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Organisms are subject to the laws of physics, so the process of evolution by genetic

variation and natural selection is constrained by these fundamental laws. Classic and

recent studies of the biophysical limits facing organisms have shown how fundamental

physical constraints can be used to predict broad-scale relationships between body

size and organismal biomechanics and physiology. These relationships often take the

form of power laws across a wide range of body sizes for organisms sharing a common

body plan. However, such biophysical perspectives have not been fully connected with

the detailed dynamics of evolution by natural selection, nor with the variation between

species around the central scaling relationships. Here we first discuss what a general

biophysical theory of evolution would require and provide a mathematical framework for

constructing such a theory. We discuss how the theory can predict not only scaling

relationships, but also of identifying the types of tradeoffs made by different species

living in particular niches. In addition, we discuss how a key higher-order requirement

of a biophysical theory of evolution is its ability to predict asymptotic behavior and the

limits of a particular body plan. We use several examples to illustrate how dominant

physical constraints can be used to predict the minimum and maximum body sizes

for a particular body plan, and we argue that prediction of these limits is essential for

identifying the dominant physical constraints for a given category of organisms. Our

general framework proposes that a major portion of fitness should be the overlay of

how all traits of a particular body plan interact with fundamental physical constraints. To

illustrate this concept, we investigate multiple physical limits on particular traits, such

as insect legs, and show how the interaction of a number of traits determines the

size limits on entire body plans, such as those of vascular plants. We use bacteria

as an example of the shifts in which physiological traits and physical constraints are

most limiting at various organism sizes. Finally, we address the effects of environmental

conditions and ecological interactions in determining which of the physical constraints

faced by organisms are most likely to affect their growth, survival, and reproduction, and

hence their fitness. We consider such ecological effects on our examples of bacteria,

insects, mammals and trees, and we nest the constraints-perspective in the broader

picture of evolutionary processes.
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1. INTRODUCTION

The classic view of evolution is that individual species become
adapted to specific niches through the process of genetic
variation and natural selection, where the temporal trajectories
of particular populations are noisy and often unpredictable in
detail. From this perspective, the myriad physiological functions
performed by one species can only be fully understood through
the lens of a specific evolutionary history and the numerous
selective pressures in a particular ecological setting that lead
to selection for one physiological/morphological local optimum
(of potentially many). A contrasting perspective to focusing on
these detailed processes that lead to speciation is that evolution
occurs in the physical world, and that the consistency of
basic physical laws produces broad-ranging regularities across
biological diversity (Thompson, 1917; Rashevsky, 1944, 1960;
Brown et al., 1993; Alexander, 1996; Niklas and Hammond,
2013). A prime example of such regularities is the observation of
scaling relationships such as themetabolic power law relationship
between body size and metabolic rate noted by Kleiber (1932).
This type of systematic behavior has been shown to be the
consequence of the global optimum configuration of a trait
within a range of possibilities with respect to a particular physical
law or constraint (e.g., Brown et al., 2004). How much of
detailed evolution can we predict from such a constraints-first
perspective, and how do we reconcile such a perspective with the
detailed processes of the evolution of a particular species?

Here we review constraint-based perspectives on evolution,
and show how they are nested within the broader framework
of evolutionary biology. We discuss contexts under which
certain physical constraints are dominant and/or independent
of other constraints, thus producing scaling relationships across
diverse species. In particular, we focus on the ultimate limits of
particular categories of organisms as prime examples of where
physical constraints dominate. We define a limit as the point
where the optimal performance of a physiological function or
morphological trait is not effective enough to allow an organism
to survive. These limits set a minimum or maximum allowable
body size. Such limits are known for microbes, arthropods,
vascular plants, and mammals, each of which we will later
discuss as detailed examples. These limits illustrate how the
constraints perspective on evolution is useful, not only for
predicting regular trends within a category of organisms (such as
allometric scaling), but also for predicting higher-order features
such as the size limits of a body plan or a transition to an
alternate body plan that allows for expansion into bigger or
smaller body sizes.

Understanding or predicting such limits gives us insight
into macroevolutionary processes, including major evolutionary
transitions (e.g., DeLong et al., 2010; Kempes et al., 2016), and
is the first step in building a more detailed perspective on how
physical constraints shape microevolution. In addition, another
reason to focus on these constraints is as a test of theories
for scaling relationships. If a particular theory proposes that a
dominant constraint predicts a particular scaling relationship,
then it should also predict at what scales that constraint becomes
asymptotically limiting to organism physiology and architecture.

That is, the scaling theory should also predict the minimal and
maximal sizes for organisms that share a body plan.

2. EVOLUTION, PHYSICAL CONSTRAINTS,
AND THE BODY PLAN

One could think of evolution from the perspective of overlaying
multiple physical constraints (e.g., constraints arising from
immutable physical laws such as gravitational force). This could
be done from the perspective of evolutionary history in which
life sequentially encounters new constraints with increasing
complexity or body size, or from the perspective of distinct
physical constraints that each lead to scaling relationships, all
of which apply to an organism simultaneously. In this latter
case the overall physiology of an organism can be seen as the
overlay and interaction of multiple constraints and associated
scaling relationships (Figure 1). This combination can lead to
more complex evolutionary optimizations if many constraints are
equally consequential, as will be discussed formally below.

Studying evolution using the constraints perspective is further
complicated by the fact that, although a specific feature of
an organism is constrained by a number of physical laws
that may scale differently with size, the selection pressure
on that feature is ultimately based on how the interaction
of many such interrelated features affects the fitness of the
entire organism. The way that traits affect the fitness of an
organism depends on the physical environment in which the
organism must function and its ecological interactions with
other organisms, both of which can change over a life span.
Thus, the organism is the product of a history of adaptation
to particular physical constraints and ecological conditions,
as well as of the evolutionary constraints of its structural
components and physiological machinery. Indeed, it should be
noted that the constraints that affect organism performance
represent a subset of the overall evolutionary process. The full
picture of evolution is one in which genes are mapped into
a phenotype, that phenotype defines the performance of an
organism, and performance ultimately becomes fitness via many
interactions with a particular ecological context where factors
such as predation, likelihood of reaching reproductive maturity,
resource availability, parental nurturing, and niche construction
all play important and complicated roles (Figure 2). Classic and
well-developed models of trait evolution typically consider the
heritability, covariation, and rate of change in traits to assess how
traits affect fitness and are genetically connected (e.g., see Lynch
et al., 1998 for a broad review and Lande (1979) for an allometric
application). This traditional perspective has been successful in
predicting a wide variety of evolutionary regularities and in
uncovering genetic correlations. The overall dynamics of trait
evolution in traditional evolutionary models (such as the Price
equation) can, in principle, be partitioned into the contributions
from each of the processes described in Figure 1 (Queller, 2017).

Our focus in this paper is mainly on one such component,
the mechanistic determination of performance from the set of
physical constraints and organism traits (phenotype), without
consideration of how those traits are genetically determined
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FIGURE 1 | The impact of physical constraints on trait performance and body plan performance. Each trait is the sum of the performance costs, Pt, from individual

physical effects. It is assumed that each physical effect curve and the overall summed trait performance are all optimized. For trait 1 it can be seen that the optimal

trait performance has a maximum value at intermediate body sizes representing the best performance across all individuals of this body plan (an example of a type-2

optimum in Figure 3). Trait 1 also illustrates a minimum and maximum body size for this trait, both of which are the point at which the cost of the trait would equal

total metabolism. This figure also shows how combinations of traits combine to form overall body plans which in turn may illustrate a type-2 optimum (see Body Plan

A) along with minimum and maximum body sizes where the cost of the overall body plan exceeds total metabolism. It should be noted that this figure is

representative, and real organisms would combine an arbitrary number of traits with a wide variety of performance-curve shapes. In many cases one or two traits

could dictate the total value of P.

(including correlations between gene effects), which processes
influence inheritance, or how the performance fully interacts
with the complicated set of ecological constraints described
above. We show that physical constraints can be used to
determine the intrinsic growth rate of an individual, which
is a major component of fitness. Furthermore, we consider
cases in which particular constraints become asymptotically
challenging so that performance of an organism goes to zero,
thereby dominating fitness and predicting the ultimate limits
of a body plan, independent of other ecological considerations.

In considering these examples throughout the paper we suggest
that the constraints perspective could eventually be integrated
into a broader framework incorporating the underlying genetics,
ecological considerations, and population structure in order to
determine overall fitness and evolutionary dynamics (Figure 2).
For example, the connection between traits, physical constraints,
and fitness could be nested within adaptive dynamics models
(e.g., Abrams, 2001; McGill and Brown, 2007), which are aimed
at determining evolutionary stable strategies of complex trait
combinations within a population (e.g., see Falster and Westoby,
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FIGURE 2 | A conceptual representation of the full process of evolution, where

the gray box represents the main focus of this paper. From this perspective,

genes produce a phenotype, that phenotype defines the performance of an

organism given a set of physical constraints, performance becomes fitness

through the many features of an ecological context, and the population of

genetics evolves given this fitness and the nature of the population,

mechanisms of heredity, and mutation. It should be noted that the connection

between traits and physical constraints may become the dominant component

of fitness in particular contexts. For example, we illustrate here that in many

cases the ultimate limit of a particular body plan occurs when one physical

constraint becomes asymptotically challenging taking fitness to zero.

