we compared the change in anteroposterior stiffness of the converging and extending IMZ with that of the prechordal mesoderm and vegetal endoderm.

A biomechanical approach

To perform a rigorous mechanical analysis of convergent extension, we must replace qualitative observations, such as those above, with standardized engineering measurements of the mechanical properties of embryonic tissues (e.g., Koehl et al., 1990; Moore, 1994). Mechanical engineering techniques have been used to study biological processes at the organismal and tissue levels (e.g. Wainwright et al., 1976; Fung, 1977; Vogel, 1988; 1994; Vincent 1990), the cellular level (reviewed in Akkas, 1987; 1990; Bereiter-Hahn et al., 1987; Bray, 1992) and the subcellular level (Finer et al., 1994; Ishijima et al., 1991; Svoboda and Block, 1994), but application of biomechanics to the study of morphogenesis is still in its infancy (see Mittenthal and Jacobson, 1990; Koehl, 1990).

One difficulty associated with quantifying the stiffness of embryonic tissues is that they, like other biological materials (see Bereiter-Hahn et al., 1987; Fung, 1977), are viscoelastic – that is, the force required to deform them depends not only on how far they are deformed (like an elastic solid), but also on how fast and for how long (like a viscous fluid) (see Koehl, 1990; Moore, 1994). In this study, we quantify the viscoelastic properties of the IMZ by using a uniaxial compressive stress-relaxation test. This test yields a standardized stiffness measure that is largely independent of the measurement technique used. Therefore, our measurements, unlike those from most earlier studies (reviewed in Moore, 1992), can be compared directly with related data from other sources and used in mathematical models of morphogenesis (see Koehl, 1990).

Stress-relaxation tests

Stress-relaxation tests quantify the time-dependent mechanical behavior of viscoelastic materials in a manner that is independent of the physical dimensions of the sample used for the test (e.g. Ferry, 1970; Findley et al., 1976; Fung, 1977). During a uniaxial compressive stress-relaxation test, a sample block of material (e.g. tissue) of initial length L_0 is compressed rapidly between two parallel surfaces to a shorter length (L) at which it is held (Fig. 3) while the force (F) required to maintain length L is monitored for a period of time. The sample’s deformation is expressed as strain ($\varepsilon = (L - L_0)/L_0$), which is negative for compression, and mechanical force is expressed as stress ($\sigma = F/A$, where A is the cross-sectional area of material bearing the force), which, by convention, is also negative for compression. Using stress and strain factors out the dimensions of the sample, so results from differently sized pieces of material can be compared. In viscoelastic materials the stress required to

\[
\text{Compressive Force} \quad \frac{\text{Stress}}{\text{Shaded Area}} = \frac{\sigma}{\varepsilon}
\]

![Fig. 3. Stress-relaxation test in uniaxial compression. A finite strain is imposed on a block of material and then held constant. The stress required to maintain the strain is recorded as a function of time and the relaxation function of the material is obtained by plotting the stress per unit strain as a function of time.](image-url)
maintain constant strain decreases with time. The stiffness of such materials can be expressed as a time-dependent elastic modulus \(E(t) = \sigma(t) / \varepsilon(t) \), where \(\varepsilon \) is the strain applied to the material and \(\sigma(t) \) is the stress in the material at time \(t \) after the strain is applied. Since both \(\sigma \) and \(\varepsilon \) are negative for compression, \(E \) is positive. (Some texts, such as Fung 1977, use the symbol ‘\(k(t) \)’ rather than ‘\(E(t) \)’ for time-dependent modulus.) Plotting \(E(t) \) against time yields a curve called the relaxation function of the material. A measured relaxation function may consist of thousands of data points. To facilitate comparisons between different relaxation functions, it is conventional either to focus on the value of the curves at a few specific points in time, which is what we do for the statistical comparisons discussed in this paper, or to approximate the curves with simple mathematical expressions.

