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Hairy Little Legs: Feeding, Smelling, and
Swimming At Low Reynolds Numbers

M.A.R. KOEHL

ABSTRACT. Many small organisms use appendages bearing arrays of hairs
to capture food or molecules from the surrounding fluid, and to locomote
through fluid or to move fluid past themselves. The performance of these
appendages depends on how much of the fluid they encounter lows through
the gaps between the hairs, rather than around the perimeter of the whole
array. In this paper [ discuss the interplay of experiment and theory as [
review how biologists and mathematicians have worked together to explore
the conditions under which an array of hairs slips through the fluid like a
leaky sieve versus those under which it operates like a non-leaky paddle.
We have employed approaches ranging from microcinematography of small
aquatic animals and flow visualization around dynamically scaled physical
models to calculations of velocity profiles between neighboring hairs. We
have discovered conditions under which there is permission for morpholog-
ical diversity of hairy appendages with little consequence to performance,
versus conditions under which changes in behavior, size, or morphology
can alter performance or lead to novel physical mechanisms of operation.
Recent experiments have underscored the importance of the interactions of
arrays of hairs with neighboring walls, such as the animal’s body surface or
the ground. In the past we have tended to lump all low-Reynolds-number
phenomena together as creeping flow, but the studies reviewed here illus-
trate some striking transitions in function within this viscous-flow regime.
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1. Introduction

Many organisms use appendages bearing arrays of hairs to capture food or
molecules from the surrounding fluid, or to locomote through the fluid or to
move the fluid past themselves.

A wide variety of aquatic organisms from different phyla make their living by
gathering particulate matter (e.g., single-celled algae, bacteria, organic particles)
from the water around them (Ref. 1). Often the structures they use to capture
the particles are made up of rows of cylinders. If these structures operate as
filters, the flux of fluid through them determines the volume of water per unit
time an organism can process, and the velocity gradients near individual hairs
determine the efficiency of capture of paricles of various characteristics (Ref.
2). If, instead, these structures operate as raptorial appendages that actively
capture individual food items, the amount of water “stuck to” and moving with
an appendage determines whether an organism can reach out and grab a particle
without pushing it away (Ref. 3).

Structures such as gills and antennae, which often bear arrays of hairs, are
used to capture molecules rather than particles from the surrounding fluid. As
with food capture, the flux of fluid through the array, as well as the steepness
of the velocity gradients next to individual hairs, determines the rate at which
molecules arrive at the surfaces of the hairs (e.g., Refs. 4, 5).

Many small animals use appendages bearing arrays of hairs to move through
fluids, or to produce feeding or ventilatory currents past themselves (e.g., Refs.
3,6, 7). The amount of fluid that leaks through the rows of hairs on such ap-
pendages rather than flowing around them should affect their ability to generate
thrust and lift.

The names of these hairs and appendages are specific to particular organisms
(e.g., “setules” on the “setae” of the “second maxillae” of calanoid copepods,
“microtricia” on the “rays” of “antennae” of moths, or “asthetascs” on the “an-
tennules” of lobsters), hence, for ease of discussion, [ will avoid such jargon
when I discuss the general case, and will simply refer to “hairs” or “bristles” on
“appendages” or “legs.”

The factors that determine the fluid motion through an array of cylinders is
a significant basic biological question because so many different creatures use
arrays of hairs in air or water to perform the variety of important functions
listed above. The Reynolds number (Re = UL/v, where U is the velocity of the
fluid relative to a hair, L is hair diameter, and v is the kinematic viscosity of
the fluid) at which these hairs operate is generally low (107° to 10; Refs. 2, 8);
hence, viscous effects are important in determining flow patterns with respect to
the hairs.

One of the purposes of this conference on biofluiddynamics is to bring to-
gether biologists and fluid dynamicists, and to enhance communication between
experimentalists and theorists. Therefore, rather than simply discuss our lat-
est research results on the fluid dynamics of hairy appendages, I will review
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the interplay between experiment and theory in our past and ongoing work on
how this commonly occurring type of appendage functions, and how its behavior
and morphology affect performance. The leap-frogging between our empirical
biological studies and mathematical modeling is diagrammed in Figure 1.

2. Filter-feeding theory

In spite of a wealth of information about the rates and ecological importance
of filter feeding by various creatures, the mechanisms by which organisms capture
particles from the surrounding water have been poorly understood. Biologists
generally used to think that comb-like filter-feeding appendages were simply
strainers that sieved particles larger than the gap between adjacent hairs out of
the water passing through them. However, when Rubenstein and Koehl (Ref.
2) applied to biological filters the theoretical analyses of particle capture devel-
oped by engineers (reviewed in, e.g., Refs. 12-15), we pointed out that particles
smaller than the gap-size could be captured by a variety of mechanisms other
than sieving, including direct interception, inertial impaction, gravitational de-
sposition, and motile-particle capture. By providing quantitative relationships
between the intensity of particle capture by these various mechanisms and mea-
surable parameters (such as paricle size and density, filter fiber diameter, and
fluid velocity), engineering filtration theory suggested several biologically inter-
esting predictions (Ref. 2). One was that filter feeders cannot help but capture
some kinds of particles at greater rates than others; that is, simple physical pro-
cesses render them “selective” feeders. Another was that an organism can, in
theory, change the kinds of things it selectively captures by changing the velocity
of the flow through its filter.

