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It is becoming increasingly important to understand how present diversity patterns compare with past ones,
in order to understand the extent of change that present faunas exhibit with respect to past baselines for such
parameters as extinction rate and magnitude, ecological structure, and ecosystem function. However, these
comparisons have been difficult to quantify because the modern and paleontological records are inherently
different. This study examines how those differences affect comparisons of fossil and modern mammalian
species diversity in the United States and suggests how the data can be treated to minimize their biases. I
first compare extant mammalian species diversity to a paleo-baseline constructed from fossils covering the
past 30 million years. Species–area relationships show that, contrary to expectations, today's mammalian di-
versity appears to have increased since the Holocene (11,500 to–500 years ago). This bump in diversity is the
result of an increase in small mammal species in the modern dataset, in particular those that are the most
difficult to identify and diagnose in the fossil record (e.g., Geomyidae and Heteromyidae). This increase re-
sults from neontological classifications of small mammal species that employ methodologies and characters
(notably soft-tissue and molecular information) that cannot be used with fossils. One way to correct for these
differences would be to reevaluate neontological species using the same morphological characters and spe-
cies concept commonly used by paleontologists.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Comparisons of modern and fossil data are becoming essential to
understand the extent of human impacts on the biota (Hadly and
Barnosky, 2009; Koch et al., 2009; Dietl and Flessa, 2011). However,
adequate comparisons are difficult because modern and fossil data
are so different (Barnosky et al., 2011a). The fossil record is an incom-
plete record of past species because of a rock record that varies in
completeness through time and the highly variable preservation po-
tential of different organisms based on the environment they live in
(Peters and Heim, 2011). In addition, species are usually diagnosed
using strictly morphological criteria, particularly of teeth. On the
other hand, modern zoological data have different sampling biases,
and species are more commonly diagnosed using a phylogenetic spe-
cies concept that uses different character sets (e.g., molecular, soft
part) (Barnosky et al., 2011a).

In order to judge current deviations from long-term ecological base-
lines, including the extent of diversity loss via extinction and biogeo-
graphic range changes (Barnosky et al., 2011b), and predict what to
expect in the future, it is necessary to correct these differing biases as
much as possible. North American mammals provide a unique opportu-
nity to do this because they have a relatively robust and stable taxono-
my, are well-sampled relative to other taxonomic groups, are cataloged
in numerous large paleontological databases, and, among fossil taxa,
rights reserved.
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are associated with good stratigraphic, chronologic, and geographic
data (F.A.U.N.M.A.P. Working Group, 1994; Carrasco et al., 2005;
Paleobiology Database, 2011). These characteristics help reduce the dif-
ferences among time periods and datasets and,more importantly, can be
adjusted for temporal and geographic inconsistencies using various
methodologies.

Past work using species–area relationships has established that
there was a diversity crash of mammals in central North America
(i.e., the USA) in the Holocene with respect to earlier Cenozoic pat-
terns, resulting in a “new normal” for local, regional, and continental
biodiversity beginning in the Holocene (Carrasco et al., 2009;
Barnosky et al., 2011b). However, it has not yet been possible to com-
pare the Holocene fossil record with diversity patterns of the last cen-
tury or so because of the disparity between the paleontological data
used in previous studies and the modern data that are available.
Therefore, this study applies the same species–area technique to the
modern data, and then examines the results to identify where sam-
pling biases are overriding the biological signal and discusses possible
ways to overcome the biases.
2. Materials and methods

2.1. Data sources

Paleospecies occurrence data were extracted from NEOMAP (the
Neogene Mammal Mapping Portal), a distributed database system
s when comparing past and present species diversity, Palaeogeogr.
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that links three paleomammal databases: MIOMAP (Carrasco et al.,
2005, 2007), FAUNMAP I (FAUNMAP Working Group, 1994), and
FAUNMAP II (Graham and Lundelius, 2010). NEOMAP is housed at the
University of California, Berkeley and can be accessed at http://www.
ucmp.berkeley.edu/neomap/. The data for contemporary extant mam-
mals was acquired from Arctos, a multi-institution, multi-collection
museum database available online at http://arctos.database.museum/
SpecimenSearch.cfm. This data acquisition was restricted (for reasons
see Section 2.5) to the mammal collections from the Museum of Verte-
brate Zoology at the University of California, Berkeley.