Mechanical network models

Mathematical expressions used to approximate empirical relaxation functions may themselves be expressed as mechanical network models. These models represent viscoelastic materials as a collection of springs (elastic elements, each with a particular stiffness) and dashpots (fluid elements, each with a particular viscosity) (Fig. 7) (see Koehl, 1990; Findley et al., 1976). Spring-dashpot models contain exactly the same information as the corresponding equations, but they present it differently, explicitly separating the relative contributions of elastic (solid-like) and viscous (fluid-like) properties to the overall mechanical properties of the material. Network model descriptions of mechanical properties of embryonic tissues are used in mathematical models of morphogenetic processes (e.g. Davidson et al., 1995; Odell et al., 1981; Weliky and Oster 1991; Weliky et al. 1991); therefore, empirical determinations of the mechanical properties of embryonic tissues should yield elasticity and viscosity values for the springs and dashpots of a network model if they are to be useful in quantitative models of morphogenesis. We provide such values here.

MATERIALS AND METHODS

Embryo and explant preparation

Eggs were fertilized and dejellied by standard methods (see Kay and Peng, 1991) and held at 17°C in one-third strength Modified Barth’s Solution (MBS). Shortly before use, embryos were transferred to modified Danilchik’s solution (DFA; Sater et al., 1993) plus bovine serum albumen (BSA, 1 g/l) and allowed to warm to room temperature (approx. 22°C). DFA mimics amphibian blastocoel fluid in composition and supports normal deep cell behavior (see Sih and Keller, 1992a). BSA coats glass and plastic, thus reducing adhesion and friction (see Keller, 1991). Embryos were staged according to Nieuwkoop and Faber (1967). Explants (Fig. 1B) were made from early (stage 10+; before most IMZ involution) or late (stage 11.5; after most IMZ involution) gastrulae, using eyebrow hair knives (see Keller, 1991) to remove square pieces of tissue roughly 400 \(\mu \)m on a side.

Measurement of time-dependent elastic modulus

The time-dependent elastic modulus, \(E(t) \), of each explant was measured by conducting a uniaxial compressive stress-relaxation test using the ‘Histowiggler’ (Fig. 4), a mechanical testing apparatus designed by Moore (1992, 1994). Immediately after excision, the explant was placed for either anteroposterior or mediolateral compression on a small stage of glass coverslip fragments (Fig. 5) mounted on an aluminum arm and positioned in the DFA-filled test chamber of the Histowiggler. A three-minute stress-relaxation test with 0.2 strain (i.e., the explant was compressed to 80% of its original length) was initiated as soon as possible, generally within 5 minutes of explantation. Experiments were done at room temperature (approximately 22°C). If control embryos did not develop normally, data from that batch of embryos were discarded.

Before and during each stress-relaxation test, the explant was videotaped from above (Fig. 5) and from the side through a dissecting microscope. The length (before and after compression), width and thickness of each explant were measured to the nearest 10 \(\mu \)m from these video records using NIH Image software on an Apple Quadra computer equipped with a Scion LG-3 image board. Although the explants were cut as rectangles, they rounded somewhat during the five-minutes when they were being mounted. It was initially unclear whether lateral bulges on a rounded explant contributed to resisting the compressive force, so we measured tissue width and thickness in two ways. The first method used the maximum width (white arrow in Fig. 5) and thickness of each specimen; this assumes the maximum cross-section of the specimen resists the compression and underestimates \(E(t) \) if that assumption is invalid. The second method used the average width (black arrow in Fig. 5) and thickness of the contact areas of the specimen with the Histowiggler backstop and probe; this assumes the bulges do not contribute to resisting the force and overestimates \(E(t) \) if that assumption is invalid. To determine which assumption was more suitable, \(E(t) \) was calculated each way were plotted as a function of the ‘bulge index’ (BI = the width obtained when bulges are included divided by the width when bulges are not included); a measure of the degree of rounding of the explant (Fig. 6). The first method appears least affected by variations in bulge size, suggesting that bulges do contribute significantly to resisting compression. Consequently, we have included bulges when calculating the \(E(t) \) discussed in the remainder of this paper.

