April 10, 2012: **Species Concepts**

I. Importance of the species problem:

a. nomenclatorial requirements (all organisms must belong to a species).

b. practicality -- need to organize diversity, summarize information, communicate, give names to things.

c. public perception -- species deeply ingrained in Western thought

d. legal issues -- endangered species legislation; conservation

e. connection to evolutionary theory -- desire to have species as units functioning in process theories (but which process theories? how to connect units and theories without circularity?)

f. philosophical concerns -- need to be clear about properties of units: sets vs. individuals, universalism vs. pluralism.

II. Quasi-historical outline:

a. typological or essentialist approach (i.e., systematics through Linnaeus); logical division

b. phenetic, morphological, or "natural" approach

 - older botanists (Gray, Bentham, Hooker) plus many recent botanists (Cronquist, Levin, Sokal & Crovello)

 - some recent cladists (!) (Nelson & Platnick, Cracraft, Nixon & Wheeler)

c. "biological" species concept: interbreeding groups

 - classic isolation approach (most zoologists, e.g., Mayr, Dobzhansky)

 - newer recognition approach (some zoologists, see Paterson)

d. "evolutionary" species concept: lineages (Simpson, Wiley)

e. "ecological" species concept: niches (Van Valen)

f. "species as individual": integrated, cohesive units with spatio-temporal boundaries (Ghiselin, Hull)

 g. "phylogenetic" species concepts of various types: lineages, homogeneous groups, basal monophyletic groups, etc. (will return later)
III. Reason for the existence of a species problem:

 a. most of the above concepts and criteria conflict in most real cases -- different concepts (and processes) "pick out" different groups in each particular case, thus the implied correspondence between different criteria relied on by the BSC (and General Lineage Concept) is abundantly falsified.

 b. operationality -- how to apply various concepts in a practical sense.

 c. what causes integration/cohesion of species? -- concerns:

 - breeding relationships are often clinal and/or non-transitive (what does "potential" interbreeding mean?)

 - gene flow is often very limited or lacking (what causes the evident distinctness of many asexual species?)

 - ecological limits; stabilizing selection; adaptive constraints. What is a niche?

 - developmental constraints (phylogenetic inertia)?

 d. what are the spatio-temporal boundaries of species?

 - monophyly?

 - origin?

 - extinction?

IV. The winning argument for phylogenetic classification (review)

 The debate over classification has a long and checkered history (see Hull 1988; Stevens, 1994). A conceptual upheaval in the 1970's and 80's resulted in a true scientic revolution -- Hennigian Phylogenetic Systematics. Many issues were at stake in that era, foremost of which was the nature of taxa. Are they just convenient groupings of organisms with similar features, or are they lineages, marked by homologies? A general, if not completely universal consensus has been reached, that taxa are (or at least should be) the latter (Hennig, 1966; Nelson, 1973; Farris, 1983; Sober, 1988).

 A summary of the arguments for why formal taxonomic names should be used solely to represent phylogenetic groups is as follows: evolution is the single most powerful and general process underlying biological diversity. The major outcome of the evolutionary process is the production of an ever-branching phylogenetic tree, through descent with modification along the branches. This results in life being organized as a hierarchy of nested monophyletic groups. Since the most effective and natural classification systems are those that "capture" entities resulting from processes generating the things being classified, the general biological classification system should be used to reflect the tree of life.

 This isn't to say that phylogeny is the only important organizing principle in biology. There are many ways of classifying organisms into a hierarchy, because of the many biological processes impinging on organisms. Many kinds of non-phylogenetic biological groupings are unquestionably useful for special purposes (e.g., "producers," "rain forests," "hummingbird pollinated plants," "bacteria"). However, it is generally agreed that there should be one consistent, general-purpose, reference system, for which the Linnaean hierarchy should be
Phylogeny is the best criterion for the general purpose classification, both theoretically (the tree of life is the single universal outcome of the evolutionary process) and practically (phylogenetic relationship is the best criterion for summarizing known data about attributes of organisms and predicting unknown attributes). The other possible ways to classify can of course be used simultaneously, but should be regarded as special purpose classifications and clearly distinguished from phylogenetic formal taxa.

V. Important concepts in phylogenetic classification to revisit:

1. Different ways of defining monophyly: *synchronous* (i.e., "all and only descendants of a common ancestor") or *diachronic* (i.e., "an ancestor and all of its descendants"). Which is better? Should the word "species" appear in the definition of monophyly? Does it matter?

2. Clade versus Lineage (see figure below for illustration). They are not the same thing -- "clade" is a synchronic concept, a snapshot of a lineage at one time -- while a "lineage" is a diachronic concept, a series of replicators.

![Diagram showing distinction between clades and lineages](from Cellinese et al. in press.)