2.2. Mammal subgroups

The dataset was analyzed using three different groups: all mam-
mals, large mammals, and small mammals. Small mammals included
all taxa of the Rodentia, Insectivora (=Soricomorpha of Wilson and
Reeder (2005)), and Lagomorpha following the reasoning of Liow et
al. (2008) and Barnosky et al. (2011b). Essentially, these orders in-
clude those taxa that weigh less than approximately 2 kg. The large
mammal group included all other non-volant terrestrial mammals.
The modern dataset was further refined by removing taxa that were
introduced by humans into the United States (e.g., horses, cows, do-
mesticated ferrets). In addition, the extant taxonomy was verified
and, when needed, modified to reflect the taxonomy of Wilson and
Reeder (2005). For a complete list of the taxa analyzed in the Holo-
cene and Modern time intervals, see Supplementary Table 1 (large
mammals) and Supplementary Table 2 (small mammals).

2.3. Temporal bins

Occurrence data were placed into one of twenty different time in-
tervals (Table 1) ranging in age from 30 million years ago through the
Modern. Pre-Blancan (before 4.7 Ma) time periods were based on the
subdivisions of the North American Land Mammal Ages (NALMAs)
outlined by Tedford et al. (2004). Post-Blancan time intervals includ-
ed the NALMAs used by the FAUNMAPWorking Group (1994) as well
as Holocene and Modern time intervals. Alternative binning method-
ologies have been employed (e.g., Alroy, 1998, 1999, 2003) that sep-
arate fossil occurrences into one million year intervals. However,
these methods were not appropriate for this study because there
would not have been enough data in many of the time slices to
Table 1
Temporal bins into which species occurrences were sorted. All values are given in years
or millions of years (Ma).

Temporal division Age boundaries Interval length

Modern ~500–0 500
Holocene 11,500–~500 ~11,000
Rancholabrean 0.15 Ma–11,500 ~139,000
Irvingtonian 1.8–0.15 Ma 1.65 Ma
Blancan 4.7–1.8 Ma 2.7 Ma
Late Late Hemphillian 5.9–4.7 Ma 1.2 Ma
Early Late Hemphillian 6.7–5.9 Ma 0.8 Ma
Late Early Hemphillian 7.5–6.7 Ma 0.8 Ma
Early Early Hemphillian 9–7.5 Ma 1.5 Ma
Late Clarendonian 10–9 Ma 1.0 Ma
Middle Clarendonian 12–10 Ma 2.0 Ma
Early Clarendonian 12.5–12 Ma 0.5 Ma
Late Barstovian 14.8–12.5 Ma 2.3 Ma
Early Barstovian 15.9–14.8 Ma 1.1 Ma
Late Hemingfordian 17.5–15.9 Ma 1.6 Ma
Early Hemingfordian 18.8–17.5 Ma 1.3 Ma
Late Late Arikareean 19.5–18.8 Ma 0.7 Ma
Early Late Arikareean 23.8–19.5 Ma 4.3 Ma
Late Early Arikareean 27.9–23.8 Ma 4.1 Ma
Early Early Arikareean 30–27.9 Ma 2.1 Ma
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perform the analyses at the scale of single biogeographic provinces.
As such, the temporal bins used are unequal in length, but, as dis-
cussed by previous authors (Barnosky et al., 2005; Carrasco et al.,
2009; Barnosky et al., 2011b), it is unlikely that these differences
would have significantly affected species diversity counts because
no significant correlation exists between bin length and either num-
ber of localities or number of species, and the localities in each bin
do not span the entire time represented by it.

2.4. Biogeographic provinces

The occurrencedatawere assessed across ten different biogeographic
provinces (Fig. 1). These regions are considered biogeographically dis-
tinct from one another today (Hagmeier and Stults, 1964; Hagmeier,
1966), and it is likely that similar provinciality existed through theOligo-
cene (Storer, 1989; Janis et al., 1998; Barnosky and Carrasco, 2002;
Tedford et al., 2004). This is particularly true in those provinces that
have themost complete fossil record (e.g., Northern Great Plains, South-
ern Great Plains, and Gulf Coast) as they are also those that have
undergone limited topographic change over the past 30 million years
(Prothero, 1998; Condon, 2005).