Measurement of cell shapes and positions during stress-relaxation

Explants were prepared as described above, and placed, deep cells...
down, in a Petri dish with a glass coverslip floor. The deep mesodermal cells were videotaped through a Nikon Diaphot inverted microscope using epi-illumination while we used the flat edge of a coverslip fragment mounted on a micromanipulator to compress the explant against an immobile backstop, mimicking the compressive strain of Histowiggler stress-relaxation tests. The video record was made for 5-10 minutes at approximately 650-174, so cell boundaries could be seen and measured easily. Cell lengths (parallel to the axis of strain), widths (perpendicular to the axis of strain) and positions were measured to the nearest 2 mm using the Quadra system described above. Approximately 20 cells, whose boundaries were clearly visible throughout the video record, were measured on each explant.

Statistical analyses
To compare stiffnesses we used $E(180)$. This time choice represents a compromise; longer times might be more appropriate to the slow deformations occurring in embryos but also are subject to artifacts of healing. Mann-Whitney-U tests (performed with Statview Software, version 4.02) were used to make the statistical comparisons, and differences were assumed to be significant if $P<0.05$.

Network models
To provide mechanical data suitable for use in mathematical models of morphogenetic processes, we quantitatively described the elastic (solid-like) and viscous (fluid-like) properties of each explant using a lumped linear mechanical network model. Based on the general form of the measured relaxation functions, we chose a model (Fig. 7) composed of a spring in parallel with a Maxwell element (a spring and dashpot in series). The methods used to determine E_p (the elastic modulus of the parallel spring) and E_s and η (the elastic modulus of the spring and the viscosity of the dashpot, respectively, in the Maxwell element) are described in the Appendix.

RESULTS

Time-dependent modulus
The relaxation functions of IMZ, prechordal mesodermal and vegetal endodermal tissues were typical of viscoelastic materials; they began with a sharp peak (at the moment of strain application) but then declined, rapidly at first, and then more slowly, nearly leveling off by 180 seconds after strain application (Fig. 8). For example, the IMZ at stage 10+, when compressed anteroposteriorly (i.e., along its normal axis of extension) had a mean ‘instantaneous’ modulus, $E(0)$, of 21.3 N/m² (s.d.=5.7, $n=15$), which fell to an $E(180)$ of 3.9 N/m² (s.d.=1.5, $n=15$). Similarly, the IMZ at stage 11.5 had a mean anteroposterior $E(0)$ of 43.8 N/m² (s.d.=20.5, $n=19$), which fell to an $E(180)$ of 14.2 N/m² (s.d.=7.6, $n=19$). These moduli are 4 or 5 orders of magnitude lower than biological rubbers such as resilin or elastin (see Wainwright et al., 1976). $E(180)$ data for all three tissue types are summarized in Table 1.

Does IMZ stiffness change during development?
The mean $E(180)$ of the IMZ along its anteroposterior axis, which is the normal axis of extension, was more than tripled between stage 10+ and stage 11.5 (Fig. 9; Table 1). This increase was highly significant (Mann-Whitney U: $P<0.0001$, $n=34$). In contrast, the stiffness along the mediolateral axis of the IMZ did not change significantly between stages 10+ and 11.5 ($P=0.12$, $n=24$). Thus, the increase in stiffening was anisotropic.

Is IMZ stiffness anisotropic?
At stage 10+, the mediolateral $E(180)$ was significantly greater...
than the anteroposterior $E(180)$ ($P=0.02$, $n=27$), whereas, at stage 11.5, the anteroposterior and mediolateral $E(180)$s did not differ significantly ($P=0.26$, $n=31$) (Fig. 9; Table 1). Thus the IMZ is anisotropic at stage 10+, but not at stage 11.5.