2003; Falster et al., 2016 for considerations of plant traits). We
also discuss the contexts in which the physical optimizations can
be performed without an explicit treatment of the evolutionary
dynamics, and why such optimizations can be, and have been,
successful in predicting allometric scaling relationships and
ultimate limits.

2.1. Abstract Formalism of Constraints and
Fitness
With the complications and caveats listed above in mind, we
provide a simple formalism for evolution in the context of
physical constraints. Below we connect this formalism to the
aspects of fitness that can be directly calculated, specifically, the
growth rate of an individual. There are a wide variety of models
for evolutionary dynamics which typically connect the rate of
change in the abundance of a gene or specific genome to its fitness
given specific assumptions about inheritance and mutation (e.g.,
Lynch et al., 1998; Nowak, 2006; Frank, 2011a,b, 2012a,b,c;
Queller, 2017). All of these frameworks rest on the ability to
quantify the fitness, fj of each genotype and/or phenotype j in the
population, and in each case we can connect a particular model to
constraints so long as we can specify the physical determinants of
fitness. A classic example of an earlier attempt to connect physical
constraints and fitness comes from McNeil Alexander, where
he formalized the evolution of safety factors using the equation
φ(s) = l(s)F + U(s), where φ(s) is the overall cost of a trait given
a safety factor s, F is the cost of failure, l(s) is the probability of
failure, and U(s) is the cost of growing, using, and maintaining
a trait as a function of the safety factor (Alexander, 1996). From
this perspective, trait evolution is the minimization of this total
cost where an increasing safety factor typically decreases the
likelihood of failure but increases the cost of production, use,

and maintenance. Our approach is to further generalize this
concept and connect it to fitness, rather than just safety factors,
by defining the interconnection between all organism traits and
physical constraints. Take tt to be the contribution of a particular
trait to overall fitness, then
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(1)

or

Et = gEp+ eEp (2)

where pp is a particular physical constraint, gt,p is the net benefit
attributed to a particular trait due to physiology interacting with
a physical constraint, and eEp is the portion of the net benefit that
strongly depends on ecological interactions in combination with
physical constraints (e.g., predator avoidance given the density
of predators; see Appendix A.1 for a more detailed treatment).
The first subscript, t, refers to the trait of interest, and the second,
p, to a particular physical constraint. Here lowercase subscripts
refer to an arbitrary element of a matrix or vector, such that tt is
an arbitrary element of Et, and uppercase subscripts refer to the
last element where P is the length of Ep, T is the length of Et, and g

is a T × Pmatrix.
It is important to note that this formalism could be setup

to address traits at various levels of organization—ranging from
detailed considerations of the functional proteins to entire
morphological features—depending on the questions of interest.
For example, the first column of the matrix g might be the
relationship that describes whether a hollow cylinder will develop
a local kink over its length. The second column might be the
relationship for how far a cylinder bends, and the third column
might be the relationship for the weight of the cylinder. In this
same matrix the rows would then describe different traits, so that
the first row could be the trait of a leg and the second the trait
of a wing. Thus, in this example, g1,1 relates to the performance
of a leg resisting kinking, and g2,1 to the performance of a wing
resisting kinking, both in combination with p1. Similarly, g1,2 and
g2,2 relate to the performance of a leg and wing, respectively,
in resisting bending, and g1,3 and g2,3 relate, respectively, to the
performance of the weight of a leg and wing.

In this formalism, performance, as described by gt,p, refers to
a net consideration of both the cost and return to fitness for a
particular trait, where gt,p could be either positive or negative
depending on a trait’s current form (e.g., the current genotype
and phenotype of an organism). Fitness is then defined as

f =

T
∑

t=1

tt . (3)

It is important to note a few features of this formalism. First, tt
is meant to represent the lifetime contribution to fitness such
that g, Ep, and e should be constructed as lifetime quantities.
Second, the main challenge of this formalism is in constructing
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the matrix g and also deciding on the level of granularity with
which to describe the traits t. For example, should one consider
all properties of a bone together or should one partition a bone
into its various sub-traits such as its of cross-sectional shape,
material composition, and dimensional ratios? Constructing the
lifetime values of e is equally challenging given a particular
ecological setting. As already emphasized, the focus of this paper
is on investigating the consequences of the physical contribution,
gEp, to fitness, ignoring ecological effects, eEp. However, it should be
noted that future efforts that attempt to systematize the variation
around scaling relationships will often need to quantify eEp.

2.2. Dominant Constraints and Scaling
Relationships
In light of the complicated dynamics of overlapping physical
and evolutionary constraints for organism evolution discussed
earlier, it is perhaps surprising that any scaling relationships
exist relating diverse organisms. For example, one can imagine
contexts in which many physiological traits are equally
consequential, and organisms with different combinations of
traits have equivalent fitness. In other contexts, ecological
processes might be more important than physiological effects
and might shift unpredictably across body size. In some cases
the interrelation of traits (e.g., due to the underlying genetics)
might produce very complicated relationships across body sizes
that cannot be easily interpreted and would include signals of
phylogenetic relatedness. In contrast, scaling relationships for
a particular trait highlight that a single constraint (or possibly
a small set of constraints) dominates over a wide range of
sizes and is consistently optimized, and/or that the optimization
of one trait to a particular physical constraint is independent
from other traits. In this paper, the term “optimization” here
has two interrelated meanings: (1) A type-1 optimum, which is
determined for one body size and is the best functionality that can
be achieved by a single trait, or set of traits, in organisms with a
particular body plan (Figure 3). We hold body size constant and
optimize across different values of the parameters that determine
the performance of that trait, or set of traits. An allometric scaling
law is the set of type-1 optima, each performed at a particular
body size. (2) A type-2 optimum, which is the best functionality
that can be achieved for a particular body plan considering all
body sizes. The procedure for finding a type-2 optimum is to
first find the type-1 optimum at each body size for a trait or
set of traits, and then to find the body size that has the best
type-1 optimum. A type-2 optimum represents the body size that
outperforms all others. The type-2 optimum would be the best
point along the relationship between body size and the type-1
optima. In the case of a power-law for the set of type-1 optima,
the type-2 optimumwould occur at the smallest or largest size. In
other cases, performance may not change with body size (i.e., the
type-1 optima are all equivalent across different body sizes for a
given measure of performance).

In the context of the formalism that we have introduced above,
the layered hierarchy of constraints that define a single species is
represented by the relative size of the entries of g (e.g., gt,p). The
existence of scaling laws indicate that a small subset of elements

FIGURE 3 | Definition of Type-1 and Type-2 optimizations with reference to a

body-size performance curve.

in g are significantly larger than all other elements across a range
of body sizes for a class of organisms. Formally, this situation can
be expressed as

∑

p,t∈s

gp,tpp ≈

P,T
∑

p,t

gp,tpp (4)

where s represents a subset of g. Ultimate limits would indicate
that a subset of entries of g become increasingly or asymptotically
large and negative at a particular scale and tt∈s → 0. In this
context the type-1 optimization has vanishingly small fitness at
a particular body size and this body size then represents either
an upper or lower bound on the possibilities for a particular
body plan.

3. APPLYING THE CONSTRAINTS
FRAMEWORK

3.1. Explicit Connections to Growth
The preceding formalism is meant to be an abstract
representation of the evolution of organism traits with body
size under a set of physical constraints considering both
physiological and ecological effects. As such we have assumed
a linear form for the determination of fitness. More generally,
we should expect that the contribution of an individual trait
to fitness should follow tt = gt(Et, Ep, Eo), where gt is a function
of fitness contribution for a particular trait given the entire
set of traits, Et, physical constraints, Ep, and other species in
the same environment, Eo, and may not be representable as a
linear combination of the form of Equation (1). This general
relationship makes it clear that there may be many traits with
fitness contributions that are contingent on the value of other
traits. Although the physiological optimization problem may not
be of the form of Equation (1), that does not mean that it cannot
be fully quantified and solved.
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To make such optimizations more explicit we should first
concretely connect traits with aspects of fitness. A variety of
recent efforts have shown that the growth curves of a variety
of organisms can be predicted from a model that considers
the budgeting of total metabolic rate, B, into growth and
maintenance purposes as B = Em

dm
dτ

+ Bmm (where Em and
Bm are the unit costs of synthesizing and maintaining biomass,
respectively, and τ is time) (West et al., 2001; Kempes et al.,
2012). Typically this model is solved by rearranging for dm/dτ
and recognizing that B scales as a power law with mass. However,
the power law of B is the result of an optimization and we can
relax this assumption and instead specify this budget in terms of
the effect of each individual organism trait

dm

dτ
(τ ) =

1

Em

[

∑

i

Bi (τ ) −
∑

i

Ci (τ )

]

(5)

where Bi (τ ) (W) is the contribution of trait i to total metabolic
power, Ci (τ ) (W) is the metabolic cost of each trait, and Em (J/g)
is the energy to synthesize biomass given all of the current traits.
Each of these terms is taken as a function of time as an organism
progresses through a life cycle. In connection with our general
framework we have that

Et (τ ) =
1

Em
(b− c) Ep (6)

and

dm

dτ
(τ ) =

∑

i

ti (τ ) (7)

where Bi (τ ) =
∑

j bi,j (τ ) pj (τ ), Ci (τ ) =
∑

j ci,j (τ ) pj (τ ),
and g = b − c in connection with the notation in Equations
(1) and (2).

