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I. Background: Philosophy of Statistics 
 
What is the point of statistics? And what are you doing when you reach a statistical conclusion?  
These questions are basically never asked or answered in most introductory statistics classes, from 
middle school through many graduate courses.   
 
The questions only became apparent to me when I began to realize that the field of statistics is not like 
basic mathematics, even though at first it seems like just an application of the math you learned in high 
school.  In basic math, answers are either right or wrong, and that’s it.  In statistics, the “right” 
method (and thus answer) can often be a matter of opinion.  In statistics, there are  

• judgment calls,  
• background philosophies,  
• uncooperative data (e.g., data that don’t fit ideal criteria, such as independence, or following a 

standard distribution – especially e.g. biological and spatial data),  
• uncooperative calculations (e.g., non-integrable functions, calculations that take too long, 

problems that involve evaluating more possibilities than there are atoms in the universe) 
• important, practical decisions that depend upon the conclusion reached, despite all of the 

above 
 
Question: What are some practical decisions that rely upon statistical conclusions?  In science?  In 
biology?  In phylogenetics? 
 
E.g.: Ou et al. (1992). Molecular epidemiology of HIV transmission in a dental practice. Science 256, 
1165–1171. doi: 10.1126/science.256.5060.1165 
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de Oliveira et al. (2006). HIV-1 and HCV sequences from Libyan outbreak. Nature, 444, 836-837. 
doi:10.1038/444836a  Received: 4 November 2006; Accepted 24 November 2006; Published online 6 
December 2006.  http://www.nature.com/nature/journal/v444/n7121/full/444836a.html  
 

 
 

 
 



3 
 

An excellent, broad,  and sophisticated-yet-introductory discussion of statistics 
and its application to evolutionary science is Elliot Sober’s (2008) Evidence 
and Evolution: The logic behind the science.  The chapters: 

1. Evidence 
2. Intelligent design 
3. Natural selection 
4. Common ancestry 

 
Sober’s main point is that it is extremely important to be extremely clear on 
what question, exactly, you are asking.  The grand debates between different 
statistical “schools of thought” – Bayesian, Likelihoodism, Frequentism – 
and about what specific methods are appropriate are often much more 
resolvable if you think carefully about what question you have, and what 
information (data) you have or can get. 
 
Sober (2008), p. 3: 
 

The statistician Richard Royall begins his excellent book on the concept of evidence (Royall 
1997:4) by distinguishing three questions: 
 

(1) What does the present evidence say? 
(2) What should you believe? 
(3) What should you do? 

 
[…] answering question (2) requires more than an answer to (1), and answering question (3) 
requires more than an answer to (2). 

 
The best feature of Sober is the extremely clear introduction to three major statistical “schools of 
thought,” and discussion of the strengths and weaknesses of each in numerous specific real-world 
situations (including inferring common ancestry versus separate ancestry, and inferring the action of 
natural selection). 
 
 
II. Bayesianism, Likelihoodism, Frequentism 
 
Except for basic probability, essentially all the statistics that any of you 
learned in high school and college was frequentist (without saying so).  So 
for most people, frequentist statistics – ideas like chi-squared tests, t-tests, 
regression, ANOVA, and testing of null hypotheses – simply is “statistics.“  
 
Strangely, frequentist statistics is actually the youngest school of thought, 
and its dominance is a recent phenomenon, dating only to the early/mid-20th 
century.  Frequentism definitely benefited from being the favored approach 
during the explosion of professional science over the last 100 years, and 
frequentism was particularly strong in biology, especially genetics and 
population genetics.  The famous evolutionary biologist Sir Ronald A. 
Fisher was also probably the most important founder/promoter of 
frequentism.  E.g. Wikipedia quotes Richard Dawkins calling him “the 
greatest of Darwin's successors,”  and someone else calling him “a genius 
who almost single-handedly created the foundations for modern statistical science.” (Note equation 
of frequentism with “modern statistical science!”) 
 
Another Wikipedia gem: L.J. Savage, "I occasionally meet geneticists who ask me whether it is true 
that the great geneticist R.A. Fisher was also an important statistician" (Annals of Statistics, 1976). 
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(In addition to helping to found population genetics, frequentist statistics, inventing Fisher's 
Fundamental Theorem of Natural Selection, and being knighted, Fisher was also an avid lifelong 
eugenicist, and a lifelong devout Anglican; the concept linking all of this together is “Progress,” but 
that is a different lecture…) 
 
 
Bayes 
 
Bayesianism is actually much older, dating back at least to the 1700s 
and discussions of games of chance and probabilities.  The name 
comes from the Reverend Thomas Bayes (1702-1761), who proposed 
a special case of what came to be called “Bayes’ theorem” in his 
posthumous Essay Towards Solving a Problem in the Doctrine of 
Chances (1764). 
 