Do IMZ cells deform or rearrange during stress relaxation?

The mesodermal cells of the IMZ (stage 10+ and stage 11.5 explants) were deformed but did not rearrange with respect to their neighbors during the stress-relaxation tests. The cells rapidly shortened along the axis of compression at the onset of the test but did not change their dimensions as the stress in the tissue decreased during the following 180 seconds (Fig. 10). None of the cells tracked ($n=38$) in stage 10+ and stage 11.5 explants moved relative to their neighbors during the 5-10 minutes of videorecording.

Does anteroposterior stiffening occur in other tissues?

Neither the prechordal mesoderm nor the vegetal endoderm increased significantly in anteroposterior stiffness between stages 10+ and 11.5 (prechordal mesoderm: $P=0.12$, $n=14$; vegetal endoderm: $P=0.18$, $n=14$) (Table 1).

Network models

The mechanical network model shown in Fig. 7 is the simplest model that captures the three most obvious features of the measured time-dependent modulus for each tissue sample: (1) a relatively high instantaneous stiffness followed by (2) a decay toward (3) a long-term stiffness. The stiffnesses (E_P and E_S) of the springs and the viscosity (η) of the dashpot in the network model describing the viscoelastic properties of the tissue are presented in Table 2.

DISCUSSION

The dorsal IMZ increases in stiffness after involution and as convergent extension begins

Stress relaxation tests show that the dorsal IMZ increases in anteroposterior stiffness threefold from its preinvolution position at stage 10+ (prior to onset of its convergent extension) to its postinvolution position at stage 11.5 (when convergent extension is well underway). This change in stiffness during convergent extension is significant for several reasons, which we discuss below.

Table 1. Mean stiffness of different tissues at early and late gastrulation*

<table>
<thead>
<tr>
<th></th>
<th>IMZ (AP compr)</th>
<th>IMZ (ML compr)</th>
<th>Prechordal Mesoderm (AP compr)</th>
<th>Vegatral Endoderm (AP compr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E(180)$ Units=N/m²</td>
<td>3.9 (1.5)</td>
<td>7.4 (4.0)</td>
<td>6.2 (1.2)</td>
<td>4.4 (2.1)</td>
</tr>
<tr>
<td>Early (Stage 10+)</td>
<td>$n=15$</td>
<td>$n=12$</td>
<td>$n=7$</td>
<td>$n=7$</td>
</tr>
<tr>
<td>Late (Stage 11.5)</td>
<td>$n=19$</td>
<td>$n=12$</td>
<td>$n=7$</td>
<td>$n=7$</td>
</tr>
</tbody>
</table>

*Table cells show: mean (s.d.) and n=number of samples; AP compr, anteroposterior compression; ML compr, mediolateral compression.
Postinvolution stiffening is developmentally regulated

These measurements establish that the dorsal mesodermal-endodermal tissues are relatively deformable prior to involution, thus allowing them to bend around the blastopore lip, but become stiffer after involution, during convergent extension. This is not a general property of the embryo, since neither the prechordal mesoderm nor the vegetal endoderm show a corresponding increase in stiffness. This stiffening may follow the anteroposterior progression shown by other mesodermal processes, including mediolateral cell intercalation behavior, which begins anteriorly and progresses posteriorly such that the posterior boundary of the progression always lies right at the blastopore lip (Shih and Keller, 1992b; Keller et al., 1992). We can test this by using smaller explants to improve spatial resolution.

Postinvolution stiffening supports embryonic axis elongation

Adequate stiffness is essential for the IMZ to elongate the embryonic axis without buckling. Presumably IMZ extension forces of up to 0.6 μN (Moore, 1994), together with those generated by the parallel extension of the dorsal NIMZ, are sufficient to narrow and elongate the dorsal axis itself and to overcome the resistance of passively deformed surrounding tissues, of which there are three: (1) the vegetal endoderm of the yolk plug, which becomes reshaped and squeezed into the interior of the gastrula during blastoporal closure, (2) the dorsolateral mesoderm just lateral to the somitic mesoderm, which becomes stretched, and (3) the dorsolateral epidermis just lateral to the neural plate, which also becomes stretched. Measurement of the combined stiffness and force production of the dorsal IMZ and NIMZ together and the stiffness of the dorsolateral epidermis and mesoderm together would address this issue.