2.5. Sampling biases

Fossil data are plagued by many well-documented sampling
biases including an incomplete fossil record, varying preservation po-
tential, and non-random collection methods. To account for these
biases, species richness values per time slice and per biogeographic
province were computed by rarefying the data using a richness
value of 75 taxon occurrences (whether a taxon was present or
absent at a given locality). The number of species per geographic
area was calculated using minimum counts (Barnosky et al., 2005),
where all specimens that were identified to only genus or a higher
taxon were allocated to a species represented by more diagnostic ma-
terial. This minimum count method reduces the potential of artificial-
ly inflating the number of species (i.e., double-counting by treating
one species as two or more).

Because the paleo-time slices are similar subsets of the total fauna
present at any particular time (i.e., they all have similar biases), rare-
faction should account for the variability between very well-sampled
temporal bins and those that are more poorly sampled (see Carrasco
et al., 2009 for a more complete evaluation). However, neontological
data does not suffer from the same rock record or preservational
biases and is collected using different methods than those used by pa-
leontologists. Because the intent of this study was to create a compara-
tive modern dataset that most closely resembled the paleontological
data, the modern dataset was culled only from the Museum of Verte-
brate Zoology at the University of California, Berkeley even though a
more accurate representation of abundance and diversity levels could
have been acquired by combining data frommany zoologymuseumcol-
lections. By doing this, some provinces (e.g., Central California) are very-
well‐sampled while others (e.g., Northern Great Plains) are poorly
sampled just as we see in the fossil record. Nevertheless, because
provincial sample sizes still varied greatly between the modern and
fossil datasets, no attempt was made to compare diversity within a
single province through time, but rather assess it across all provinces.

2.6. Geographic area bias

Geographic area biases were addressed by plotting the resulting
rarefied diversities against geographic area to determine species–
area relationships (SARs). SARs have been shown to be effective in
evaluating paleodiversity (Barnosky et al., 2005; Carrasco et al.,
2009; Barnosky et al., 2011b) because they allow paleontologists to
compare diversity from areas of varying sizes from a single time peri-
od or across several time intervals. The relationships are generally
s when comparing past and present species diversity, Palaeogeogr.
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Fig. 1. Boundaries of the ten biogeographic provinces used. CC, Central California; MJ, Mojave; CP, Columbia Plateau; GB, Great Basin; SGB, Southern Great Basin; NR, Northern Rock-
ies; CRP, Colorado Plateau; NGP, Northern Great Plains; SGP, Southern Great Plains; and GC, Gulf Coast.
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expressed as S = cAz, where S = the number of species, A = the area
sampled, and z (the slope) and c are empirically derived constants.
The geographic areas were calculated by querying the BerkeleyMapper
mapping interface (http://berkeleymapper.berkeley.edu), tracing the
minimum convex polygon of the relevant localities, and calculating
the area enclosed by the polygon. The SARs were evaluated by con-
structing Type IV unnested species–area curves (Scheiner, 2003). In
these curves, each point is simply the number of rarefied species in a
given geographic area. This contrasts with nested Type I curves, which
are species accumulation curves. As such, each point in a Type IV
curve represents a distinct area (and/or time interval) with its own
set of localities and species. Therefore, the slope of these curves
does not necessarily need to be positive since points from depauper-
ate, but large provinces (e.g., a big desert) will have lower diversity
than a much smaller, but speciose province (e.g., rain forest). As
such, the slopes of Type IV SARs are difficult to interpret and do not
represent changes in beta diversity (differences between provinces)
in a straightforward manner (Barnosky et al., 2011b). Therefore, the
focus of the SARs presented here will be on the overall relative pat-
terns of diversity.
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Fig. 2. Number of rarefied species plotted versus total geographic area for each tempo-
ral bin. Each data point represents the cumulative data from a single time interval (see
Table 1 for the time bins) for all ten biogeographic provinces combined. The black di-
amonds represent each of the time slices from 30 Ma to 10,000 years ago, the pink
square the Holocene time slice, and the green triangle the Modern time interval. The
black line is the best fit line for the black diamonds, and the dashed lines represent
its 95% confidence intervals. In the equation, S = Species and A = Area.
2.7. Rarefaction methods