Bayes’ theorem is easiest to understand by starting with basic 
probability and  conditional probability. 
 
 
Basic Probability 
 
Let’s first remember some basic probability. 
 

• P(E) = P(event) = “Probability than an event occurs in a trial” 
 
Often writers talk about the P(data) or P(observations) instead of P(event). 
 

• Probabilities of exclusive events must sum to 1, so P(E) + P(not E) = 1 
 
Discussion Questions:  

• What is P(heads)? 
• What is P(rolling a 1) = P(event = 1) = P(1)? 

 
 
 
Conditional Probability 
 
In reality, to answer the questions above, we need some model or hypothesis before we can calculate 
the probability.  This is: 
 

• P(event given some model/hypothesis) = P(event | hypothesis) = P(E | H) 
• “model” and “hypothesis” get used interchangably 

 
E.g., the probability of getting a 1 on a 6-sided fair die is  
 

• P(event = 1 | “6-sided fair die”) = 1/6, or 
• P(E|H) = 1/6, where E=”rolling a 1” and H=”die is six-sided and fair” 

 
What is the probability of rolling a 1 if the die is randomly picked from 2 dice, where 1 die is 6-sided 
and fair, and 1 die is 6-sided and all 1s? 
 

• P(event=1 |  “fair die”) / P(“fair die”)  +  P(event=1 | “die w/ all 1s”) / P( “die w/all ones) 
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• = P(E=1 | H1) / P(H1) + P(E=1 | H2) / P(H2), where H1 = fair die, H2 = all ones 
• = P(E|H1) / P(H1) + P(E|H2) / P(H2) 
• = (1/6) / (1/2) + (6/6) / (1/2) 
• = 1/12 + 1/2 = 7/12 

 
P(E|H) is a conditional probability, i.e. the probability of E given H. 
 
The above example, or thinking of probability in terms of proportions gives us Kolmogorov’s (1950) 
definition of conditional probability (Sober 2008, p. 9): 
 

• P(E | H) = P(E & H) / P(H) 
 
Both E and H, while we call them “events” and “hypotheses”, are really both just propositions.  
Randomly rolling a “1 ” is no different than randomly picking the fair or unfair die.  So E and H can 
be switched: 
 

• P(H | E) = P(H & E) / P(E) 
 
Since P(H & E) and P(E & H) are the same thing,  we can say something interesting: 

• P(E & H) = P(E | H)  P(H) 
• P(H & E) = P(H | E)  P(E) 

 
So,  

• P(H | E)  P(E) = P(E | H)  P(H)  
• P(H | E) = P(E | H)  P(H) / P(E) 

 
 
 
Bayes’ theorem 
 
This is the standard version of Bayes’ theorem.  Let’s write the same thing in a few different ways: 
 

P(H | E) =  P(E | H)  P(H)_  
P(E) 

 
P(hypothesis | event) =  P(event | hypothesis)  P(hypothesis)_  

                            P(event) 
 

P(model | data) =  P(data | model)  P(model)_  
               P(data) 

 
Posterior probability =  Likelihood * Prior probability of the model_  

                   Unconditional probability of the data 
 
Notes:  

• Prior probability is probability of the model, before you look at the data 
• Posterior probability is the probability of the model, after adding the data 
• The Likelihood is the probability that the model confers on the data.  Keep in mind that it is a 

probability of the data, not of the model, although one might prefer a model if it gives the 
observed data a higher likelihood than another model. 

o Statistical “likelihood” is very different from colloquial “likelihood” 
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• The Unconditional probability of the data is the probability of the data summed over all 
possible conditions, i.e. an integral.   

o If we think of probability as proportions, then it makes sense that we would need to 
normalize the numerator of Bayes’ theorem,  so that the posterior probability 
represents the probability (out of a maximum of 1) of the model. 

o Also known as the “nasty normalizing constant" 
o The integral that gives P(data) is P(data) = ∫ P(data | model) P(model) d(model) 
o This integral is very often impossible, except in simple cases, or certain families of 

distributions 
 
 
Example: HIV tests 
 
A classic application is to disease tests.  Let’s imagine the following:  