As written, these equations describe the growth rate of an
organism along ontogeny. These equations are often converted
into population growth rates by first solving Equation (5) for the
growth trajectory m (τ ) and then using this to find the time to
reach reproductive maturity G (e.g., West et al., 2001; Kempes
et al., 2012). From this generation time the specific growth rate of
the population is given by µ = ln(k)/G, where k represents the
expected number of offspring produced by an adult and could
in principle be a complicated function of the traits themselves
and thus parameterize the variety of ecological features discussed
earlier (e.g., for bacteria without any mortality k = 2). In general,
one could combine our framework for the growth rate of an
individual with a complicated model for the expected offspring to
reach maturity, 〈k〉

(

Et
)

, to form a µ that represents total fitness in
an evolutionary model. Here 〈k〉 is a function of the set of current
traits, Et, and all effects from the environment and other species,
eEp. Given a body plan, our goal is to find the set of trait values that
maximize the population growth rate for each organism size, or

µopt (m) = max (µ (b, c)|m) . (8)

The optimization procedure should hold adult size fixed (type-1
optimization) and solve for the b and c that maximize population

growth rate which integrates over the full life-history. As a result,
the optimum population growth rate µopt (m) is a function of
size, and the b and c that produce this optimum will also change
with body size. Inmany cases it may bemore practical to consider
lifetime averages for all of the traits and optimize the average

individual growth rate, dm
dτ

, which is what we consider in our

examples. Note that for a fixed k optimizing dm
dτ

is equivalent to
optimizing µ. Again each of these optimization problems may
not have analytically tractable forms, but it should be possible
to perform the numerical optimization using a wide variety of
known techniques.

3.2. A Single-Cell Example
There are many cases where it is possible to concretely and
simply calculate the tradeoffs associate with investment in various
traits for an organism along with the optimization of those
traits. To illustrate how this procedure is done, along with some
of the challenges of operationalizing the conceptual framework
outlined in Equation (1), we begin with the simple example
of optimizing a single trait. Consider the case of a non-motile
spherical bacterium that is acquiring resources via diffusion
through the cellular surface followed by active transport via
membrane-bound protein structures. The total metabolic energy
available to the organism is proportional to the number of
molecules, say O2 during respiration, acquired by the cell. It
has been shown that the diffusive uptake rate is given by
4πS∞Da ns

ns+πa(1−ns2/(4a2))
where n is the number of uptake

sites, a is the radius of the cell, s is the radius of an uptake site,
and S∞ is the background concentration of the resource in the
fluid (e.g., Fiksen et al., 2013). This implies that

Bn = Y4πS∞Da
ns

ns+ πa
(

1− ns2

4a2

) (9)

where Y is the yield coefficient (Joules per mole) for the limiting
resource. We also know that each of these transporters requires
some amount of energy, βn to produce, and thus the total cost of
n transporters is

Cn = βnn. (10)

Taken together, these two relationships imply that the average

growth rate over a lifetime is given by dm
dτ

= 1/Em (Bn − Cn) and
can be rewritten in the form of our framework as

dm

dτ
=

1

Em

([

a ns

ns+πa
(

1− ns2

4a2

) 0
]

−
[

0 n
]

) [

Y4πS∞D
βn

]

(11)

=
1

Em

[

a ns

ns+πa
(

1− ns2

4a2

) −n
] [

Y4πS∞D
βn

]

. (12)

where we are considering the trait to be uptake sites and Ep to be
composed of terms related to the limits of diffusive uptake and
the costs of protein construction. Since we are only considering

a single trait, dm
dτ

is a simple scalar and already represents the
entire sum for fitness. Figure 4 gives the energetic values of each
term along with the resulting growth rate for a single cell of size
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a = 10−6 (m), and shows that as a cell adds transporters there is

an increase in dm
dτ

= B−C up to the point where uptake saturates
for any additional transporters. In fact this sum gives rise to an
optimal number of transporters which can be easily shown to be

nopt =
8πa2

(

β
−1/2
n (sYDS∞)1/2 − 1/2

)

s (4a− πs)
(13)

It can be seen in Figure 4B that for a cell of a = 10−6 m
this optimal value occurs before the entire cell is covered in
transporters. For a cell of this size the optimal solution is
achievable. However, this may not be possible for all cell sizes.
Figure 4C gives the scaling of nopt with cell size (type-1 optima)
and shows that there is a size, a = 1.14 × 10−6 (m), at which
the total surface area is entirely covered in transporters. This
represents a minimum cell size at which the optimal solution
is feasible; any smaller cells would have fewer than the optimal
number of transporters. In this example, the type-2 optimum for
the number of transporters occurs at the largest possible cell size.

We could allow for smaller cells to have suboptimal
performance by, for example, keeping a fixed fraction of the
surface area covered in transporters. However, these suboptimal
cells would run into another limitation, where the total surface
area becomes less than the area of a single transporter. The
point where the cell surface area is equal to the area of a single
transporter is given by

4πa2 = s (14)

and occurs when a = 1.95×10−9 (m). There are other limitations
facing the cell that we have not considered. For example, its entire
surface area cannot be covered in transporters both for structural
reasons and because other functions must be imbedded in the
membrane (e.g., the machinery for ATP synthesis).

In general, this single trait optimization could be interacting
with a variety of other traits. For example, we have only
considered the requirement that uptake meets the costs of the
transporters themselves, and in this scenario it is not the return
on investment of a transporter that ultimately limits the cell. For
all cell sizes we can determine the number of transporters beyond
which uptake exceeds the cost of producing those transporters
(until surface area limits at the small end). However, this analysis
does not consider the internal metabolic requirements of the
cell, where the volume to total surface area ratio is scaling
proportional to a and we would expect the transporters, even
if they cover the entire surface area, to be increasingly unable
to support larger cells. These other limitations could be added
to Equation (12) by, in the simplest case, adding a cost term
proportional to overall volume. Consequently,

Edm

dτ
=

1

Em

([

a ns

ns+πa
(

1− ns2

4a2

) 0 0

0 0 0

]
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[
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4
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
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where βv is the unit cost per volume of creating and maintaining
an existing unit of biomass over a lifetime (see Kempes
et al., 2016, 2017 for a more in depth accounting of cellular
composition and the costs that would form βv). In this example
the first row represents the trait of uptake while the second row
represents the trait of cytoplasmic volume.

This addition does not change the value of nopt , but will shift
the overall growth rate. In this case the added cost is negligible
for small cell sizes but eventually becomes the dominant cost
for large cells and sets an upper bound on cell size at a =
2.67 × 10−6 (m) (Figure 4D). This upper bound occurs because
the cost of the cellular volume eventually outpaces uptake and
growth goes to zero. It should be noted that in this example we
have not considered the physiological and metabolic functions
within the cellular volume that interact with the uptake of
resources to provide the metabolic power available to the cell.
Such considerations would add interconnections between the
first and second rows (e.g., how the cellular volume produces
energy given the uptake rate), adjust the structure of Ep, and

would require a more complicated optimization of dm
dτ

. Similarly,
we could add a consideration of the tradeoffs between two
traits, say the investment in the number of transporters and
investment in chemotaxis (see Appendix A.2). In this case the
two traits, swimming velocity and the number of uptake sites,
are fundamentally interconnected and must be co-optimized to

maximize dm
dτ

. However, the point is that ultimately we are trying

to optimize the linear combination that makes up dm
dτ

even if
individual terms in that sum are complicated and interrelated
functions, which should at least be numerically achievable.

This single-cell case study demonstrates how our general
framework can be applied to a specific context and explicitly
illustrates the three main features that we are interested in,
those being:

1. The change in optimal performance across many different
sizes (e.g., the maximum growth rate per unit mass increases
for larger cells Figure 4D).

2. The size at which optimal performance becomes impossible
(e.g., the optimal number of transporters exceeds the total
surface area of the cell Figure 4C).

3. The ultimate limit of size where any functionality is impossible
(e.g., a single transporter covers the entire surface area of the
cell Equation 14).