An oceanographer, T. Cowles, pointed out to me that some calanoid copepods
can switch the selectivity of their particle capturing (Ref. 16), and convinced me
that these ecologically important animals might provide a good system for testing
some of the predictions of filtration theory.

3. Particle capture by calanoid copepods

Calanoid copepods are small (of the order of a few millimeters in body length)
shrimp-like animals that can be extremely abundant in the water column of
oceans and lakes. Many of these planktonic copepods feed on unicellular algae
and other suspended particulate matter, forming a major link in many aquatic
food webs. Because of the tremendous ecological importance of copepod feeding,
many investigators have studied it, especially the rates at which copepods remove
various kinds of particles from the water (reviewed in Ref. 11). In spite of all
this attention, the mechanisms by which copepods capture particulate food were
not understood; textbooks described a specific pair of appendages, the second
maxillae (M2’s) (Fig. 2), as filters that strained particles from a current of water
forced through them by the beating of four other pairs of feeding legs (reviewed
in Ref. 11).
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The first step in analyzing the filtering by copepods was to work out the kine-
matics of their appendages during feeding, and to try to figure out the velocity
of water flow through the filters (the M2’s) when the animals captured parti-
cles of different sizes. Making such measurements posed a number of technical
challenges: (1) a copepod is so small it must be viewed with a microscope, but
the flow it creates cannot be studied if the animal is confined to a drop of wa-
ter on a microscope slide, and (2) a copepod flaps its feet at high frequency,
hence high-speed cinematography is necessary to resolve the leg motions. Fortu-
nately, a technical breakthrough was made at the time that we needed kinematic
data on feeding copepods: R. Strickler developed an optical system that permit-
ted high-speed microcinematography of zooplankton in large containers of water
(e.g., Ref. 17). By marking water near feeding animals with dye released from
a micropipette, we were able to use Strickler’s apparatus to work out the water
and appendage motions during copepod feeding (Refs. 3, 10, 11, 18).

We discovered that the water current produced by the four pairs of feeding
appendages by-passed the M2’s (rather than flowing through the M2’s as the
literature had said). Our films of the copepod Fucalanus pileatus feeding on
algaal cells (36 to 53 um long) revealed that when a parcel of water containing
a food particle neared a copepod, the animal actively drew that water and the
particle toward its mouth by flinging the M2’s apart (Fig. 3B). The animal then
squeezed the M2’s back together again, forming a cage around the particle, and
pushed the captured particle into its mouth using a different pair of appendages.
Movies of dye streams indicated that very little water flowed through E. pileatus
M2’s, and that particles were captured without touching the setae. However,
films of dye streams near E. pileatus engaged in other behaviors (e.g., rejection
of captured particles; Ref. 3), as well as later films of different species of copepods
feeding on various types of particles (Koehl and Paffehofer, unpublished data),
revealed that in some cases water did flow through the M2’s.

These observations that water sometimes does and sometimes does not flow
through the M2’s led us to table our original goal of using copepods to test
some predictions of filtration theory, and to instead ask a more basic question:
What determines how much fluid flows between the hairs in an array? Indeed,
a debate soon grew in the biological literature about whether the hair-bearing
appendages of a variety of planktonic animals operated as leaky sieves or as
paddles (reviewed in Ref. 8).

4. Model of flow between a pair of hairs

What are the velocity profiles between adjacent hairs in a row? Although the
case of an infinite row of cylinders of infinite length (in which all the fluid must
pass through the gaps between cylinders) had been addressed (e.g., Ref. 19), the
case of a finite row of hairs (in which fluid can pass both through and around the
array), had not been explored at a range of gap-to-diameter ratios and Reynolds
numbers that were biologically relevant. I turned to a theorist, A. Cheer, with
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this question.

We first approached the problem by asking: How much fluid moves between
a pair of infinitely long circular cylinders at low Reynolds numbers if the fluid
is free to move around the hairs as well as between them? The calculations are
described by Cheer and Koehl in Reference 8. Flow velocities near the hairs were
calculated in bipolar coordinates by using Stoke’s low-Reynolds-number approxi-
mation of the Navier-Stokes equations, and flow velocities far from the hairs were
calculated in polar coordinates by using Oseen’s low-Reynolds-number approxi-
mation (which takes inertial effects into consideration). A matched asymptotic
expansion technique was used to put these two flow fields together (Ref. 20).
We varied parameters such as velocity, diameter, and spacing of hairs over a
biologically-relevant range.

Examples of velocity profiles calculated in this way are given in Figure 4A.
These profiles can be used to calculate the “leakiness” of a pair of hairs, where
leakiness is the ratio of the volume of fluid that actually flows through the gap in
a unit of time to the volume that would have flowed through a space of that width
if there were no hairs present. In Figure 4B, leakiness is plotted as a function of
gap-to-diameter ratio for various Reynolds numbers. These calculations revealed
several biologically-interesting phenonmena.