Rarefaction of the minimum species counts was done using S.
Holland's Analytic Rarefaction v.1.3 software (2003, http://strata.
uga.edu/software/). The data were rarefied by occurrences instead
of the number of individual specimens to remove the effect of
“high-graded” localities, those published localities that are based on
only the best specimens in a museum's collection instead of all the
specimens collected (Davis and Pyenson, 2003; Barnosky et al.,
2005). The rarefaction occurrence value was set at 75 for all analyses
(all mammals, large mammals, and small mammals) because that oc-
currence value provided the largest number of data points while at
the same time eliminating points that were based on more suspect
data (Barnosky et al., 2005).
Please cite this article as: Carrasco, M.A., The impact of taxonomic bia
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3. Results

3.1. Total mammal analyses

When all mammals were plotted together for each temporal bin
across all biogeographic provinces combined (Fig. 2), the Holocene
showed significantly reduced species diversity relative to the baseline
(30 Ma to 11,500 years ago), concordant with previous work (Carrasco
et al., 2009). Another way to assess this drop in diversity is to compare
the actual diversity level for a time period to the expected diversity
based on a baseline SAR's equation (Carrasco et al., 2009; Barnosky et
al., 2011b). Using the equation shown in Fig. 2, this decline in Holocene
diversity is estimated to be about 19.5% relative to the expected
s when comparing past and present species diversity, Palaeogeogr.
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diversity. However, diversity appears to have stayed relatively flat or
even slightly increased (only a 15.9% reduction relative to the baseline)
from the Holocene to the Modern.

3.2. Large/small mammal analyses

Evaluating the data by individual time slices across all ten biogeo-
graphic provinces combined, large mammal diversity appears to have
decreased markedly (a 45% drop relative to the expected diversity) in
the Holocene (Fig. 3A), as anticipated given the end-Pleistocene mega-
faunal extinction (Barnosky et al., 2004; Koch and Barnosky, 2006;
Carrasco et al., 2009). Diversity is comparable or slightly reduced (a
49% decline) in theModern temporal bin relative to theHolocene. How-
ever, a different picture emergeswhen one views the smallmammal re-
sults (Fig. 3B). Both Holocene and Modern diversity fall well within the
95% confidence intervals of the baseline. Holocene diversity is reduced
11.7% relative to the baselinewhile diversity during theModern tempo-
ral bin shows a slight increase relative to theHolocene (only a 2.4% drop
relative to the expected diversity). These results suggest that small
mammal diversity over large geographic regions (all ten biogeographic
provinces combined) has changed little over the past 30 Ma in North
America, and may have actually increased recently.