3.3. Independent Trait Optimization
The framework that we have proposed gives a general perspective
for the co-optimization of physiological constraints, appearance
of scaling relationships, and prediction of ultimate constraints.
However, constructing the complete set of physiological traits
and their interactions with physical constraints (the complete
g = b − c and Ep) is a daunting task and an important area of
future effort. Yet it is important to note that within our general
framework there can be traits that are unrelated to other traits.
In such a case optimizing a trait’s contribution to fitness can

be done in isolation. Since dm
dτ

is a linear sum, optimizing one
trait increases a portion of overall fitness so long as this trait is
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A B

C D

FIGURE 4 | (A) The relative energetic uptake and cost of transporters for a cell of size a = 10−6 (m), along with (B) the inferred growth rate of that cell. (C) The

percentage of cellular surface area devoted to nopt, the optimal number transporters from Equation (13), as a function of cell size. (D) The inferred growth rate given

the optimal number of transporters as a function of cell size. The blue curve considers only the cost of the transporters in the optimization, while the gray curve

includes the cost of the cellular volume.

not connected to other traits and thus does not have competing
consequences in the overall sum. It should also be noted that
a trait can be effectively independent of all other traits if the

contribution it makes to one dmi
dτ

= (Bi − Ci)/Em is much larger

than its influence on all other
dmj

dτ
= (Bj − Cj)/Em for j 6= i. In

general, if all of the traits are independent we have that

max

(

dm

dτ

)

= max
∑

i

dmi

dτ
=
∑

i

max

(

dmi

dτ

)

(17)

implying that each trait can be optimized individually. If we
have a mix of independent traits and traits with complicated
interdependencies, then we have that

max

(

dm

dτ

)

= max
∑ dmi

dτ
=
∑

j

max

(

dmj

dτ

)

+max
∑

k

dmk

dτ

(18)
where j represents all of the traits that are effectively independent
of other traits (and can be individually optimized), and k the
set of traits which contain interdependencies. It should be noted

that sums like
∑

k
dmk
dτ

amount to summing and combining
rows in Equation A4 (see Appendix), which then form new
“effective traits.”

These representations make it clear that if enough trait
independence exists, then single trait optimizations will

accurately predict the observed scaling of a trait with body
size. This helps explain past successes in deriving and
predicting allometric relationships by focusing on a few
dominant constraints and performing type-1 optimizations
(e.g., West et al., 1997, 1999).

3.4. Simplified Metrics of Performance and
Ultimate Limits
In light of the formalism above we can see why single-trait
optimizations often predict allometric relationships and much
past attention has already been given to these optimizations and
scaling relationships. One of our primary interests here is to
use these concepts to predict ultimate limitations, one of the
main types of higher-order behavior that we can extract from
a constraints-based perspective of evolution. These limits are
important because they predict the range of body sizes achievable
for a given body plan. We are also interested in how organism
performance shifts across this range of body sizes as this informs
aspects of selection.

In order to make these ideas more explicit we introduce
several systematic metrics that capture the essence of our earlier
framework but focus on a reduced set of traits and allow us
to predict ultimate limits for particular categories of organisms.
We introduce two types of common biological currency for
assessing performance and for understanding the ultimate limits
on a particular body plan, both of which were employed in our
single-cell example in section 3.2.

Frontiers in Ecology and Evolution | www.frontiersin.org 8 August 2019 | Volume 7 | Article 242

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Kempes et al. Scales That Limit

For the ultimate limits of a particular body plan we are
interested in the size where growth ceases (dm/dτ = 0 in
Equation 5), which is realized when the costs of all of the traits are
equal to their metabolic return:

∑

i Bi =
∑

i Ci. In this context, a
natural metric for performance is the ratio of costs to metabolic
return,

∑

i Ci/
∑

i Bi. It is also natural to set the highest value of
performance, P, to unity, and define P = 1−

∑

i Ci/
∑

i Bi. If we
are interested in considering the constraints imposed by a single
trait, then we can simplify this metric to

P(m) = 1−
Cf (m)

B(m)
(19)

where Cf (m) is the cost of a particular trait, B(m) is the total
metabolic rate of an organism (

∑

i Bi), and where we have made
the dependence on organism mass,m, explicit for the metric and
subcomponents. This metric will either determine when one trait
would be limiting, even if other traits impose more serious limits
on organisms, or will define the ultimate limit in the case where
Cf is the most dominant constraint (e.g.,Cf ≫

∑

i6=f Ci). It should
be noted that this equation could be parameterized in terms of
othermeasures of organism size such as volume rather thanmass.

It should also be noted that an evolutionary optimization
to particular physical constraints at each scale may lead to a
scaling in both B(m) and Cf (m), implying that 1 − P(m) scales
allometrically. If Cf (m) scales in the same way as B(m), then 1 −
P(m) will be a constant implying scale-independent performance.
If Cf (m) and B(m) each scale as a power law with body size,
but with different exponents, then 1 − P(m) will be defined
by a positive or negative scaling exponent indicating decreasing
or increasing performance, respectively, as body size increases
(larger P indicates greater performance). In connection with our
earlier and more general framework, the point at which P(m∗) =
0 corresponds to fi → 0 and represents the point where the type-
1 optimum is infeasible. At this point m∗ is either the maximum
of minimum size for organisms with a particular body plan.

It is not always straightforward to calculate the energy
consumption of a particular organismal trait Cf (m), nor is
this always the most relevant indication of a limit as features
can fundamentally limit an organism without consuming
much metabolic power. For example, the construction and
maintenance of particular arteries is insubstantial compared to
overall metabolic rate, but what does matter for arteries is the
likelihood of rupture under expected forces, or the likelihood
of blockage under the normal range of physiological conditions.
While the metabolic cost of rupture could be converted into
energetic terms (e.g., pumping energy becomes infinite once
the vessel is no longer connected) it is often more meaningful
and practical to simply recognize that a rupture causes death,
and to calculate the requirements of rupture avoidance. These
are direct physical limits, and are topics with rich histories in
the biophysical literature (e.g., Currey, 1970; McMahon, 1973;
McMahon and Kronauer, 1976; Wainwright et al., 1976; Peters,
1986; Berg, 1993; Alexander, 1996; Calder, 1996;West et al., 1999;
Gere, 2003; Niklas and Spatz, 2004, 2006; Vogel, 2004; Niklas,
2007; Niklas and Hammond, 2013). Such constraints often
manifest in the dimensional and morphological requirements

of particular organism features, such as the ratios of thickness
to surface area and volume or of lengths to radii. Instead
of P(m) a more useful dimensionless metric is to consider is
M(m), which is the ratio of the minimal requirements of the
size of a feature, Sf (m), compared with maximum allowable
size S(m),

M(m) = 1−
Sf (m)

S(m)
. (20)

More specifically, Sf (m) is the size of a trait, such as a leg, that is
required to work at all in performing a defined function (e.g., not
breaking under the typical forces experienced over an organism’s
lifetime). S(m) is the space allowable for that trait given other
constraints of the physiology and geometry of the organism.
For example, if the cross-section of the leg is completely filled
by the skeleton, then this represents an extreme upper-bound
as there would be no space for muscles. More realistically, we
can define the space allowable for the skeleton based on the
space needed to accommodate the muscles that operate the leg,
which are defined by the force required to move the leg, all of
which leads to a smaller value for S(m) than the entire volume of
the leg.

It is thus clear thatM(m) allows for choices in the dimensions
of Sf (m) and S(m), which could be volumes or linear dimensions,
and where S(m) can be chosen at the feature or organism scale. As
mentioned above for P(m), when S(m) is the volume of the entire
organism, then M(m∗) represents the extreme upper bound to
an organism’s size, which often gives us intuition about which
constraints are most limiting for specific categories of organisms.

We apply these metrics to several examples for insects,
bacteria, vascular plants, and mammals, as classes of organisms
with extensive biophysical predictions for scaling relationships
and well-developed perspectives on the ultimate limits of
particular biophysical processes. Our goal is to understand how
physical constraints have shaped the ultimate limits for particular
classes of organisms. Within each class we take as a given the
known body plan and do not consider how this architecture
evolved, which is an interesting area for future research. Within
each example our focus is on the point where type-1 optima
become infeasible. In the context of the metrics that we have
developed, for an upper bound on a particular body plan this
is defined either as M(mmax) = 0, or P(mmax) = 0, and
for a lower bound we are looking for M(mmin) = 0, or
P(mmin) = 0. We will also discuss when there is a well-
defined optimum body size for a class of organisms between
the limiting sizes (e.g., a type-2 optimum), as for example at
the large end of mammals (Yeakel et al., 2018). As mentioned
above, in some cases P orM is more appropriate for highlighting
limits. For bacteria, we are able to show that P and M occur
at similar scales for particular features and the energy and
dimensional requirements are interconnected. In arthropods we
primarily rely onM in connection with the limits of exoskeletons.
In vascular plants and mammals we rely on both P and
M as metrics.
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4. EXAMPLES WITHIN GROUPS OF
ORGANISMS

4.1. Insect Biomechanics and the Interplay
of Different Physical Constraints
Insect appendages provide an example of how the structure of a
trait is phylogenetically constrained, and how the performance
of different functions by that trait is determined by physical
laws. A critical phylogenetic constraint on insects is that the
body is surrounded by an exoskeleton. Therefore, all organs and
muscles must operate inside a container of fixed dimensions.
Exoskeletons are scratched and punctured as animals move
around in natural habitats and interact with other organisms,
unlike endoskeletons that are protected from such surface
damage by the surrounding soft tissues. Furthermore, insects
must shed their exoskeleton (molt) in order to grow to larger
size. Another phylogenetic constraint that limits the mechanical
performance of insects is that the exoskeleton is composed of
chitin fibers in a protein matrix.