• 1 in 1000 persons in a population has HIV 
o P(HIV+) = 1/1000 
o Therefore, P(HIV-) = 999/1000 

• Doctors have an HIV test that has a 99% true positive rate (it is 99% likely to say “HIV 
positive” when someone is HIV positive). 

o P(HIV+ test | HIV+) = 0.99 
o Therefore, P(HIV-test | HIV+) = 0.01 

• The test also has a 2% false positive rate (it is 2% likely to say “HIV positive” when 
someone is HIV negative).   

o P(HIV+ test | HIV-) = 0.02 
o Therefore, P(HIV- test | HIV-) = 0.98 

• Note: These kinds of error rates are typical for many biochemical tests, relying on strength of 
antibody binding and like, due to natural variability, cross-reactions to other proteins, a disease 
being in early stages, or human misuse. 

 
So, if you go to the doctor and get an HIV test, what is the probability that you have the disease: 

• If you test negative? 
• If you test positive? 

 
If you test negative, you want to know P( “actually HIV+ ” | “HIV negative test”): 
 
P( “actually HIV+” | “HIV negative test”) = P(HIV- test | HIV+ ) P(HIV+) / P(HIV- test) 
 

• Get normalizing constant, the unconditional probability of an HIV- test: 
o P(HIV- test) = P(HIV- test | HIV+) P(HIV+) + P(HIV- test | HIV-) P(HIV-) 
o P(HIV- test) = 0.02 * 0.001 + 0.98 * 0.999 = 0.97903 

• Put it all together: 
o P(HIV+ | HIV- test) = 0.01 * 0.001 / 0.97903 = 0.0000102 

 
 
P( “actually HIV+” | “HIV positive test”) = P(HIV+ test | HIV+ ) P(HIV+) / P(HIV+ test) 

• Get normalizing constant, the unconditional probability of an HIV- test: 
o P(HIV+ test) = P(HIV+ test | HIV+) P(HIV+) + P(HIV+ test | HIV-) P(HIV-) 
o P(HIV+ test) = 0.99 * 0.001 + 0.02 * 0.999 = 0.02097 

• Put it all together: 
o P(HIV+ | HIV+ test) = 0.99 * 0.001 / 0.02097 = 0.047 
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In other words, if you test positive, you still probably don’t have the disease (only a 4% chance), given 
the error rate, and the low prevalence of the disease in the population (the low prior).  This has all 
kinds of implications for cost/benefit analysis of widespread disease (and drug) testing, the ethics of 
basing legal and employment decisions on such tests, the protocols used for informing people of their 
test results, etc. 
 
 
Bayes factors 
 
The Bayes factor is the change in your beliefs from prior to posterior.  E.g., if your HIV test is 
positive, your probability of actually being HIV+ has changed from 0.001 to 0.047.  This is a Bayes 
factor of: 
 
BF = 0.047 / 0.001 = 47 
 
(Technically, the Bayes factor is ratio of the marginal likelihoods of your two models, but if the prior 
on your two models is the same (we are looking at the same model here, model=HIV+, we are just 
comparing P(HIV+) before data and P(HIV+) after data), then these are the same thing. 
 
(So, full definition of Bayes Factor: 
 
BF = P(data | H1) / P(data | H0) 
 
So: 
 
P(H1 | data) / P(H0 | data) = BF * P(H1) / P(H0) 
 
…edit due to Michael Jordan’s stats 260 class) 
 
In other words, your estimate of the chance that you have HIV should be 47 times higher than it was 
before!  But your overall chance of having HIV, given the assumptions (especially the strong, low 
prior probability), is still less than 5%.   
 
If you were a member of a population with a high chance of having HIV (say, 1 in 10 = 0.1), you 
could re-run the numbers implied by a positive test.  The BF would be lower (but still greater than 1), 
but your posterior probability of having HIV would be much higher. 
 
 
Discrete probabilities versus probability densities 
 
One thing that is confusing to introductory students is that Bayes’ theorem is typically introduced 
using simple problems with discrete probabilities.  I.e., with HIV, the model is discrete (HIV+ or 
HIV-), and so is the data (HIV+ test or HIV- test). 
 
In real life, often we are trying to estimate continuous parameters like branch lengths and substitution 
rates.  Here, the prior, likelihood, and posterior are represented by continuous functions.  E.g. the 
probability density functions for p, the proportion of time a coin will turn up heads (where 0.5 = fair 
coin) is shown in Sober (2008), p. 22: 
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Under this “flat prior”, your initial guess is that p has an equal chance of being any value.  After 
observing 1 head in 4 tosses, your posterior reflects that observed data. 
 