1. Is a hairy appendage a sieve or a paddle? As the Reynolds number in-
creases, the leakiness increases. At Reynolds numbers approaching 1, little fluid
is dragged along with the hairs as they move, and a hairy appendage should
be sieve-like. In contrast, at very low Reynolds numbers, quite a bit of fluid is
dragged along with the hairs and very little moves through the gap between ad-
jacent hairs. Bristly appendages in this very-low-Reynolds-number range should
behave more like solid paddles than like sieves.

2. What happens if an organism changes its Reynolds number, that is, its
size or the speed of its motions? Such a change has very little effect on leakiness
at very low Reynolds number (< 1072), hence there is great permission in this
Reynolds number range for variation in size or behavior without consequences to
the performance of functions that depend on appendage leakiness. In contrast, a
change in Reynolds number in the range between 10~? and 1 produces substantial
change in leakiness, and hence in performance.

3. What happens to leakiness if the spacing between adjacent hairs is changed?
At Reynolds numbers of 107! and 1072, there is a pronounced reduction in leaki-
ness as hairs are moved closer together. At higher Reynolds numbers, this reduc-
tion in leakiness only occurs when the hairs are very close together, whereas at
gap-to-diameter ratios greater than 15 there is no effect on leakiness of changing
the spacing. At very low Reynolds numbers, there is also little effect on leakiness
as a result of a change in gap width.

We tested this model by using it to calculate the leakiness of insect antennae
for which empirical leakiness data were available. We also compared our results
with predictions of leakiness of these antennae by using several other approaches
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for estimating the flow through porous or fibrous structures. Qur model predicted
values closer to those measured for these antennae than did any of the alternative
methods (Ref. 9).

5. Some biological implications of the model

Our model predicts effects on flow between cylinders due to differences in
Reynolds numbers (i.e., size or speed) and the structure (i.e., gap-to-diameter
ratio) of a hairy appendage. We can use these predictions to consider conse-
quences of the changes in size, morphology, or behavior of such appendages that
occur during the growth of an individual, or during the evolution of a lineage.
Such changes should have little effect for microscopic organisms whose hairs
operate at Reynolds numbers of 102 and lower, whereas at higher numbers
(between 1072 and 1), increases in Reynolds number or gap-to-diameter ratio
can transform an appendage that was funtionally a paddle into a leaky sieve.
Structures constrained to function as oars at small size acquire the potential to
be filters at larger size. Conversely, if hairy appendages are to remain paddles
when big, gaps between hairs should be very small (Fig. 4B) or should be filled
in, for example, by membranes. Indeed, those insects and crustaceans that fly
or swim with appendages made up of rows of hairs are quite small.

The same effects expected from an increase in size would also be expected
from an increase in velocity. If an animal can alter the speed at which it moves
an appendage, this plasticity in behavior should have leakiness consequences only
for animals whose hairs operate in the Reynolds number range of 1072 to 1.

Our suggestion that a novel function can accompany a simple change in the
size or speed of a bristled structure of a small organisms may have evolutionary
implications. Kingsolver and Koehl, studying the evolution of wings in insects,
have demonstrated how an isometric change in the size of an animal can lead
to a radically new function, and have suggested that this phenomenon might
represent an important mechanism of evolutionary change (Ref. 21). If (as in
the example of a hairy paddle becoming a filter) a structure acquires a novel
function, it may well then be subjected to a new suite of selective pressures on
its form.

6. Application of the model to copepod second maxillae

As mentioned above, water appears to flow through the second maxillae (M2’s)
of some species of copepods, but not of others. The morphology of the M2’s
varies from species to species, as illustrated in Figure 2. Each M2 bears a row
of hairs (called setae), each of which bears rows of smaller hairs (called setules).
The size of the setae, and the size and spacing of the setules depends on species,
whereas the gaps between setae depend on how far an animal spreads its setae
apart during a particular fling (Fig. 3B). The differences in speed of motion of
the M2’s is more striking than the differences in morphology between species
(e.g., Ref. 3). The setae of copepod M2’s operate at Reynolds numbers between
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102 and 1 (Refs. 3, 10, 11), the range in which theory predicts that leakiness
should be sensitive to Reynolds number and gap-to-diameter ratio.

We have used the model of Cheer and Koehl (Ref. 8) to calculate the leak-
iness of copepod M2’s. The parameters used in these calculations were based
on measurements for five species chosen to represent a range of morphologies
and behaviors. Frame-by-frame analysis of high-speed movies of these copepods
feeding on algal cells of various sizes yielded values for velocities and spacings of
M2 setae (Koehl and Paffenhofer, unpublished data). Morphometric analyses of
light micrographs and scanning electron microscope images of the M2’s of the
animals filmed provided values for the diameters of setae and setules, and for
setule lengths, spacings, and angles (Koehl, unpublished data).

The velocity profiles around a seta with a neighbor were calculated (Fig. 5A),
and then the setules were placed at the appropriate angle in the flow field (Fig.
5B). Using the velocities thus calculated for free-stream velocities at defined
positions on the setules, the velocity profiles between a pair of setules were
calculated (Fig. 5C, and 5D). We then integrated across these velocity profiles
to calculate leakiness of the second maxillae.