Insect appendages illustrate how the dimensions of a structure
(in this case an appendage is the trait) can affect different
aspects of mechanical performance (each of which is a column
in Equation 1). The motions of and forces exerted by jointed
appendages of insects (e.g., legs, wings, mouthparts, antennae,
each being a row in Equation 1) can be analyzed by treating these
structures as lever systems (Alexander, 2003). Appendages that
are short are better at exerting large forces on the environment
(e.g., for crushing prey or digging) for a given muscle force. In
contrast, appendages that are long are better at rapid motions
(e.g., running) for a given rate of muscle shortening. If we
consider the exoskeleton of a stiff segment of an insect leg
as a hollow, circular cylinder (Figure 5A), we can examine
the consequences of changes in the cylinder’s dimensions on
other aspects of mechanical performance using standard beam
theory (e.g., Currey, 1970), as described in biomechanics and
engineering textbooks (e.g., Wainwright et al., 1976; Gere, 2003;
Vogel, 2004). Some examples of how different aspects of leg
performance depend on body and leg dimensions are given
in Table A2 (Appendix). The cost to produce and move the
exoskeleton depends on its volume. However, the ability of
the leg’s exoskeleton to resist deformation (Figures 5B,C) and
breakage also depend in different ways on its length (L) as
well as its radius (R) and the radius (r) of the space inside the
exoskeleton. A hollow exoskeleton can also fail by undergoing
local buckling (kinking like a bent soda straw, Figure 5D), which
can damage the tissue inside the exoskeleton. The critical local
stress (σLcrit) to cause a kink not only depends on the dimensions
of a hollow cylinder (Table A2 in Appendix), but is much lower
if the surface is scratched, as exoskeletons are prone to be.

The mechanical properties of the material composing
the exoskeleton of an insect appendage also constrain its
performance. For example, resistance to bending, bowing, and
kinking by the exoskeleton of an appendage depends on the
stiffness (elastic modulus, E) of the material (Table A2 in
Appendix). Whether a stress (force per cross-sectional area
of material bearing a load) in the exoskeleton will cause
breakage depends on the strength (breaking stress, σbrk) of

that material. These mechanical properties of insect exoskeleton
are determined by the amount and orientation of the chitin
fibers, the degree of cross-linking (tanning) and of hydration
of the protein matrix, and the relative thickness of the heavily-
tanned outer layer (exocuticle) and the less-tanned inner layer
(endocuticle) (e.g., Wigglesworth, 1948; Wainwright et al., 1976;
Parle et al., 2017).

The radius (r) of the space within the exoskeleton limits the
force production and shortening of the muscles it contains, and
thus can limit the ability of the appendage to perform various
functions. The force that a muscle can produce depends on
its cross-sectional area normal to the long axis of the muscle
fibers. Because the r of the exoskeleton constrains muscle cross-
sectional area, r limits the maximum force that can be exerted
by a muscle; r also limits how much a contracting muscle can
bulge radially, thereby limiting the distance that the muscle can
shorten. The force exerted by a contracting muscle is a complex
function of its change in length (Rassier et al., 1999; Nishikawa
et al., 2018), so by limiting muscle shortening, r also affects force
production. These constraints are mitigated in insects because
most of their muscles are pennate, with fibers that are oriented
at an angle to the muscle’s line of action (Figure 5E). Thus,
a pennate muscle can exert higher forces, but also shortens
less (1Lmuscle, Figure 5E) than a parallel-fibered muscle (Vogel,
2003). These constraints of the exoskeleton on muscle force and
shortening can limit the performance of activities (e.g., running,
pushing) that affect the competitive success and survival of
insects in the environment, and can thus determine Sf (m) of the
trait (leg) in Equation (20).

Using these physical rules described above, the type-1 optimal
morphology for a leg can be determined for an insect of a given
size if the aspects of leg performance (e.g., rapid running, forceful
digging) can be identified that are most likely to affect the insect’s
fitness in its ecological setting. By examining the type-1 optima
for the legs of insects across a range of body sizes, the type-2
optimum can be determined, and the physical limits on body size
can be explored.

The effect of body size on different aspects of appendage
performance are illustrated in Table A2 (Appendix). In this
example, we assume for simplicity that the exoskeleton of a leg is a
hollow circular cylinder, that the insect grows isometrically, and
that the mechanical properties of the exoskeleton material and
the behavior of the muscle (force production per area normal to
muscle fibers, and maximum shortening velocity) do not change
with size. The consequences to leg mechanics of an isometric
doubling of body dimensions illustrate how different functions
vary with size. The load that a leg must bear (F) and the cost
of producing and moving the exoskeleton increase 8-fold, while
the force produced by a muscle only increases 4-fold. Relative
to the F’s that must be resisted, the maximum force exerted by
the appendage per muscle force exerted is only half of that at
the smaller size. Resistance to bending and to breaking while
bearing body weight or locomoting are also reduced by 50% if
size doubles, whereas resistance to bowing is reduced by 75% and
to kinking by 87.5%. This suggests that leg failure by kinking
may determine the maximum allowable size, S(m) in Equation
(20), for a given insect body plan. This S(m) can be increased

Frontiers in Ecology and Evolution | www.frontiersin.org 10 August 2019 | Volume 7 | Article 242

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Kempes et al. Scales That Limit

FIGURE 5 | (A) Dimensions of a hollow cylindrical exoskeletal element: L = length, R = outer radius, r = inner radius, t = wall thickness. (B) Diagram of the deflection

(δ) of the free end of an exoskeletal element being bent like a cantilever by a force (F ) acting laterally on the end of the of the cantilever. (C) Elastic Euler buckling of an

exoskeletal element acting like a column bearing an axial load (F ). (D) Local buckling (kinking) of an exoskeletal element acting like a column bearing an axial load (F ).

(E) Diagram of a pennate muscle when relaxed (left) and after the muscle fibers have contracted (right): θ = angle between muscle fibers and the line of action of the

muscle, Lfiber = length of the muscle fibers, W = width of the muscle, 1Lmuscle = distance muscle shortened when fibers contracted. Muscle bulging is not in the

radial direction, and a greater number of shorter muscle fibers can fit into the volume of a pennate muscle than into a parallel-fibered muscle of the same size.

However, the component of the force produced by the contracting fibers (Ffibers) in a pennate muscle that acts parallel to the line of action of the muscle (Fmuscle)

depends on the angle (θ ) of the fibers (Fmuscle = Ffibers cos θ ), so Fmuscle decreases as the muscle shortens and θ becomes more oblique (Azizi et al., 2008).

by selection for allometric growth (e.g., smaller r relative to R)
or for increased stiffness and strength of the material composing
the exoskeleton.

Insects have to molt their exoskeleton to grow. The
mechanical properties of the exoskeleton material change during
this process (e.g., Wigglesworth, 1948; Parle et al., 2017). After
the old exoskeleton is shed, the new exoskeleton is thinner
(lower t) and less cross-linked (lower E and σbrk) than the older
shed exoskeleton. With time after molting, the new exoskeletal
material becomes more cross-linked and the thickness of the
wall of the exoskeleton increases as more endocuticle is secreted.
Therefore, resistance to bending and resistance to failure (by
breaking or kinking) are lower right after molting. This poor
mechanical performance of the soft, thin exoskeleton right
after molting might be the factor that limits the overall body
size of insects. Furthermore, insects are more vulnerable to
predators right after a molt because locomotory appendages
may buckle and bend too easily for effective escape maneuvers,
and the exoskeleton may be easier to break or puncture by the
predator. Therefore, while vulnerability to the predators in the
environment of an insect may set the Sf (m) required for survival,
molting reduces S(m) and the performance metricM(m).

In addition to the biomechanical constraints of an exoskelton
andmolting, other limits to the size of insects have been proposed
and debated, including the supply of oxygen via the tracheal
system, the power requirements for flight, and the effect of size

on maneuverability of flying insects after bird and bat predators
evolved (e.g., Kaiser et al., 2007; Kirkton, 2007; Okajima, 2008;
Harrison et al., 2010; Clapham and Karr, 2012). We suggest
that the approach illustrated in Figure 1 would be a fruitful
way to evaluate the body sizes at which the various proposed
mechanisms are likely to bemost important and to identify which
are most likely to constrain the size of insects.

While the exoskeleton of an insect appendage provides an
example of a trait that does a number of physical tasks whose
performance varies with size (as illustrated in the top row of
Figure 1), the physiology of bacteria provide an example of how
several traits together affect the performance of an organism as a
function of its size (bottom row of Figure 1).