The fact that probability densities are represented by functions means that employing Bayes’ theorem 
involves multiplying, dividing, and integrating functions, which can get complex, although there are a 
number of useful reference works on the web on the relationships between statistical distributions. 
 
We can, of course, pick a different prior on the proportion of heads, and update that with the 
likelihood instead to produce a posterior (Albert 2009, p. 25): 
 

                                          
 
Discussion question: What are the differences between the maximum likelihood (ML) estimate for p, 
and the posterior density of p, in the figure above? 
 
 
Bayesianism: Pros and Cons 
 
The debates over Bayesianism vs. other approaches are fairly epic, here is a short summary: 
 
Pros: 

1. Your beliefs both before and after looking at the new data are explicit, available for all 
others to judge for themselves. 

2. Posterior distributions are better than “point estimates” – i.e., instead of a (point) mean 
estimate of heights, with a standard deviation which assumes some distribution (e.g. the 
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normal distribution), posteriors can take any shape and are not necessarily controlled 
by some theoretical assumption. 
• This is why Bayesians talk about credibility intervals rather than confidence intervals. 

3. Bayesian methods can be very flexible, taking into account quite complex models and 
datasets. 

4. The interpretation of posterior probabilities seems fairly obvious and intuitive. 
5. Others? 

 
 
Cons: 

1. Getting the nasty normalization constant can be very hard. 
• This is (or at least has been) a practical barrier, not necessarily a philosophical 

problem. 
• However, this has been ameliorated somewhat by: 

i. Theoretical work, e.g. conjugate priors are known in some situations – a 
conjugate prior for a certain likelihood function produces a posterior 
with the same distribution as the prior 

ii. Numerical integration can be attempted when exact mathematical 
integration is impossible; e.g. MCMC sampling approaches 
 

2. People don’t like it because they think all statistics is frequentist. 
• This is a sociological statement, not necessarily an argument, although it is a 

reason that you need to know the pros and cons of the different approaches, and 
be able to provide an argument. 

• Scientists tend to be practical, and will go with whatever works for their 
problem and data. 
 

3. The biggie: how do you choose a prior?  Isn’t that arbitrary? 
• One response is that everyone is operating under some prior belief, whether or 

not they admit it, and that it is best to be explicit about it. 
• There are different schools of thought within Bayesianism about how to obtain 

priors, e.g. 
i. “Objective Bayesians” try to come up with “unbiased” priors that are 

maximally agnostic about what the true value is.  E.g. Laplace justified 
the use of “flat priors” with the Principle of Indifference. 

1. The Principle of Indifference is flawed.  Sober (2008): One might 
think a reasonable prior on the existence of God is 0.5 – 50/50 
chance he exists or not!  But there are other options, e.g. what 
about Zeus? 

2. However, uniform, flat, priors are not always truly agnostic, e.g. 
watch out for: 

a. The limits on the uniform distribution (ranges from 0 to 
10? 0 to infinity?) 

b. Uniform in what space? 
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c. Depending on the shape of the likelihood curve, a flat 
prior may actually be putting a lot of weight in an unusual 
place. 

3. Theoretical work indicates that sometimes you can find a 
“reference prior”, which is a prior that has the minimum 
theoretical impact on the posterior compared to the data. 

a. E.g. Jeffries prior rather than flat for the coin-toss example 
b. However, reference priors are not necessarily conjugate or 

otherwise convenient 
4. Hyperpriors – make the choice of prior itself a variable. 

(Huelsenbeck: “But the madness has got to stop somewhere!”) 
 

ii. Subjective Bayesians: they love putting prior knowledge into the prior, 
that is the whole point of having a prior. 

1. E.g., a statistician might consult domain experts to get a sense of 
what a reasonable prior is for a problem. 

2. One might even conduct a formal survey of experts.  See e.g. 
Huelsenbeck et al. (2002), Systematic Biology, p. 678: 
 

 

 
 

iii. Or, there are other criteria, e.g. convenience and calculation speed are reasons 
to prefer conjugate priors 
 

• In general, Bayesians hope/expect that the data will “ swamp the prior” 
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Alternatives to Bayesianism: Likelihoodism 
 
What if you hate priors so much that you don’t want to use a Bayesian technique?  Or, more fairly, 
what if you find yourself in a situation where the prior is just intractable?  E.g., Sober asks, what is the 
prior probability of the theory of evolution?  What is the prior probability of the General Theory of 
Relativity? 
 