Increased anteroposterior stiffness is due to reinforcement of the cytoskeleton or extracellular matrix

The increased stiffness of the IMZ along the anteroposterior axis could, in principle, be due to increased cell-cell or cell-matrix adhesion, increased stiffness of the cytoskeleton, increased stiffness of the extracellular matrix, or some combination of these. Since cells in both early (stage 10+) and late (stage 11.5) IMZ explants are deformed, but are not rearranged, during three-minute stress-relaxation tests, adhesion strength must be large enough to prevent cell slippage. Therefore, both the viscoelastic relaxation and the ontogenetic changes in stiffness that we measured must reflect mechanical properties of the cytoskeleton, ECM, or both, rather than those of cell-cell or cell-matrix adhesion. This is not to say that adhesion is not important to the mechanics of the tissue (it is essential for tissue integrity and traction between cells), nor that adhesion does not change (it must be dynamic to allow mediolateral cell intercalation, which occurs over time intervals longer than our tests), but only that adhesion was not a source of the dynamic relaxation we measured during our tests.

We believe that tissue stiffening may be accompanied by reinforcement of the cytoskeleton, either by compression-resisting elements oriented parallel to the long axis of the embryo (the short axis of the cells) or by tension-resisting elements oriented along the mediolateral axis of the embryo (the long axis of the cells). Because the cells appear to pull themselves between one another as a result of mediolaterally directed protrusive activity (Shih and Keller, 1992a) (Fig. 2), they are probably under tension in the mediolateral direction and under compression in the anteroposterior direction. We propose that the cytoskeleton is reinforced by tension-resisting elements parallel to the mediolateral axis of the embryo as convergent extension begins. Microtubules of the dorsal mesodermal cells become aligned with the mediolateral axis of the embryo at early stages of convergent extension and, at late stages, they remain aligned mediolaterally and also become restricted to the cortex of the cells (Lane and Keller, 1994). We are currently testing the potential role of these microtubules in

Table 2. Network model values*

<table>
<thead>
<tr>
<th></th>
<th>IMZ (AP compr)</th>
<th>IMZ (ML compr)</th>
<th>PreCh Meso (AP compr)</th>
<th>Veg Endo (AP compr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 10+</td>
<td>E_P (N/m²)</td>
<td>3.6 (1.6)</td>
<td>7.1 (4.1)</td>
<td>5.6 (1.2)</td>
</tr>
<tr>
<td></td>
<td>E_S (N/m²)</td>
<td>17.7 (5.4)</td>
<td>20.5 (7.7)</td>
<td>9.0 (4.2)</td>
</tr>
<tr>
<td></td>
<td>η (N*s/m²)</td>
<td>630 (330)</td>
<td>760 (480)</td>
<td>210 (180)</td>
</tr>
<tr>
<td>Stage 11.5</td>
<td>E_P (N/m²)</td>
<td>13.7 (7.4)</td>
<td>11.1 (6.9)</td>
<td>8.5 (5.1)</td>
</tr>
<tr>
<td></td>
<td>E_S (N/m²)</td>
<td>30.1 (16.2)</td>
<td>29.0 (12.3)</td>
<td>12.7 (8.1)</td>
</tr>
<tr>
<td></td>
<td>η (N*s/m²)</td>
<td>960 (750)</td>
<td>1110 (610)</td>
<td>420 (380)</td>
</tr>
</tbody>
</table>

*Table cells show: mean (s.d.); AP compr, anteroposterior compression; ML compr, mediolateral compression.
stiffening these explants. We do not yet have appropriate structural information on the arrangement of actin microfilaments and intermediate filaments in these cells.