Figure 6 illustrates the leakiness of M2’s from a species whose setae operate
at Reynolds numbers approaching 1, Centropages typicus (Fig. 5C), and from a
species whose setae operate at Reynolds numbers of the order of 1072, Temora
stylifera (Fig. 5D). Note how much leakier the faster, coarser C. typicus M2 is.
This example shows two copepods that superficially appear to be doing the same
thing (both are a few millimeters long, both use hairy M2’s to catch particles,
and both move their M2’s in qualitatively the same way - a fling outward and
a squeeze back in); however, one of these species is about 50 times leakier than
the other simply because it operates at a higher Reynolds number in the critical
range where the Reynolds number makes a difference to leakiness.

Figure 6 illustrates another important difference between hairy appendages
at these two ends of the critical range. When a hinged appendage flaps at some
angular velocity, its distal end moves at a greater speed than does its proximal
end. The Reynolds numbers along the length of a seta of an animal such as
C. typicus, whose setal tips operate at Reynolds numbers near one, span the
critical range where leakiness is sensitive to Reynolds number. Therefore, such
an appendage is much leakier at its tip than at its base (unless its morphology
is drastically different at base than tip). Note that this is not true for animals
such as T. stylifera, whose M2 setal tips operate at Reynolds numbers of 1072
or lower.

Does water move around the M2’s of these species of copepods as theory
predicts, and if so, what consequences do these differences in leakiness have for
the mechanisms that variuos copepods can use to catch particles?
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7. Particle capture by second maxillae
at different Reynolds numbers

Theory predicts that M2’s operating at Reynolds numbers near | should be
leaky filters, whereas M2’s operating at Reynolds numbers of 10~2 should be
paddles. By looking at movies of fine dye lines in the water as copepod M2’s
sweep through them, we can see whether these predictions of the model are
correct.

As predicted by the model, the M2’s of Centropages furcatus and C. typicus
are very leaky (Fig. 3C-3F). When a Centropages flings its M2’s out, it does
not disturb the fluid very much (note that the dye does not move between Figs.
3C and 3D). When the animal squeezes its M2’s back in, water moves readily
between the setae (as shown by the dye loops left behind between the setae as
they sweep across the dye lines in Figs. 3E and 3F). Particles are filtered out
of the water passing through the M2’s during this squeeze phase of the motion
(Koehl and Paffenhdfer, unpublished data).

In contrast, the M2’s of species such as T. stylifera and £. pileatus, whose M2
setae operate at Reynolds numbers of 10~2, are not very leaky (Figs. 3G, 3H)
and behave like paddles, as predicted by theory. When these animals fling their
M2’s apart, a parcel of water (and any food particles in it) is drawn between
them and toward the mouth, as described by Koehl and Strickler (Ref. 3). This
flinging motion is reminiscent of that used by some insects to develop circulation
around their wings (e.g., Refs. 22, 23). The M2’s then squeeze back together
again around the captured water, and the particle in that water is propelled to
the mouth by the stubby endites of the first maxillae (Ref. 3).

These examples illustrate that different species of copepods that qualitatively
do the same thing - fling and squeeze their M2’s to catch an algal cell - can
be capturing the cell by entirely different physical mechanisms because their
M2’s operate at different Reynolds numbers in the critical range where leakiness
changes with Reynolds number.

8. Leakiness and changes in behavior

The model predicts that if an animal’s hairs operate at Reynolds numbers in
the critical range between 1072 to 107!, then a change in the spacing between
hairs or in the speed of motion can produce a change in leakiness. E. pileatus
shows considerable plasticity in its M2 motions (e.g., Refs. 3, 24; also, Koehl and
Paffenhofer, unpublished data), and the setae of its M2’s operate in this critical
Reynolds number range.

Without getting into the details of all of E. pileatus’s varied behaviors and the
circumstances in which it uses them, let us focus on the flow through the M2’s
during two extreme behaviors (Fig. 7). During a rejection of captured material,
the fastest motion the M2 makes with its setae spread the greatest distance
apart, the calculated leakiness at the distal end of the appendage is 31%. In
contrast, when £. pileatus feed on very small algae (e.g., 4 um) they do not fling
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in response to individual cells, but rather pump a stream of water toward the
mouth with a series of low-amplitude fling-and-squeeze motions. During these
slow M2 motions, the gaps between setae are small and the calculated leakiness
is only 14%. Hence, E. pileatus illustrates that an organism is not necessarily
constrained by the morphology of its hairy appendages to just one leakiness: if
it operates in the critical Reynolds number range, it can alter its leakiness by
changing its behavior.

9. Calculation of velocity profiles around two and
four cylinders at Reynolds numbers of order one

The analytical model described in Cheer and Koehl (Ref. 8) only deals with
two cylinders at Reynolds numbers < 1, whereas most hairy appendages bear
more than two hairs and some animals operate their hairs at Reynolds num-
bers > 1. Therefore, Cheer and Abdullah (unpublished text) used numerical
calculations of steady, two-dimensional flow around infinitely long cylinders to
investigate the consequences of adding more cylinders to a row and to explore
the flow at Reynolds numbers of the order of 1. The numerical solution to the
Navier-Stokes equations in vorticity stream-function formulation was obtained
in generalized coordinates on a grid fitted to the geometry. The alternating di-
rection implicit (ADI) method was used to solve the vorticity equations and the
successive over-relaxation (SOR) method was used to solve the stream-function
equations. Their results have intriguing biological implications.