4.2. Bacterial Physiology and Ultimate
Limits
Prokaryotes represent the oldest and morphologically simplest
forms of self-reproducing life, although their metabolic and
genetic diversity far exceeds the eukaryotes. We can consider
their morphology, in a first approximation, as a membrane
with embedded protein complexes enclosing a solution of
DNA, carbohydrates, RNA, and proteins of various complexity.
We are interested in how this physiology and architecture
inform the evolutionary possibilities for bacteria in terms of
the physics of both internal physiology and interaction with an
external environment.
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Considering interactions with the external environment,
bacteria live in a world characterized by a low Reynolds number.
That is, in conditions where viscous forces dominate over inertial
forces. Within this low-Reynolds world one of the most common
forms of motility is run/tumble chemotaxis, in which bacteria
swim linearly for a variable time and then perform a random
reorientation before swimming again. This form of motility is an
asymmetric process, and allows for both a random-walk search
and gradient following through biasing the random walk by
dynamically adjusting the probability of tumbling (Berg, 1993).
Within the context of motility it is also possible to calculate our
metric P. It has been shown that the minimum power required
for run-tumble chemotaxis is approximately given by

Bmot =
kTD

a2
+ 3a3 (21)

where k is the Boltzmann constant, T is absolute temperature, a is
again the cell radius, and D is the molecular diffusivity (Mitchell,
2002). This result follows from considerations of the rotational
and translational diffusion of cells, combined with the required
distance a cell must move to detect a change in the concentration
of a resource (Purcell, 1977; Mitchell, 1991, 2002; Berg, 1993).
This cost must be a fraction of the total metabolic power, which
in bacteria is known to scale with cell volume, V , according to

B = y0V
α (22)

with α = 1.76 and y0 = 3.76 × 1014(W m−α) (DeLong et al.,
2010). The ultimate limit of motility is the point where its costs
equal the total available metabolic energy, which can be found
by setting Equation (22) equal to Equation (21) and substituting
a = (3V/4π)1/3. Taking D = 5.19 × 10−10 (m2 s−1) and
T = 298.15 K, the numerical solution for this lower limit is
Vmin = 2.72×10−21 (m3). This limit can also be defined in terms
of our metric for performance, P = 1−Bmot/B, where Figure 6A
illustrates that for most of the range of bacterial sizes P ≈ 1
and Bmot is a negligible fraction of total metabolic power. This
calculation also illustrates that before reaching the ultimate limit
described above (P = 0 atVmin), P decreases sharply (Figure 6A),
thus defining an intermediate size at which motility costs become
radically more expensive, and may become selected against. This
precipitous decrease occurs as Bmot increases sharply, due to the
increasing significance of overcoming molecular diffusion.

Turning to the internal constraints of the bacterial body plan,
recent efforts have shown that there are significant changes in
the physiological processes and composition of bacterial cells
across the range of cell size (Kempes et al., 2016). Many of these
follow power-law relationships with asymptotic behavior that
arise at distinct scales. It has been shown that the partitioning
of total metabolic power between growth and maintenance
purposes predicts the scaling of population growth rate across
bacteria, including a lower-bound on cell size where maintenance
metabolism exceeds total metabolic rate. This lower bound on
size also agrees with considerations of physical space, where
the combined scaling of all cellular macromolecules entirely
fills the cell at a similar size and further constrains this lower

bound. The total macromolecular pool is dominated by DNA
and protein content at the small end of bacteria due to a
sub-linear scaling of both. This same scaling causes these two
macromolecules to be diluted in concentration with increasing
bacterial cell volume. However, other theory has shown that the
requirements for ribosomes can be predicted to scale roughly
linearly with cell volume over a large range of cell volumes, up
to a point where the requirement for ribosomes increases rapidly
and exceeds total cell volume, thus setting an upper limit of
bacterial cell sizes. This limiting behavior occurs because there
is finite-volume singularity—at a distinct cell volume an infinite
number of ribosomes are required—caused by the point where
the cell division time is faster than the time it takes a ribosome to
replicate itself.

These set of space limitations can be easily translated into
our metric M by taking S to be the total volume of a cell and
Sf to be the known scaling of protein, DNA, and ribosome
volumes (seeAppendix A.3 for the details of each of these scaling
relationships). For example, given the total protein volume in the
cell, Vp, the morphological metric is defined byMp = 1− Vp/V .
Figure 6B provides the overlay of the performance curves for
each of the three components, illustrating that at the small end of
cell size proteins and DNA causeM to go to zero, and at the large
end ribosomes have the same effect. Similar to our considerations
of motility, we observe that over a wide range of intermediate cell
sizes M ≈ 1 for considerations of the proteins and ribosomes,
up to, for example, the point where the previously described
“ribosome catastrophe” occurs.

4.3. Vascular Organisms
4.3.1. Trees

Terrestrial vascular plants are defined by a body plan that
couples photosynthesis in leaves suspended in the atmosphere to
nutrient and water acquisition from the soil. As such, the vascular
system—which transports sugars from the leaves and nutrients
from the roots to the rest of the tissues—is of central importance.
Trees are also characterized by the need to effectively fill the entire
canopy space in order to collect as much sunlight as possible and
consequently to be as tall as possible to outcompete other plants
for sunlight and avoid being shaded. These various constraints
have led to a variety of perspectives for understanding plant
allometry together with an extensive set of theories, calculations,
and measurements.

Given the competitive importance of tree height, there have
been many proposed mechanisms for determining its ultimate
limit. These mechanisms have focused on both mechanical
and hydraulic constraints. The mechanical constraints were
originally addressed quantitatively by McMahon (McMahon,
1973; McMahon and Kronauer, 1976) who pointed out that the
maximum possible height of a tree was set by the buckling limit
(small lateral displacements cause failure) of its trunk, and this
could be calculated using a formula first derived by Greenhilll
from the classic bending moment equations for solid materials:

hmax = C

(

E

ρ

)1/3

d2/3 (23)
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A B

FIGURE 6 | (A) The minimal power requirements for motility in bacteria as a function of total cell volume and given as the metric P, which is 1 minus the percentage of

total metabolic power. (B) The volume requirements for DNA, protein, and ribosomes in bacteria as a function of cell volume and given as the metric M = 1− Vc/V,

where Vc is the volume of each component.

where ρ (g m−3) is the density of wood, E (g m−1 s−2) is the
elastic modulus, d (m) is the trunk diameter, and C = 0.792 (s2/3

m−1/3) when the force is distributed over the entire column (e.g.,
this model considers a single beam with a uniform radius over
its height) (McMahon, 1973; McMahon and Kronauer, 1976).
This relationship has the same scaling between height and radius,
h ∝ d2/3, as that for trees across all sizes and is in good agreement
with data. However, using measured value of E (g m−1 s−2) ≈
1.05 × 105 (McMahon, 1973; McMahon and Kronauer, 1976),
this relationship leads to a critical height which is roughly 3
to 4 times larger than the observed scaling. Trees exist in a
region of parameter space far below this upper bound and these
mechanical constraints don’t seem to limit the tallest possible
trees at any size nor set an upper bound on the ultimate tallest
possible vascular plant.

If no other physical constraints predicted this same scaling,
then one could argue that trees have simply evolved to be a
fixed safety factor from the mechanical limit and, provided that
they conform to the h ∝ d2/3 scaling of height to diameter,
there is no upper bound on tree height. However, arguments
related to hydraulic limits and space-filling predict the same
scaling relationship between height and radius as that from the
mechanical constraints and, at the same time, set an upper bound
on the tallest possible trees as discussed below (West et al.,
1999; Niklas and Spatz, 2004, 2006; Niklas, 2007). Nevertheless,
the buckling arguments are important in the broader space
of all evolutionary possibilities. For example, these constraints
could be relevant to vascular plants with alternate body plans,
alternate evolutionary trajectories, or at earlier stages of vascular
plant evolution compared with those that seem to conform to
hydraulic limits.

There are several approaches to considering the hydraulic
limits to tree height centered either on the requirements for
conductive tissue or the feasibility of pumping fluid over the
length of a single vascular tube. For the conductive tissues
arguments there are two main perspectives. The first uses the
observations and/or assumptions that (i) annual growth scales
with leaf mass, (ii) annual growth scales with total plant mass

to the 3/4 power, (iii) the flux of water through the leaves must
match the flux through the conductive tissue so that leaf mass
scales with the hydraulically functional cross-section, and (iv) the
mass of the roots scales isometrically with the mass of the stems
which in turn is proportional to the cross-sectional area times
length. From these assumptions it can be shown that tree height,
h, is related to diameter, d, as

h = k1d
2/3 − k2 (24)

where a good fit to data is obtained with k1 = 34.64 (m1/3) and
k2 = 0.475 (m) (Niklas and Spatz, 2004, 2006; Niklas, 2007).
For large trees this relationship parallels the Euler-Greenhill
predictions, but also does a better job of capturing observed
curvature in the data away from a power law at the small
end of trees. While this relationship does not predict an upper
bound on tree size it does predict a lower bound of dmin =
(k2/k1)3/2 = 0.0016(m) for h = 0, which is roughly the diameter
of petioles (the segment of the plant that attaches leaves to the
stem) suggesting that this smallest size agrees with the minimal
vascular plant of a single leaf and stem. This limit can also
be understood in terms of our metric M, where we can define
M
(

h
)

= 1 − dpetiole/d. Here M is defined in terms of h as
the overall measure of size, d is the required diameter, and its
ratio to the petiole diameter, dpetiole, defines performance. Given

the above relationships, M
(

h
)

= 1 −
k
3/2
1 dpetiole

(h+k2)
3/2 , which quickly

approximates unity for h > 0. The above derivation of the
equation for h shows that this lower bound is due to differences
in the observed scaling of the leaf mass and trunk diameter with
total plant mass, representing underlying hydraulic constraints.
However, since this relationship relies on several empirical
scaling relationships it is difficult to see exactly which physical
constraints are being optimized.