More differences emerge when one plots the large and small
mammal data by individual province and time period (e.g., the late
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Fig. 3. Number of rarefied species plotted versus total geographic area for each tempo-
ral bin for large (A) and small (B) mammals. As in Fig. 2, each data point represents the
cumulative data from a single time interval (see Table 1 for the time bins) for all ten
biogeographic provinces combined. The black diamonds represent each of the time
slices from 30 Ma to 10,000 years ago, the pink squares the Holocene time slice, and
the green triangles the Modern time interval. The black lines are the best fit lines for
each set of black diamonds, and the dashed lines are the 95% confidence intervals of
these lines. In the equations, S = Species and A = Area.
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Barstovian of the Northern Great Plains). The number of large mam-
mal rarefied species significantly declines in the Holocene and con-
tinues to decline in the Modern temporal bin (Fig. 4A). This again
agrees with previous work that has documented a large megafaunal
extinction at the end of the Pleistocene (Barnosky et al., 2004; Koch
and Barnosky, 2006; Carrasco et al., 2009) — a trend that appears to
have continued into the Modern. However, small mammal diversity
reveals a drastically different view (Fig. 4B). First, at this provincial
level, it appears that small mammal diversity significantly decreased
during the Holocene contrary to the results found across all provinces
combined. This result can best be explained if beta diversity (differ-
ences between provinces) increased in the Holocene, likely the result
of range contractions and/or shifts, which has been documented in
previous studies (Carrasco et al., 2009; Hadly et al., 2009; Blois et
al., 2010; Barnosky et al., 2011b). It is possible that additional factors
may be affecting this decline in Holocene diversity, such as sampling
biases unique to the Holocene. However, as discussed in the Materials
and Methods, all paleo-time slices appear to have similar collecting
and sampling biases, and evaluation of rarefied species diversity and
SARs should minimize any sampling differences among them. In addi-
tion, if sampling biases were the driving force, similar patterns should
be seen in Figs. 3B and 4B, but the opposite situation occurs. Second,
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Fig. 4. Number of rarefied species plotted versus total geographic area for large (A) and
small (B) mammals. Each data point represents the data from a single biogeographic
province (e.g., Gulf Coast) for a single temporal bin (e.g., early Barstovian). The black
diamonds represent individual provinces for each of the time slices from 30 Ma to
10,000 years ago, the pink squares the provinces from the Holocene time slice, and
the green triangles the provinces from the Modern time interval. The black lines are
the best fit lines for each set of black diamonds, the pink lines the best fit lines for
each set of pink squares, and the green lines the best fit lines for each set of green tri-
angles. The dashed lines (black, green, and pink) represent the 95% confidence inter-
vals for each of the best fit lines. In the equations, S = Species and A = Area.
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diversity unexpectedly appears to have increased during the Modern
time slice relative to the Holocene, although it remains depressed rel-
ative to the 30Ma baseline. This difference between the Holocene and
Modern time intervals appears robust given little overlap (except at
large areas) of the 95% confidence intervals of the two respective
trend lines.

4. Discussion

While most of the analyses are consistent with the conclusions of
previous workers, the apparent increase in small mammal diversity in
the Modern time slice relative to the Holocene is unexpected (Fig. 4B).
It is this small mammal diversity increase that also mainly explains
the overall slight increase in total mammalian diversity seen in Fig. 2.
This apparent increase in small mammal species in the Modern tempo-
ral bin may stem from one of several possibilities. First, the bump in di-
versity may represent a real increase in small mammal diversity at the
provincial level. However, previous work suggests that current rates
of mammalian extinction are higher than those seen in the past and
are expected to rise in the future (Pimm et al., 1995; Pereira et al.,
2010; Barnosky et al., 2011a; IUCN, 2011). Currently, 25% of mammal
species are considered threatened (IUCN, 2011), a number that has
only increased over the past fifteen years (Hoffmann et al., 2010;
IUCN, 2011). In addition, a real increase in small mammal diversity
seems unlikely given the extent of habitat destruction (Ellis, 2011;
Foley et al., 2011) and documented reduction of many species’ ranges
in the past century (Ceballos and Ehrlich, 2002).

A second possibility is that the increase is the result of better sam-
pling in the Modern temporal bin relative to the Holocene time peri-
od. This also seems unlikely to be the dominant signal for two
reasons. First, while some regions (e.g., Central California) are better
sampled in the Modern temporal bin, several others are more poorly
sampled (e.g., Northern Great Plains) (Table 2)—the result of building
the Modern dataset from only the Museum of Vertebrate Zoology col-
lections. Nevertheless, in every biogeographic province, diversity is
greater in the Modern than in the Holocene. Second, correlation anal-
yses reveal no significant relationship between the number of rare-
fied species and the number of occurrences of small mammals in
the Modern (r = 0.490; p = 0.151) or across all temporal bins (r =
0.110; p = 0.467) by province.

A third explanation is that extant species numbers are inflated due
to a taxonomic artifact. Living species are diagnosed using different
criteria than those used to diagnose paleospecies. Paleontologists
generally employ a morphological species concept when diagnosing
taxa because of their reliance on hard parts, primarily teeth. On the
other hand, extant species are commonly diagnosed using a biological
or phylogenetic species concept and rely more on soft part and/or ge-
netic data. The ability to use soft-tissue andmolecular data can lead to
recognizing more species within a given genus for extant taxa (Purvis
Table 2
Comparison of small mammal samples and rarefied species diversity (based on 75 oc-
currences) in the Holocene and Modern temporal bins by biogeographic province. For
province abbreviations, see Fig. 1.