Figure 8 illustrates Cheer and Abdullah’s prediction of the consequences for a
row of four cylinders of increasing Reynolds number from 0.5 to 4. Not only does
leakiness increase as the Reynolds number rises, but the shapes of the velocity
profiles become irregular, with velocity peaks near the cylinders. In contrast
to lower Reynolds numbers, the velocities attained between the cylinders at
Reynolds numbers > | exceed the free-stream velocity. As mentioned in the
introduction, the steepness of the velocity gradients adjacent to the hairs of
filter-feeding appendages or of appendages that capture molecules (gills, olfactory
antennae) are important in determining the flux of particles or molecules to the
capturing surfaces of the hairs. The calculations of Cheer and Abdullah point
out that at Reynolds numbers of the order of 1, a small change in the speed
of a row of hairs can make a big difference to the steepness of that velocity
gradient. Empirical studies must be conducted to determine whether organisms
take advantage of this physical phenomenon as they deploy their antennae, gills,
and filters.

What happens to fluid motion if the number of hairs in a row is changed (by
injury, during the development of an individual, or through the evolution of a
lineage)? The velocities calculated by Cheer and Abdullah for two and four hairs
are illustrated in Figure 9. At Reynolds numbers < 1, the addition of more hairs
reduces leakiness, whereas at Reynolds numbers > 1, the addition of more hairs
increases leakiness. We have here an example of a simple morphological change
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that has opposite consequences at slightly different Reynolds numbers. Figure
9 also illustrates that the leakiness of a four-haired appendage is more sensitive
to a change in Reynolds numbers than is the leakiness of two-haired appendage
(i.e., the performance of the former is more sensitive to growth or behavioral
change than is the performance of the latter).

Although these numerical calculations (Cheer and Abdullah, unpublished)
permitted analysis of more hairs and higher Reynolds numbers than were possible
with the model of Cheer and Koehl (Ref. 8), one row of four infinitely long hairs
operating at steady state in an infinite fluid is still a far cry from a flapping
pair of M2’s. What other tools are available for studying the biofluiddynamics
of such complicated structures?

10. Comparison of techniques for studying biofluiddynamics

Biofluiddynamical questions can be addressed using a variety of empirical and
theoretical tools, each with different advantages and limitations.

1. We can measure the motions and forces of real organisms and the fluids
around them, although all the technical challenges of doing so for rapidly moving
microscopic creatures have not yet been solved. Unfortunately, exploration of the
consequences of variations in morphology or behavior is limited by the diversity
available in nature. Therefore, we cannot systematically vary one parameter at
a time while holding all others constant to quantify the effects of each.

2. Mathematical models permit us to express quantitatively theories about
the mechanisms underlying a process, or to describe quantitatively the behavior
of a system. Such models enable us to predict the effects on performance of
varying defined parameters, and they also permit us to study combinations of
morphology and behavior not found in nature. However, with mathematical
models, we are limited to relatively simple geometries and kinematics.

3. A third alternative is to measure forces or velocities of dynamically scaled
physical models. Flow situations characterized by the same Reynolds numbers
are dynamically similar (i.e., the ratios of the velocities and the forces at all
points in the fluid around the model are the same as for the prototype). There-
fore, a large model can be used to study the fluid dynamics of a microscopic
structure if the model is moved slowly in a fluid of high viscosity to yield the
same Reynolds number as that of the prototype. Repeatable, detailed velocity
and force measurements that cannot be made on delicate, uncooperative micro-
scopic organisms are technically possible with large models. Like mathematical
models, dynamically scaled physical models have the advantage that parameters
can be varied one at a time as the investigator chooses, and combinations that
do not exist in nature can be tried. Such physical models, however, can be more
complicated in geometry and behavior than is practical for mathematical mod-
els. Of course, as with mathematical models, physical models are only as good
as their underlying assumptions.
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11. Dynamically scaled models of pairs of cylinders

To use dynamically scaled models to explore the details of flow around rows
of cylinders, I have joined forces with two other investigators who also need such
information to study the capture of molecules by hairy olfactory appendages: B.
A. Best, who is studying the olfactory antennules of crustaceans, and C. Loudon,
who is studying the olfactory antennae of insects.

Before constructing more complicated models, our first exercise was to use
such models to empirically test the predictions of Cheer and Koehl’s model (Ref.
8). We used a computer-controlled RS-232, single-axis, microstepping servo-
positioning system (Daedel rail table model 506301S-LH and controller model
MC6000) to move a pair of steel cylinders through a 106-liter tank of Karo light
corn syrup (CPC International). The cylinders were 1.98 mm in diameter and
extended from the bottom of the tank through the top surface of the fluid (i.e.,
were “infinitely long”). Lines of small hydrogen bubbles generated hydrolytically
(e.g., Refs. 25, 26) in the syrup were illuminated by a strobotac (GenRad model
1531-AB) flashing at known frequencies. Photographs were taken of the bubble
paths relative to the cylinders by a 35-mm camera traveling with the wires.
These photographs were digitized, and the velocity profiles measured between
the cylinders were used to calculate leakiness.