The second perspective on hydraulic limits uses the
assumptions of (i) canopy space filling, (ii) mechanical stability,
and (iii) hydraulic resistance minimization within a fractal-like
architecture to optimize the overall plant body plan (West et al.,
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FIGURE 7 | The fraction of trunk cross sectional area required for conductive

tissue as a function of trunk radius and represented as the metric M.

1999). The optimization is performed in terms of the various
ratios of the vessel and branch sizes and a detailed calculation
of the total resistance of the entire vascular network. Similar to
the perspective above, the results predict that h ∝ d2/3, but
also predict a maximum height where the entire trunk becomes
conductive tissue. This can be seen by choosing Sf = Act =

πnNa
2
Nr

−7/3
N r7/3, the total area of connective tissue in the trunk,

where nN is the total number of vascular tubes in a petiole, aN
is the radius of a petiole tube, and rN is the radius of the entire
petiole. If we take S to be the total area of the trunk, then we have
thatM = 1− Act/

(

πr2
)

or

M = 1− nNa
2
Nr

−7/3
N r1/3 (25)

which is plotted in Figure 7 using the typical values of nN =
200, aN = 1.0 × 10−5 (m), and rN = 0.5 × 10−3 (m)
(West et al., 1999).

The maximum trunk radius and associated height is given by
M = 0, which corresponds to Act/

(

πr2
)

= 1,

rmax = n−3
N a−6

N r7N , (26)

and

hmax = lNn
−2
N a−4

N r4N(1− n−1/3)−1 (27)

where n ≈ 2 is the number of branches at each generation and
lN ≈ 0.04 (m) is the length of a petiole. Given the values listed
above, these relationships predict rmax ≈ 1(m) and hmax ≈
100(m) in good agreement with record trees. This approach thus
predicts the fundamental limit on vascular plants, in addition
to the cross-species scaling, by co-optimizing the dominant
physical constraints of both hydraulic resistance and mechanical
stability. This is a case where the accurate prediction of the limit
corroborates that the dominant constraints of the system have
been identified.

4.3.2. Mammals

Similar to vascular plants, a theory of fractal vascular networks
regulatingmetabolic supply has been developed for the metabolic

scaling of mammals and broadly predicts a variety of observed
allometries and scaling relationships (West et al., 1997). This
theory considers transport to be the rate-limiting step for
metabolism and that optimizing the transport network by
minimizing its cost predicts overall metabolic rate and a host
of downstream effects. This theory is impressive not only in its
ability to predict interspecific scaling relationships across a wide
range of body sizes, but also for its ability to predict asymptotic
limits to the mammalian body plan. This is possible because the
theory provides a detailed description of the coupling of the body
plan to the underlying physical and geometric constraints. For
example, for very small mammals, the pulsatile waves emanating
from the heart are unable to reach the capillaries because of
the dissipation of energy due to hydraulic resistance along the
path of the branching vascular tubes. Previous work has shown
that in all mammalian vascular systems there is a point in the
network where pulsatile flow becomes laminar flow, and this
cross over occurs at r2c /lc ≈ 8ν/ρc0, where rc and lc are the
critical radius and length of a vascular segment at the branching
generation in the network where the cross over occurs, ν = 4
(g m−1 s−1) is the viscosity of blood, ρ = 106 (g m−3) is
the density of blood, and c0 = (Ew/2ρrc)1/2 = 6 (m s−1),
where E is the modulus of elasticity of the vessel with a wall of
thickness w (West et al., 2002). As mammals become smaller the
branching generation at which this cross-over occurs decreases
and eventually becomes the aorta itself, and corresponding to a
dramatic decrease in efficiency due to an overdamped vascular
system. From this perspective, we can define the metric M in
terms of the system damping by takingM = 1−

(

r20/l0
)

/
(

r2c /lc
)

,
where r0 and l0 are the dimensions of the initial segment (aorta)
of the vascular network. The lower limit of mammal size is given
by r20/l0 = r2c /lc. Noting that the aorta allometry of r0 = a1m

3/8

and l0 = a2m
1/4, where a1 and a2 are allometric normalization

constants, the preceding equality is equivalent to
a21m

3/4

a2m1/4 = 8ν
ρc0

,

which defines the minimum size as mmin =
(

8νa2
ρc0a

2
1

)2
. Given

that a mammal of m = 10, 000 (g) has the vessel dimensions
of r0 = 0.0075 (m) and l0 = 0.2 (m), then a2/a

2
1 = 355, 556

(g m−2), and the minimum mammal size is predicted to be
mmin ≈ 3.6 (g) (West et al., 2002). This lower limit is close
to observed sizes of several species of shrew which are the
smallest mammals. Similar to many of the other analyses above,
this example illustrates that even when a type-1 physiological
optimization is performed at every body size, there will still
be a body size where even optimal performance represents an
impossible physiology.

5. DISCUSSION

We propose that it will eventually be possible to enhance
our understanding of the complex selective factors involved
in evolution by analyzing the overlay and co-optimization of
physical constraints for a particular body plan at a given size
scale. Here we have suggested that the first step is to understand
the limits of a body plan that is optimized to a particular set
of dominant constraints. Moving forward we need theories that
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establish a hierarchy of physical constraints for identified types of
body plans of organisms. We also need theories that can predict
the interconnected temporal evolution of physiology, body size,
and physical constraints.

Implicit in a full theory of evolution under constraints is the
need to identify and integrate the ecological constraints that
organisms face in addition to the phylogenetic and physical
constraints discussed above. Ecological constraints emerge, for
instance, from interactions among the set of coexisting organisms
through predator-prey dynamics, competition for overlapping
resources, and via more complicated symbioses, coevolution, and
niche construction. For example, recent theoretical work on the
population dynamics of foragers using a single shared resource
has connected basic allometric physiology with the dynamics of
resource consumption, as well as consumer starvation, growth,
and reproduction (Yeakel et al., 2018). This work shows that
Damuth’s law—the observation that the population density
(Individuals m−2) of a species is proportional to body mass to the
−3/4 power (Damuth, 1987)—is predicted as the natural steady
state of the complicated dynamics of reproduction, starvation,
and mortality, where the rate of each of these processes is
based on the underlying energetics of allometric metabolism.
More importantly for our considerations here, this model of
interacting foragers also shows that larger mammals should
outcompete smaller mammals up to a maximum mammalian
size. This maximum mammalian size occurs at a point where
the population consumes all available resources and perishes.
This limit is supported by data, where the predicted maximum
size of a mammal is roughly 3.5 times larger than the largest
observed terrestrial mammals, which are in the fossil record
(Yeakel et al., 2018). In contrast to our analyses here of single-
organism physiology, this maximum size limit emerges as an
ecological-scale interaction between an entire population and
available resources.

Environments may also introduce additional constraints
through the expected variation of conditions. For example, one
would expect selection on breaking resistance (e.g., Table A2 in
Appendix) in trees to depend not on typical wind speeds, but
rather on the probability of unusually high wind speeds over the
lifetime of a tree. Earlier we introduced the formalism presented
by McNeil Alexander in which the evolution of safety factors is
dictated by the equation φ(s) = l(s)F + U(s) (Alexander, 1996).
As noted earlier, trees seem to have a safety factor of roughly

four which has also been directly verified in detailed analyses of
bending under wind stress. A broader literature on the economy
of wood density has quantified the variation of safety factor in
response to a variety of competing evolutionary considerations
including life-history strategies for resource acquisition (e.g.,
quick growth for sunlight), adult stature, wood production cost,
and wood resistance to decay and herbivores. The effect of
decay and herbivory on the strength of the wood in trees also
varies during the lifetime of a tree. The formalism of Alexander
can thus be expanded to encapsulate all of these limits, which
goes beyond our focus on the physiology and biomechanics
of individual organisms. An important challenge of such an
approach is defining l(s) and U(s) under a complex set of species
interactions and distributions that occur under various changing
environmental conditions and stresses. In our formalism, the
challenge becomes defining the matrix g in such a way that
each entry represents an entire life-cycle value that integrates the
probabilities of various environmental and competitive effects.
Future efforts should focus on developing new, and expanding
existing, compendia of constraints for particular body plans and
integrating these into detailed evolutionary models. If this is
done, it may be possible to make ever more specific evolutionary
and ecological predictions from physical constraints.

Finally, since the framework presented here only requires the
specification of organism structure and physical constraints, it is
amenable to general considerations of life for origins of life and
astrobiology research.
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A. APPENDIX

A.1. Connection to Ecological Constraints
The full treatment of fitness considers how all traits are
constrained by the interaction of both physiological and
ecological factors with physical constraints. Ecological effects
consist of all of the features affecting the effective number of
offspring such as predation, likelihood of diseases, or starvation
risk. From this perspective fitness can be written as
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(A1)

which can be rewritten as

Et = gEp+ eEp (A2)

where pp is a particular physical constraint, gt,p is a term
representing the net benefit attributed to a particular trait due
an organism’s physiology interacting with a physical constraint,
and et,p is the net benefit attributed to a particular trait due to
an ecological interaction with a physical constraint. It should be
noted that et,p will generally depend on complicated ecological
quantities such as the density of predators. In all of these cases,
lowercase subscripts refer to to an arbitrary element of a matrix
or vector, such that tt is an arbitrary element of Et, and uppercase
subscripts refer to the last element where P is the length of Ep, T is
the length of Et, and g is a T × Pmatrix.