Holocene Modern

Province Occurrences Rarefied species Occurrences Rarefied species

CC 125 16.1 9763 36.5
CP 1014 25.5 735 34.7
CRP 307 24.4 2472 33.7
GB 513 29.3 3857 33.6
GC 329 21 128 27
MJ 52 N/A 1497 24.1
NGP 447 23.5 87 31.8
NR 737 28.8 1049 32.6
SGB 284 30.5 1434 35.6
SGP 556 27.2 182 29.6
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et al., 2000; Agapow et al., 2004; Barnosky et al., 2011a). If modern di-
versity is inflated because of different classification criteria, we would
expect to see this inflation among 1) the most speciose families and
genera, 2) groups that have small ranges with many areas of sympat-
ric congeners, and 3) families that have the most conservative dental
morphology and which are correspondingly difficult to diagnose in
the fossil record. In addition, the “new” species in the Modern tempo-
ral bin should predominantly be those that have been diagnosed
today using non-morphological criteria.

All of the above features are found more commonly in small
mammals as opposed to large mammals, consistent with observing
relatively higher species numbers only among smaller taxa. Compar-
isons between the small mammals found in the Holocene and those in
the Modern temporal bin reveal which families have the largest in-
creases (Table 3). Among those families with more than 10 species,
the highest percentages are found in the Sciuridae (35.7%), Geom-
yidae (46.2%), and Heteromyidae (47.2%) (see Supplementary Table
2 for a complete list of taxa). In addition, among these three families
the most speciose genus in each (Tamias, Thomomys, and Dipodomys)
is the taxon with the largest discrepancy between the Modern and
Holocene temporal bins.

In the genus Tamias, the chipmunk, 12 of 18 species are known
only from the Modern. As predicted, the generic designation of this
taxon continues to be problematic (Piaggio and Spicer, 2000, 2001;
Wilson and Reeder, 2005), and specific designations have been
hampered by a lack of diagnostic external or more traditional mor-
phological characters forcing neontologists to rely on bacular, karyo-
typic, immunological, and molecular features (e.g., Callahan, 1975;
Levenson and Hoffmann, 1984; Patterson, 1984; Levenson et al.,
1985; Piaggio and Spicer, 2000, 2001). In addition, the majority of
the species of Tamias found only in the Modern temporal bin live in
sympatry or parapatry with up to eight other species of the genus
(Best, 1993a, b; Best and Granai, 1994; Best et al., 1994a, b; Clawson
et al., 1994). Lastly, fossil sciurids have often presented problems for
diagnoses given their simple conservative dentition (Black, 1963;
Korth, 1994; Thorington et al., 2005).

Species designations within Thomomys and Geomys, members of
the Geomyidae, also rely heavily on non-morphological characters
(Patton and Smith, 1989, 1994; Jolley et al., 2000; Wilson and
Reeder, 2005). Of the six species of geomyids found only in the mod-
ern sample, four (Geomys arenarius, Thomomys clusius, T. idahoensis,
and T. mazama) were formerly considered subspecies of other species
of geomyids in Hall (1981) until additional diagnostic molecular char-
acters were discovered (Wilson and Reeder, 2005), while Geomys per-
sonatus had been suggested to be conspecific with G. pinetis (Martin,
1974a, b) until it was shown to be karyologically distinct by Williams
and Genoways (1975). In the Geomyidae, paleontologists have com-
monly relied on size differences because of a general lack of diagnos-
tic dental features (Rensberger, 1971, 1973; Korth, 2008).
Table 3
The number of new species of small mammals (listed by family) found in the Modern
time slice relative to the Holocene time slice.