These experiments with physical models are ongoing, and thus far we have
only studied pairs of cylinders moving at Reynolds numbers of 1072, 1072, and
10~%. Examples of our preliminary results for a pair of cylinders traveling parallel
to the side wall of the tank are given in Figures 10 and 11. As predicted by
theory (Ref. 8), we measured only slight changes in the steepness of the velocity
gradients adjacent to cylinders with changes in Reynolds numbers at Reynolds
numbers below the critical range. At these very low Reynolds numbers, we
found that increasing the distance of the cylinders from the side wall decreased
leakiness until the cylinders were 25 diameters from the wall; further increases in
distance from the wall produced no measurable additional decrease in leakiness
(Fig. 10). However, even in this plateau region, our measured leakinesses were
greater than those calculated by Cheer and Koehl (Ref. 8) (Fig. 10), as were the
steepnesses of velocity gradients near the cylinders (Fig. 11). Furthermore, the
reductions in leakiness and in velocity gradient steepness produced by a decrease
in the gap-to-diameter ratio were more pronounced than predicted by theory.

We believe that these discrepancies between theory and experiment are due
to the effects of the tank walls and floor on the fluid motion with respect to the
cylinders. Fluid sticks to the stationary boundaries of the tank and is sheared as
objects move through the tank; therefore, at low Reynolds numbers where viscous
effects dominate the flow, more fluid should be drawn through the gaps between
cylinders traveling with respect to the walls than through the gaps between hairs
moving in an unbounded fluid. Although we are not aware of analyses of wall
effects at low Reynolds numbers on the flow between pairs of cylinders, studies
of the effects of walls on spheres moving at low Reynolds numbers (e.g., Refs.
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27, 28), and of the interactions of bodies near walls at low Reynolds numbers
(e.g., Ref. 29), show that walls influence the flow around the bodies even when
the bodies are hundreds of diameters from the wall. Of course, as we move
to Reynolds numbers higher than 1072, we expect the effects of the wall to
become less important (i.e., felt only at shorter distances, measured in cylinder
diameters, from the wall).

It should not be surprising that the leakiness is further increased when the
hairs move toward a front wall (Loudon, Best, and Koehl, unpublished data),
analogous to an animal flapping an appendage toward the body surface. It
should also not be surprising that leakiness is reduced if the hairs are of finite
length (Best, Loudon, and Koehl, unpublished data), since fluid can flow around
the tips of the hairs as well as around the sides of the row.

These experiments, rather than being useless because of wall effects, point out
the importance of incorporating these effects into our models of low-Reynolds-
number flow around appendages that operate near walls (e.g., the surface of the
organism’s body, other appendages, and the substratum in the case of terrestrial
or benthic creatures). When hairy appendages flap near the body surfaces of
organisms, they are likely to be leakier than they would be in an infinite fluid.
Leakiness might vary with stage during a stroke as an appendage’s distance from
the body changes, and proximity to the body surface might compensate for the
lower leakiness near the slowly moving base of an appendage (discussed above).
Another important effect of walls that we have not yet studied is the consequences
of a wall moving with the hairs (such as the appendage itself bearing the hairs,
or as a moving organism bearing a non-flapping antenna). Wall effects in these
cases should reduce the leakiness.

12. Comparison of theoretical results
with measurements on second maxillae

Our measurements of flow between pairs of cylinders led me to worry about
the effects of copepod body surfaces on the flow through M2’s. I expected that
leakiness calculated using the model of Cheer and Koehl (Ref. 8) would be lower
than that measured for M2’s whose setae operate at Reynolds numbers of 10-2,
but that the discrepancy would be minor at a Reynolds number of 1. [ have
begun to estimate leakiness of real M2’s by measuring on our movies the dye
loops left behind as setae sweep through them (as in Fig 3D). As shown by
the preliminary data in Table 1, these estimates are the same as the leakinesses
predicted by the model of Cheer and Koehl (Ref. 8) at Reynolds numbers near
1, but are about twice as big as predicted values at Reynolds numbers of the
order of 1072,

13. Dynamically scaled physical models of second maxillae

We are using dynamically scaled physical models to explore more systemati-
cally the effects of the body surface and of other appendages on the flow around



HAIRY LITTLE LEGS 45

copepod M2’s. We have constructed models of the M2’s of several species of
copepods, and a motor-driven system that causes them to fling and squeeze at
defined Reynolds numbers (in a 1000-liter tank of mineral oil at 470 diameters
from the nearest wall). These models have realistic numbers of setule-bearing
setae of finite length, and the motion of neutrally buoyant marker particles in
the fluid around these structures can be filmed as they execute fling-and-squeeze
motions in neighborhoods of various geometries. With these physical models it
1s possible to investigate geometries too complicated to be practical to model
mathematically. For example, we can measure the effect on fluid low of an M2
executing a fling-and-squeeze alone versus in opposition to the other M2 of a
pair, of the distance between those paired appendages, of the arcs of the fling,
and of the shape and proximity of the surface of the animals’ body (Koehl and
Jed, unpublished data).