It should be noted that the sort of linear separation performed
in Equation (A2) is only possible if there are not traits that can

TABLE A1 | Definitions for the physical constraints framework.

Definition Notes

tt Contribution of a particular

trait to overall fitness

Et = gEp

pp A particular physical

constraint

gt,p Net benefit attributed to a

particular trait due to a

physical constraint

f Fitness =
∑T

t=1 tt

Bi Contribution of trait i to

overall metabolic energy

Ci Metabolic cost of trait i

dm
dτ

Growth rate of an individual = [
∑

i Bi (τ ) −
∑

i Ci (τ )]/Em

P (m) Metabolic metric of

performance

= 1− Cf (m)/B(m) where Cf (m) is the

cost of a particular trait, B(m) is the

total metabolic rate of an organism

M (m) Morphological metric of

performance

= 1− Sf (m)/S(m), where Sf (m) is the

size of a trait, and S(m) is the

maximum allowable size

only be described in terms of functions of both gt,p and et,p
together. In addition, an implicit assumption in optimizing a
particular trait according to maximizing only

∑P
p=1 gt,ppp is that

the physiological effects on fitness are larger than the ecological
effects, or that

∑P
p=1 gt,ppp ≫

∑P
p=1 et,ppp, for a particular

trait t. It could be the case that for some other trait, t′, the
fitness effects are determined by

∑P
p=1 et′,ppp ≫

∑P
p=1 gt′ ,ppp, in

which case the ecological optimization would be most relevant
for understanding the trait and overall fitness. In some cases,
considering both terms may be required for understanding a
trait. Here we mostly focus on traits where the physiological
effects dominate.

A.2. Detailed Example of Trait
Co-optimization
The ultimate goal of the general framework is to consider the
tradeoffs amongst multiple traits in optimizing growth rate. To
illustrate this procedure we can analyze the tradeoffs between two
traits within our single-cell example. Consider the investment in
the number of transporters and investment in chemotaxis and
competing and complementary ways to increase total resource
uptake to the cell. In such a situation, we would have that
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where g (a, vs, n, S∞,D) is a complicated function parameterizing
diffusion through a boundary layer and the characteristics of the
fluid. The power output required for swimming at a particular
speed is given by 6πηav2s where vs is the swimming speed and η

is the viscosity of the fluid. In this example the first row represents
the trait of uptake through transporters and the third row the
trait of swimming. However, since these two traits must be co-
optimized given the mutual dependence on swimming speed,
vs, we could combine them into a single row representing the
combined trait of resource uptake:
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TABLE A2 | Various mechanical features are proportional to body and leg dimensions.

Mechanical feature Proportionality to body or

leg dimensions

Factor by which

feature changes if

body length doubles

Factor by which weight-bearing

performance changes if body

length doubles

Force on leg due to body weight, or when landing during locomotion (F ) L3
B

8 –

Maximum force exerted by a muscle (Fmax ) d2 4 –

Cost to produce skeleton for leg L(R2 − r2) 8 –

Weight of skeleton of leg (and thus cost to move leg) L(R2 − r2) 8 –

Force exerted by end of leg when muscle contracts with force Fmax Lm/L 4 0.5

Velocity of foot when muscle shortens at Vmax L/Lm 1 –

Resistance to bending (minimize deflection, Figure 5B) E(R2 − r2)/L3 2 0.25

Resistance to Euler buckling (maximize force required to cause elastic

bowing, Figure 5C)

E(R2 − r2)/L2 4 0.5

Resistance to local buckling (maximize critical local stress, σLcrit required

to cause kinking, Figure 5D)

E(R2 − r2)/R 1 0.125

Resistance to breaking (minimize maximum stress, σmax in skeleton) (R2 − r2)/LR 4 0.5

The mechanical performance of the exoskeleton of an insect leg is shown for the simple case of a hollow circular cylinder. The factors by which those mechanical features change if the

body of an insect doubles in length are shown in column 3. For simplicity, we assume that growth is isometric, that the mechanical properties of the material of the exoskeleton do not

change, and that the muscle properties (physiology, force production per area normal to muscle fibers, and maximum shortening velocity, Vmax ) are the same at both sizes. The factor

by which weight-bearing performance changes if body length doubles (column 4) is the ratio of the factor by which the load that the leg has to bear increases (F, row 1) to the factor by

which that feature changes. This is only calculated for aspects of performance that affect load-bearing by a leg, either when standing or during locomotion. LB = length of insect body,

d = diameter of muscle perpendicular to axis of muscle fibers, Fmax = maximum force muscle can produce, and E = elastic modulus (stiffness) and σbrk = breaking stress (strength)

of the exoskeleton material. Stress (σ ) is force per cross-sectional area of material bearing that force. All other symbols are shown in Figure 5.

The trait of resource uptake could then be optimized
independently to find the ideal combinations of n and vs
across a range of cell sizes. The cost of the cellular volume would
only matter again in terms of solving for an upper bound on cell
size where dm/dτ = 0.

It should be noted that in all of our illustrative examples, the
matrices involved can be condensed into a single row where the
summation of costs and benefits is simply the dot product of
vectors. This scenario would not be the case formore complicated
trait optimizations, and, in general, summations of the form of
Equation (5) will allow for optimizations where constructing the
matrices is not simple or useful.

A.3. Bacterial Composition
Previous efforts have characterized the scaling of the major
macromolecular components of bacteria (Kempes et al., 2016),
where the volume of the DNA follows

VDNA = d0V
βD
c (A6)

where d0 = 3.0 × 10−17 (m3 DNA ·
(

m3 Cell
)−βD ) and βD =

0.21 ± 0.03, while the volume of expressed proteins scales more
steeply with cell size following

Vp = P0V
βp , (A7)

where P0 = 3.42 × 10−7 (m3 Protein ·
(

m3 Cell
)−βp ), and βp =

0.70 ± 0.06. Taken together with the known scaling of growth
rate, defined by µ ≈ µ0V

βµ , the volume of expressed proteins
determines the required volume of ribosomes which follow

Vr ≥
vrP0V

βp l̄p

v̄p

(

ln (2)
(

µ0V
βµ
)−1

rr − l̄r

) . (A8)

TABLE A3 | Description of parameters for bacteria.

Param.Definition Value Notes

BACTERIA

S∞ Background concentration

of a resource in a fluid

0.0005 (mol m−3) Value for

glucose

n The number of uptake sites

on the cell surface

a Radius of the cell (m)

s Radius of an uptake site 3.91× 10−9 (m) (Szenk et al., 2017)

D Molecular diffusivity 6.73× 10−10 (m2 s−1) (Koch, 1996) Value for

glucose

Y Yield coefficient for a

limiting resource

2.87× 106 (J mol−1) (Tran and Unden,

1998)

Value for

glucose

βn Cost to produce one

transporter

1.09× 10−19

(W transporter−1) (Kempes et al.,

2017)

Found

over a

lifetime

βv The cost of creating and

maintaining an existing unit

of biomass over a lifetime

4.09× 105 (W m−3) (Kempes et al.,

2012, 2016, 2017)

VASCULAR PLANTS

ρ Wood density 6.18× 105 (g m−3) (McMahon, 1973)

E Elastic modulus of wood 1.05× 108 (g m−2) (McMahon, 1973;

McMahon and Kronauer, 1976)

Act Area of conductive tissue

nN Number of vascular tubes in

a petiole

200 (West et al., 1999)

aN Radius of a petiole tube 1.0× 10−5 (m) (West et al., 1999)

rN Radius of the entire petiole rN = 0.5× 10−3 (m) (West et al., 1999)

n Number of branches at

each generation

2 (West et al., 1999)

lN Length of a petiole 0.04 (m) (West et al., 1999)

MAMMALS

ν Viscosity of blood 4 (g m−1 s−1) (West et al., 2002)

ρ Density of blood 106 (g m−3) (West et al., 2002)
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where βµ ≈ 0.64, µ0 = 4 × 107 (s−1 ·
(

m3 Cell
)−βµ ),

vr = 3.04 × 10−24 m−3 is the average volume of a ribosome
(Zhu et al., 1997; Gabashvili et al., 2000), v̄p = 4.24 ×
10−26 is the average volume of a protein (Neidhardt et al.,
1996; Erickson, 2009; Phillips et al., 2012), l̄r = 4566 bp
is the average length of a the combined ribosomal protein
transcripts (Bremer et al., 1996), and rr = 63 bp s−1

is the transcript processing rate (Bremer et al., 1996), and

l̄p = 975 bp is the average length of a protein transcript
(Dill et al., 2011).

A.4. Definitions and Parameter Values
Table A1 provides a list of definitions for the main features of our
general framework,Table A2 provides definitions for insects, and
Table A3 provides parameter definitions and values for bacteria,
trees, and mammals.
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