The distinction between clades and lineages, showing the incompatibility of different views of species. A clade is a synchronic, monophyletic set of lineage-representatives, where monophyly is defined synchronically as "all and only descendants of a common ancestor" (represented by A' in this case). Note that the terminal-most named clade is a "species" in the sense of Mishler and Theriot (2000a, 2000b, 2000c). A lineage is a diachronic ancestor-descendant path (grey line up the left side of the tree), whereas a lineage segment is a part of a lineage that connects two nodes (A and D in this example), note that the latter are “species” in the de Queiroz (2007) sense. Redrawn from Mishler (2010)

VI. A phylogenetic solution under the current codes of nomenclature

Recognize that there is no *species* problem per se in systematics. Rather, there is a *taxon* problem. Once one has decided what taxon names are to represent in general, then species taxa should be the same kind of things -- just the least inclusive. The field of systematics in general
has settled on restricting the use of formal taxonomic names to represent phylogenetically natural, monophyletic groups. So "species" should be the smallest one of those

Grouping vs. ranking. There are two necessary parts to any species definition. The criteria by which organisms are grouped into taxa must be specified, as well as the criteria by which a taxon is ranked as a species rather than some other hierarchical level. Following the arguments given previously supporting a Hennigian phylogenetic system of classification, the **grouping** criterion that should be used is **monophyly.** Under this view, apomorphies are considered to be the necessary empirical evidence for unambiguous phylogenetic species, as for phylogenetic taxa at all levels.

There are difficulties applying the concept of monophyly at this level. As you consider less inclusive levels in the genealogical hierarchy there is an increasing probability that reticulating ("hybridizing") events will occur, rather than the diverging phylogenetic relationships assumed by the cladistic approach. However, the problem of reticulation is not specific to the species level; indeed reticulation can occur throughout the hierarchy of life, and so is one of more general difficulty, and one that is receiving a lot of attention in the professional literature. It is becoming clear that while a certain amount of reticulation does not preclude cladistic reconstructions of phylogeny, extensive reticulation can cause major problems. How do we know when we have reticulation going on? We can only detect it by doing phylogenetics.

Note in passing that reproductive criteria cannot be used to **group** organisms into phylogenetic species. The fundamental inappropriateness of using breeding compatibility in cladistic analysis is because the ability to interbreed (potential or actual), is a plesiomorphy by definition, thus not a phylogenetically valid grouping criterion.

The **ranking** decision should involve practical criteria such as the amount of character support for a group and may also involve biological criteria in better known organisms, including reproductive criteria, e.g., the origin of a distinctive mating system at a particular node or the acquisition of **exclusivity** (a condition in which each allele in a lineage is more closely related to another allele in the lineage than it is to an allele outside the lineage). This ranking decision is forced because systematists have legislatively constrained themselves to use a ranked Linnaean hierarchy. A larger issue are recent calls for reforming the Linnaean system to remove the concept of ranks. This move would keep the hierarchy of named phylogenetic groups, but remove the ranks (including species) associated with the names. This move would decrease the arbitrariness of ranking decisions at the "species level," and will probably happen some day, but for now we assume that the current Linnaean system of ranked classifications is to remain in place (more on the possibility of getting rid of species in a couple weeks).

A phylogenetic species concept can be defined based on these considerations (from Mishler and Theriot. 2000). First, organisms should be grouped into species on the basis of evidence for monophyly, as at all taxonomic levels; breeding criteria in particular have no business being used for grouping purposes. Second, ranking criteria used to assign species rank to certain monophyletic groups must vary among different organisms, but might well include ecological criteria or presence of breeding barriers in particular cases. The grouping concept (monophyly) in this view is monistic, while the ranking concept is pluralistic:

The Phylogenetic Species Concept: A species is the least inclusive taxon recognized in a formal phylogenetic classification. As with all hierarchical levels of taxa in such a classification, organisms are **grouped** into species because of evidence of monophyly. Taxa are **ranked** as species rather than at some higher level because they are the smallest monophyletic groups deemed worthy of formal recognition, because of the amount of support for their monophyly and/or their importance in biological processes operating on the lineage in question.
Monophyly is here defined synchronically to be: *all and only descendants of a common ancestor, existing in any one slice in time*. This ancestor was not an ancestral species, but rather a less inclusive entity such as an organism, kin group, or population. Only "clades" can be monophyletic, not "lineages" (see diagram in fig. 1). The synchronic approach is necessary to avoid the time paradoxes that arise when classifying ancestors with descendants [i.e., questions like: Was your grandmother your grandmother before your parents were born?]. The evidence required for a hypothesis of monophyly is primarily corroborated patterns of synapomorphy (but possibly also including other factors, such as geography).

Can a group arising by hybridization be monophyletic? Given this synchronic definition it can, as long as it only arose once. In the diagram at right, in the first time-slice (A) there is one clade, (B) then two, then (C) one again.

VII. The winning argument for rank-free classification (review from previous lecture)

As discussed in class earlier, a number of recent calls have been made for the reformation of the Linnaean hierarchy (e.g., De Queiroz & Gauthier, 1992). These authors have emphasized that the existing system is based in a non-evolutionary world-view; the roots of the Linnaean hierarchy are in a specially-created world-view. Perhaps the idea of fixed ranks made some sense under that view, but under an evolutionary world view they don't make sense. There are several problems with the current nomenclatorial system:

1. The current system, with its single type for a name, cannot be used to precisely name a clade. E.g., you may name a family based on a certain type specimen, and even if you were clear about what node you meant to name in your original publication, the exact phylogenetic application of your name would not be clear subsequently, after new clades are added.