Family Number of new
species

Total modern
species

Percentage of new species
(%)

Soricidae 5 18 27.8
Talpidae 2 4 50.0
Leporidae 2 12 16.7
Ochotonidae 0 1 0
Aplodontidae 1 1 100
Castoridae 0 1 0
Dipodidae 1 3 33.3
Erethizontidae 0 1 0
Geomyidae 6 13 46.2
Heteromyidae 17 36 47.2
Muridae 14 57 24.6
Sciuridae 20 56 35.7
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The Heteromyidae are perhaps the best example of a group whose
fossil record is composed almost entirely of isolated teeth that lack qual-
itative characters with which to diagnose species (Wahlert, 1993;
Carrasco, 2000a). Therefore, quantitative characters tend to be used to
diagnose taxa (e.g., Lindsay, 1972; Martin, 1984; Barnosky, 1986;
Carrasco, 1998). Because of this, extant heteromyids have been diag-
nosed based on non-dental characters including cranial, bacular, karyo-
typic, and genic features (e.g., Stock, 1974;Williams, 1978; Hafner et al.,
1979; Best et al., 1986; Best, 1993c; Williams et al., 1993). In addition,
heteromyids are noted for their high degree of sympatry and/or par-
apatry within genera (Schmidly et al., 1993).

Of particular note is the genus Dipodomys, the kangaroo rat, which
has a dental morphology that lacks almost any cusp morphology
(Fig. 5) and is subject to large amounts of geographic and age varia-
tion (Carrasco, 2000b). Eight of the fifteen species found in the MVZ
collections are not found in the Holocene record. Of those fifteen spe-
cies, the same eight taxa (Dipodomys agilis, D. californicus, D. com-
pactus, D. ingens, D. nitratoides, D. panamintinus, D. stephensi, and D.
venustus) were those most frequently misdiagnosed based on dental
measurements in a previous study (Carrasco, 2000b) ‐ an expected
result if extant species are not equivalent to those found in the fossil
record. In addition, themajority of these eight taxa have generally been
considered to be subspecies of other species of the genus at some period
Juvenile

Age Group 1

Age Group 2

Age Group 3

Age Group 4

Age Group 5

Fig. 5. Occlusal views of the left dentition of six age groups (Juvenile through Age
Group 5) of kangaroo rats (genus Dipodomys). The left column contains upper denti-
tions while the right column shows lower dentitions. Note the limited cusp morpholo-
gy of the teeth throughout the life of the organism.
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in their taxonomic history (Williams et al., 1993; Wilson and Reeder,
2005).

5. Conclusions and recommendations

Species–area relationships found in the Holocene and Modern
temporal bins are lower than the baseline diversity found during
the previous 30 million years. While most of this decline is found
among large mammals, it also appears that at a provincial level, but
not at larger scales, small mammal diversity declined, confirming
the results of previous workers (Blois et al, 2010; Barnosky et al.,
2011b). However, small mammals in the Modern temporal bin unex-
pectedly show an increase in diversity relative to the Holocene, par-
ticularly at the provincial level, despite recent studies that suggest
diversity loss is likely to have been increasing over the past few cen-
turies (Hoffmann et al., 2010; Pereira et al., 2010; Barnosky et al.,
2011a; IUCN, 2011). The most probable explanation for the apparent
elevation of Modern diversity with respect to the Holocene levels
stems from the different classification methods used by paleontolo-
gists, who rely on morphological criteria, and neontologists, who
often rely on soft part and molecular characters for species diagnoses.
As predicted, inspection of the taxa with the greatest increase in small
mammal diversity (sciurids, geomyids, and heteromyids) are those
that are among the most difficult to diagnose using only traditional
morphological criteria, particularly of the dentition.

Based on these results, the next step in comparing modern diver-
sity to long-term baselines needs to be the equilibration of fossil and
modern taxonomic classifications among small mammals. One possi-
ble solution is to reevaluate fossil species using additional techniques.
Paleontologists have tended to rely on simple length and width mea-
surements for taxonomic diagnoses of small mammal taxa (e.g.,
Rensberger, 1971; Martin, 1984; Barnosky, 1986), but multivariate
analyses of dental characters have been shown to have higher dis-
criminatory power (Carrasco, 2000a; McGuire, 2010). While this
may uncover some formerly cryptic species, a more promising ap-
proach would be to carefully collapse modern taxa into groupings
that would mimic fossil taxa by using a morphological species con-
cept and employing only paleontological characters, primarily of the
dentition. In the end, such revised taxonomies would provide a feasible
way to more accurately gauge whether current mammalian species di-
versity, extinction, and biogeographic range adjustments deviate signif-
icantly from the long-term patterns that have characterizedmost of the
Holocene and earlier paleo-time intervals.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.palaeo.2012.06.010.
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