14. Summary

Do hairy little legs function as paddles or as leaky rakes? Many organisms
use appendages composed of small hairs to conduct a variety of important func-
tions, such as capturing food or molecules, or locomoting through fluids. The
performance of these functions depends on the velocity profiles of fluid moving
through the array of hairs. We have studied factors that affect the low through
such arrays of hairs that operate at low Reynolds numbers.

1. Leakiness depends on Reynolds numbers: at Reynolds numbers of the
order of 10~2 and lower, rows of hairs function like paddles, whereas at Reynolds
numbers approaching 1, they behave like leaky sieves.

2. At Reynolds numbers < 1073, changes in morphology or Reynolds number
have little effect on the leakiness between hairs. In this Reynolds number range,
there is tremendous permission for morphological or behavioral diversity without
performance consequences.

3. At Reynolds numbers > 1072 reducing the gap width between hairs re-
duces leakiness, although at Reynolds numbers approaching 1, this effect only
occurs if hairs are already close together.

4. In the Reynolds number range of 1072 to 1, increasing speed or size can lead
to a large increase in leakiness. This is a critical range where morphology and
behavior can have a big effect on the performance of functions that depend on
velocity profile or leakiness. Novel functions (e.g., filtering) are possible without
requiring the invention of novel morphologies.

5. At Reynolds numbers < 1, an increase in the number of hairs in a row
reduces leakiness, whereas at Reynolds numbers > 1, an increase in the number
of hairs leads to an increase in leakiness. Thus, a given morphological change
can have opposite effects at different Reynolds numbers.

6. At low Reynolds numbers, the leakiness of an array of hairs is increased
if the array moves with respect to a stationary wall. This effect is likely to be
important for hairy appendages flapping at low Reynolds numbers with respect
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to the body surface of an organism.

Biofluiddynamics is a field with a history of fruitful interaction between math-
ematical modelers and experimental scientists. In the example described in this
paper, we set out to use copepod second maxillae to test some of the predictions
of theoretical analyses of filters. Our empirical results showing that M2’s were
leaky enough to be filters only some of the time led us to explore another ques-
tion: under what circumstances do rows of of hairs function as filters rather than
as paddles? Mathematical models predicted the transition to occur as Reynolds
number increases between 10”2 and 1. Experiments with dynamically scaled
physical models (to permit us to study situations too complicated to be prac-
tical for mathematical modeling) pointed out the increase in leakiness caused
by wall effects at low Reynolds numbers. These experiments led us to discover
that the leakiness predicted by our mathematical models was lower than the
values measured for real copepods whose setae operated at Reynolds numbers
of 1072, but was the same as values measured for setae at Reynolds numbers
near 1. These observations stimulated us to begin experiments with dynamically
scaled models to study wall effects on the leakiness of paired flapping appendages.
Thus, theory suggested experiments, whose results led to the formulation of new
theory, and so on, as we leap-frogged our way between mathematical modeling
and empirical studies toward a better understanding of the functioning of hairy
appendages.
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Table 1. Comparison of Measured and Calculated Leakiness

Leakiness, %

Species Calculated® Measured
Centropages furcalus 92 to 96 95
(Reynolds number ~ 1) SD.=3,n=4
Fucalanus pileatus 11 to 15 23
(Reynolds number ~ 1072) SD.=6,n=3

* Calculated using the model of Cheer and Koehl (Ref. 8).

THEORY

filtration mechanisms

(Rubenscein & Koehl, 1977) ——‘-—-_““‘—-—_.

low Re flow between /
pair of hairs
(Cheer & Koehl, 1987a; 1987b)

flow through
copepod M-2's

intermediate Re
flow between

hairs in a row
{Abdullah & Cheer, unpubl.)

wall effects? ~ ~

EXPERIMENT

water flow & kinematics
of copepod M-2's

(Ksehl, 1981; 1984,
Kcenl & Strickler, 1981)

(Koehl, Cheer 5 Parfienh8fer, unpubl.)

dynamically-scaled
physical models of M-2's

(Koehl & Jed, unpubl.)

dynamically scaled physical
models of hairs

(Loudon, Best & Koehl, unpubl.)
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.. ~
.0L 1nsect ...0f crustacean
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FiGurg 1. Flow chart illustrating interplay between theory and ex-