2. There are not nearly enough ranks to name the thousands of levels of monophyletic groups in the tree of life. Therefore people are increasingly using informal rank-free names for higher-level nodes, but without any clear, formal specification of what clade is meant.

3. Most aspects of the current code, including priority, revolve around the ranks, which leads to instability of usage. For example, when a change in relationships is discovered, several names often need to be changed to adjust, including those of groups whose circumscription has not changed. E.g., when it was detected that the Cactaceae is nested inside of the Portulacaceae, one of these well-known family names has to be abandoned. Frivolous changes in names often occur when authors merely change the rank of a group without any change in postulated relationships.

4. While practicing systematists know that groups given the same rank across biology are not comparable in any way (i.e., in age, size, amount of divergence, diversity within, etc.), many users do not know this. For example, ecologists and macroevolutionists often count numbers of taxa at a particular rank as an erroneous measure of "biodiversity." The non-equivalence of ranks means that at best (to those who are knowledgeable) they are a meaningless formality and perhaps not more than a hindrance. At worst, in the hands of a user of classifications who naively assumes groups at the same rank are comparable in some way, formal ranks lead to bad science -- removing the ranks would serve the same purpose as child-proof door locks for the back seat of your car!
How exactly to write the new phylogenetic code of nomenclature is not completely clear at this point, especially as applied to species (see draft of the Phylocode and other materials at: http://www.ohio.edu/phylocode/index.html, but the basics are clear. Such a new code should maintain the principle of priority (the first name for a lineage should be followed) and other aspects of the current code that promote effective communication of new names to the community. However, two major changes would be made:

1. The Linnaean ranks would be abandoned. Instead, names of clades would be hierarchically nested uninomials regarded as proper names. A clade would retain its name regardless of where new knowledge might change its phylogenetic position, thus increasing nomenclatorial stability. Furthermore, since clade names would be presented to the community without attached ranks, users would be encouraged to look at the actual attributes of the clades they compare, thus improving research in comparative biology.

2. Two or more types (called "specifiers") would be used, for efficient and accurate representation of phylogenetic relationships. There are two types of specifiers, internal and external. Two or more of the former are used to name node-based groups. Two or more of the former and one of the latter are used to name stem-based groups. Apomorphy-based names are controversial, and really shouldn't be used.

VIII. How could rank-free classification be applied to terminal taxa?

At the moment, the species rank is the most controversial topic among Phylocode advocates. Some (primarily zoologists) want to retain it as one fundamental rank in an otherwise rank-free system, others (primarily botanists) want to get rid of it (see Cellinese et al. in press). Debate about removing species from the Phylocode rages at this very moment...

1. Names of clades (including the terminal level), could be regarded be hierarchically-nested uninomials regarded as proper names (as at all levels in the Phylocode, current usage should be followed as much as possible to retain links to the literature, databases, and collections).

2. As at all taxonomic levels, recommended to use node-based names with two or more internal type specimens.

3. To deal with the rampant homonyms that will result from treating current species epithets as uninomials, several proposals have been made. My preference would be to regard all the higher clades to which a taxon belongs as part of its complete name. Thereby each clade would have a uninomial given name, but also a set of more and more inclusive "family names," thus homonyms could be told apart by higher-level clade names.

Phylogenetic uninomial: Revolutus

Node-based definition:

- **Internal Specifier:** Syrrhopodon revolutus Dozy & Molk. TYPE: JAVA. Herb. Émil Beschereelle. Korthals (isotype BM!).
- **Internal Specifier:** Syrrhopodon microbolax Müll. Hal. TYPE: MADAGASCAR, Nosy Bé. Herb. Émil Beschereelle. Boivin (BM!).
- **Internal Specifier:** MADAGASCAR. Fisher 01.84 (UC!).
- **Internal Specifier:** BORNEO. Wall 3768 (UC!).

IX. Rank-Free Conservation (summary here -- much more in IB 200B)

Hypothetical cladogram illustrating the importance of phylogeny in setting conservation priorities. Shown is a phylogeny of 43 terminal phylogenetic taxa (Smallest NAmed and Registered Clades or SNARCs); the branch lengths are proportional in the vertical direction to the number of evolutionary character changes along that branch. From the standpoint of preserving the maximum amount of phylogenetic diversity (and its closely associated genetic, morphological, physiological, and ecological diversity), clade one would have a lower conservation priority than clade two.

Three groups of seven SNARCs each are also marked on the cladogram. By the same criterion, group A would have a lower conservation priority than group B. Group C, consisting of the same number of SNARCs scattered across the cladogram, would have a much higher conservation priority than either group A or B. In fact, group C would have a higher conservation priority than groups A and B taken together. Thus, the number of SNARCs in a locality is by itself a poor indicator of its priority for conservation.

Some papers drawn on heavily for these notes (see also online reference list).