Extracellular matrix (ECM) is found between the cells of the dorsal involuted mesoderm (reviewed in Johnson et al., 1992), and several cell matrix receptors are expressed in this region (DeSimone, 1994; Ransom et al., 1993). Recently, a *Xenopus* homologue of the fibrillin family of extracellular matrix molecules has been found to be expressed in the dorsal, axial mesoderm and may function in convergent extension (P. M. Skoglund, personal communication). The ECM could contribute to the overall increase in explant stiffness by functioning as a continuous extracellular mechanical element, independent of the cells, or it could act as a ligand between cells, transmitting forces from one cell to the next. Even if ECM is the primary stress-bearing element, cell-matrix or cell-cell adhesions (or both) must be present to explain the observed lack of cell rearrangements during the stress-relaxation tests.

Biomechanical analysis of cell-cell and cell-matrix adhesions

Our findings suggest a biomechanical approach to analysis of cell-cell and cell-matrix adhesion in gastrulation. If the function of cell-cell adhesion is reduced progressively by a dominant negative disruption of cadherin function (Kintner, 1992) until adhesion, rather than cytoskeletal or ECM stiffness, becomes the ‘weak link’ in the chain of force transmission, then convergent extension will be less effective and gastrulation should fail at the midgastrula stage (stage 10.5-11), when convergent extension becomes important (Keller et al., 1992). In these embryos, we expect cadherin disruption to cause a decrease in tissue stiffness and an increase in cell rearrangements during stress-relaxation tests. Conversely, we expect that overexpression of adhesion molecules (e.g., Detrick et al., 1990; Fujimori et al., 1990) would not improve convergent extension under its normal load, since the normal adhesions appear to be adequate. In fact, overexpression of adhesion molecules may retard convergent extension, either directly, by interfering with dynamic exchange of adhesions during cell intercalation, or indirectly, by making adjacent tissues too stiff to stretch, depending on where overexpression occurred.

Network model data for mathematical models of morphogenesis

The network models (Fig. 7 combined with the element values in Table 2) given here provide a quantitative description of the stress-relaxation properties of each tissue in a format that can be incorporated directly into mathematical models of morphogenetic processes involving those tissues. The significance of these network model data best awaits interpretation through mathematical models and experiments testing how events at the molecular level generate the forces and regulate the tissue mechanical properties that drive morphogenesis in embryos.

This research was supported by NSF Grant no. FD92-20525 to R. Keller and M. Koehl, and by a MacArthur Foundation Fellowship Award to M. Koehl. The Histowiggler was developed with the support of NIH grant no. NIDCD-00112 to E. R. Lewis. We are grateful to J. Goldman for technical assistance and to S. Worcester for help with the statistical analyses.

APPENDIX

The three-element network models used to describe quantitatively the elastic and viscous properties of the tissues discussed in this paper were obtained by first approximating the measured stress-relaxation functions with a simple equation and then identifying a network model with viscoelastic behavior described by the same equation.

Curve-fitting

Relaxation functions in biological materials are complicated and result from mechanical processes interacting across many different organizational levels and time scales (Fung, 1977). The goal of our network modeling efforts was to obtain the simplest possible model that still quantified the essential features of stiffness and viscoelastic relaxation in the tissues we measured.

We approximated each measured relaxation function, $E_m(t)$, with a simplified relaxation function, $E(t)$, corresponding to an exponential decay toward a final asymptotic modulus value (E_∞):

$$E(t) = E_\infty + Ce^{-t/\tau},$$

where C is an additional stiffness seen in response to quickly applied strains, and τ is a time constant describing how quickly the additional stiffness ‘fades away’ during relaxation of the tissue.