periment in the investigation of biofluiddynamics of hairy legs. Solid

arrows indicate which studies led to others; dashed arrows indicate

studies to be conducted next.
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FIGURE 3. Photographs of single frames of high-speed (500 frames/
sec) movies of calanoid copepods feeding on algal cells: m2 = second
maxillae, m = mouth, al = first antenna, sw = swimming legs, dye =
food coloring mixed with sea water and released from a micropipette
5 mm from animal. Arrows indicate direction second maxillae are
moving. (A) Anterior half of a Centropages furcatus viewed from its
left side as the M2’s begin to fling. (B) Same animal 4 msec later,
with the M2’s flung apart. (C) C. furcatus viewed from its anterior
end as the M2’s are beginning to fling. (D) Same animal 2 msec
later, with the M2’s flung apart. (E) Same animal 2 msec later than
in (D) as the M2’s are squeezing back together. (F) Same animal
6 msec later than in (E), with the squeeze by the M2’s completed.
Note in (D) and (E) the loops of dye left behind marking water that
has flowed between the setae during the squeeze. (G) Ventral portion
of anterior end of a Eucalanus pileatus as seen in three-quarter view
from its left anterior end while its M2’s execute a squeeze. (H) Same
animal as in (G) 4 msec later. Note how dye is pushed along by the
setae and does not flow between the gaps.
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FIGURE 4. (A) Examples of calculated fluid velocities (black lines)
with respect to a pair of circular cylinders (black circles). Note that
vectors are all drawn to the same scale with respect to free-stream
velocity (Us, shown by the line to left of figure), although U, ’s in
each example are quite different from each other (redrawn from Fig.
1l in Ref. 8). (B) Leakiness (defined in the text) of a pair of cylinders
plotted versus ratio of width of gap between cylinders to diameter of a
cylinder. Flow profiles used for points indicated by open circles were
calculated using Lamb’s solution for Oseen’s approximation to the
Navier-Stokes equations of motion; flow profiles used for points indi-
cated by black circles were calculated as described in text (redrawn
from Fig. 5 in Ref. 8).
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FIGURE 5. (A) Cross-section of a seta on the M2 of a Centropages
typicus during a “fling,” showing velocity vectors (arrows) of water
with respect to the seta (calculated using model of Ref. 8). This seta,
which bears no setules, is shown at a position 0.125 of the length
of seta from the tip of seta. Free-stream velocity (U ) with respect
to seta i1s indicated by arrow at upper left. (B) Position of setules
(indicated by dashed lines) in the velocity profiles indicated in (A).
Asterisks indicate positions at which velocity profiles with respect to
setules were then calculated. The velocity vector shown here at each
of these positions was used as the free-stream velocity encountered by
that position. (C) Longitudinal section of a portion of the seta shown
in (B), taken in a plane parallel to one of the two rows of setules (C.
typicus M2’s bear long and short setules). Lines represent velocity
vectors of water with respect to setules, but at right angles to plane
of diagram. Free-stream velocity with respect to the seta at right
angles to plane of the diagram is indicated by arrow at the upper
right. A vector shorter than this arrow indicates that some water at
the position of the vector is moved along with the M2 as 1t flings. (D)
Diagram as in (C) of the velocity vectors of water with respect to the
setules of a Temora stylifera during a fling at a position 0.125 of the
length of seta from tip of seta. Note that both size and velocity scales
are different from those used in (C).
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in Figs.

M. A. R. KOEHL

FLING
leakiness at mid—point of setules

5C and 5D are for position A.)

base



HAIRY LITTLE LEGS
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FIGURE 7. Diagram of longitudinal section of a portion of a seta
of a M2 at position A (see Fig. 6) of a Fucalanus pileatus taken in
the plane of one of the two rows of setules. Lines represent velocity
vectors of water with respect to setules, but at right angles to the
plane of the diagram; these vectors were calculated as described in
Fig. 5. Upper diagram represents flow with respect to setules during
the rapid inward sweep of a rejection motion (described in Ref. 3)
when the gap between neighboring setae at position A is 50 pm.
The lower diagram represents flow with respect to setules during the
slow outward flap of the small-cell feeding mode (described in Ref. 24)
when the gap between neighboring setae is only 23 um. Line at upper
right is free-stream velocity (at right angles to diagram) of water with
respect to the seta during rejection motion, and line at lower right
represents free-stream velocity with respect to the seta during small-
cell mode. Leakiness values presented in text were calculated using
profiles at a position 0.375 of the length of a setule from tip of setule.
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FIGURE 9. Velocity vectors with respect to two cylinders (graphs
on the left) and four cylinders (graphs on the right) in a row (gap/di-
ameter = 1), calculated for a Reynolds number of 0.5 (upper graphs)
and 4.0 (lower graphs) by Abdullah and Cheer (unpublished data) as
described in text. Since flow fields are symmetric, only left half of
row of cylinders is shown. Position (measured in cylinder diameters)
1s indicated on horizontal axis, and velocity (U) normalized to free-
stream velocity (U ) is indicated on vertical axis.
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FIGURE 10. Leakiness (defined in text) of a pair of cylinders mov-
ing at Re = 1072 at different distances from the side wall of a tank
(Loudon, Best, and Koehl, unpublished data). Open diamonds repre-
sent data for a gap between cylinders that was 15 diameters in width,
and black squares indicate data for a gap width of 5 diameters. Three
duplicates of each measurement were made, and standard error bars
were smaller than symbols indicating the mean value. Values for a

distance of infinity were not measured, but rather were calculated
using model of Cheer and Koehl (Ref. 8).
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FIGURE 11. Steepness of velocity gradient in the gap between a
pair of hairs moving at different Reynolds numbers. The measure of
steepness of velocity gradient (Up 3p/Us) is the ratio of velocity of
fluid relative to the hair at a distance of 0.3 diameter from surface
of hair to free-stream velocity of fluid relative to the hairs. Open
diamonds indicate values for a gap width of 15 diameters between
hairs, and black squares indicate values for a gap width of 5 diame-
ters. Data connected by dashed lines represent mean values of three
duplicates of experiments using dynamically scaled physical models
(error bars indicate one standard error) (Best, Loudon, and Koehl,
unpublished data), whereas other values represent predictions calcu-
lated using model of Cheer and Koehl (Ref. 8).