Any three points on the curve described by the equation are sufficient to determine uniquely the values of the three parameters in the equation. A simple method we used for fitting the equation to each of our empirical stress-relaxation functions was to require that the descriptive curve match the empirical curve at three evenly spaced times:

$$E_m(t_1) = E_\infty + Ce^{-t_1/\tau},$$

$$E_m(t_2) = E_\infty + Ce^{-t_2/\tau},$$

$$E_m(t_3) = E_\infty + Ce^{-t_3/\tau}.$$

To capture both the instantaneous stiffness and the long-term...
stiffness, we chose \(t_1 = 0, t_2 = 90, \) and \(t_3 = 180 \) seconds (see Fig. 8). To reduce noise, we averaged three samples near each time, specifically those at \(t, \) \(t + 0.25, \) and \(t + 0.50 \) seconds. Rearranging, and taking quotients:

\[
\frac{E_m(t_1) - E_m}{E_m(t_2) - E_m} = \frac{Ce^{-t_1/\tau}}{Ce^{-t_2/\tau}} = e^{t_2 - t_1)/\tau} \tag{3}
\]

\[
\frac{E_m(t_2) - E_m}{E_m(t_1) - E_m} = \frac{Ce^{-t_2/\tau}}{Ce^{-t_1/\tau}} = e^{t_1 - t_2)/\tau}.
\]

Since we chose our three time intervals with equal spacing,

\[
(t_2 - t_1) = (t_3 - t_2).
\]

Therefore,

\[
E_m(t_1) - E_m = \frac{E_m(t_2) - E_m}{E_m(t_1) - E_m}.
\]

Solving for \(E_m \) yielded

\[
E_m = \frac{E_m(t_1)E_m(t_2) - E_m(t_2)^2}{E_m(t_1) + E_m(t_2) - 2E_m(t_2)}.
\]

Then we took the natural logarithm of one of the equations in [3] and rearranged to solve for \(\tau \):

\[
\ln \left[\frac{E_m(t_1) - E_m}{E_m(t_2) - E_m} \right] = \ln \left[e^{(t_2 - t_1)/\tau} \right] = \frac{(t_2 - t_1)}{\tau}.
\]

\[
\therefore \tau = \frac{(t_2 - t_1)}{\ln \left[\frac{E_m(t_1) - E_m}{E_m(t_2) - E_m} \right]}
\]

Finally, we solved for \(C \) by rearranging one of the equations in [2]:

\[
C = \frac{E_m(t_1) - E_m(t_3)}{e^{t_3/\tau}}.
\]

The quality of the fit was evaluated by visually comparing the measured data with the descriptive curve defined by these parameters (see Fig. 8). In all cases, the description obtained by this procedure matched well both the initial height and the long-term behavior of the empirical curve, though stiffness values for intermediate times were consistently overestimated. We tested an equation involving two decaying exponential terms, which improved the fit, but its time constants invariably bracketed the time constant in the simple equation, suggesting the single time constant provides a good intermediate value for viscosity, so we used the simpler equation.

Network model

The mechanical network model in Fig. 7 has a relaxation function of the form described by equation [1] (see Findley et al., 1976). The overall stress in the model is the sum of the stresses in the left and right sides taken separately.

The left side is just a spring, so its stress relaxation function is a constant value given by the modulus of the spring:

\[
E_{op}(t) = E_p.
\]

The right side is only slightly more complicated. This series arrangement of a spring and dashpot is known as a Maxwell model, and it has a relaxation function given by:

\[
E_{ach}(t) = E_p e^{-t/(\eta/\tau)}.
\]

Thus the overall relaxation function for the model is given by

\[
E(t) = E_{op}(t) + E_{ach}(t) = E_p + E_p e^{-t/(\eta/\tau)}.
\]

The network behavior can be made identical to [1] by setting:

\[
E_p = E_m, \quad E_S = C, \quad \text{and} \quad \eta = E_S \tau.
\]

REFERENCES

Johnson, K. E., Boucquart, J. C. and DeSimone, D. (1992). The role of the

(Accepted 7 July 1995)