One alternative is “likelihoodism,” where you simply ignore the prior and use only the likelihood. 
 
However, remember what likelihood means.   
 
Discussion question: Sober (2008) asks: What’s the likelihood that gremlins are in your attic, given 
that you hear noise coming from your attic? 
 
Likelihood makes sense for comparing two well-specified hypotheses or models, e.g. comparing 
relativity to Newtonian physics, and seeing which model confers a higher probability on the data. 
 
 
 
Alternatives to Bayesianism: Frequentism 
 
Sober (2008), p. 49: “Frequentists assess a rule of inference by examining the (expected) frequencies 
of good and bad outcomes when the rule is applied repeatedly.” 
 
Frequentism developed as an attempt to make judgments without dealing with priors at all.  So other 
mathematical criteria are used: admissibility (one estimator always works better), optimal unbiased 
estimator, minimum variance/least squares, maximum likelihood, minimize risk / worse case analysis. 
 
Frequentist methods always rely on taking the expectation of all of the data you might have gotten – 
i.e., the null hypothesis. 
 
Bayesians ask: how do you pick that null hypothesis, and thereby decide what data you might have 
gotten?  Wouldn’t it be better to just use the data directly? 
 
Also: what does rejecting a null actually tell you?  Only “not null. ”  Not very useful for building 
explanatory models. 
 
 
Generalizations: 

• Bayesians integrate (to find the proportion of the probability occupied by a model parameter, 
out of the total probability of all possible values of the model parameter) 
 

• Frequentists differentiate (to find the maximum likelihood or some other optimum estimator), 
then find the probability of their estimate according to data they might have gotten under the 
null model 

 
 
Take home messages: 

• Be pragmatic and have an argument supporting your method for a particular problem 
 

• Sober (2008), p. 2: 
 
“The debate between Bayesians and frequentists has come to resemble the trench warfare of 
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World War I. Both sides have dug in well; they have their standard arguments, which they lob 
like grenades across the no-man's-land that divides the two armies. The arguments have 
become familiar and so have the responses. Neither side views the situation as a stalemate, 
since each regards its own arguments as compelling. And yet the warfare continues.  
 
Fortunately, the debate has not brought science to a standstill, since scientists frequently find 
themselves in the convenient situation of not having to care which of the two approaches they 
should use. Often, when a Bayesian and a frequentist consider a biological theory in the light 
of a body of evidence, they both give the theory high marks. This allows biologists to walk 
away happy; they've got their answer to the biological question of interest and don't need to 
worry whether Bayesianism or frequentism is the better statistical philosophy. Biologists care 
about making discoveries about organisms; the nature of reasoning is not their subject, and 
they are usually content to leave such "philosophical" disputes for statisticians and 
philosophers to ponder.  
 
Scientists are consumers of statistical methods, and their attitude towards methodology often 
resembles the attitude that most of us have towards consumer products like cars and 
computers. We read Consumer Reports and other magazines to get expert advice on what to 
buy, but we rarely delve deeply into what makes cars and computers tick. Empirical scientists 
often use statisticians, and the "canned" statistical packages they provide, in the same way that 
consumers use Consumer Reports. This is why the trench warfare just described is not 
something in which most biologists feel themselves to be engulfed. They live, or try to live, in 
neutral Switzerland; the Battle of the Marne (they hope) involves others, far from home.” 
 

• One possible philosophy: “I’m a Bayesian in principle, a likelihoodist in practice, and a 
frequentist in public.” (courtesy Doug Theobald) 
 

• Consider Sober’s 3 questions.  Very roughly: 
1. What does the present evidence say?   Use likelihoodism 
2. What should you believe?  Use Bayesianism 
3. What should you do?  Use frequentism (with a good risk function) 

 
 
 
III. Bayesian phylogenetics 
 
We have expended a lot of time and effort going through the background of statistical schools of 
thought.  First, this important general background (I wish someone had given me this lecture when I 
was a freshman in college).  Second, the various complicated debates among phylogeneticists often 
turn out to be expressions of the fundamental debate between different statistical schools of thought, 
whether this is realized or not.  Third, the Bayesian phylogenetic method makes a lot more sense if 
you have been introduced to Bayes’ theorem first. 
 
 
 
The goal of Bayesian phylogenetics 
 
The goal is to find the posterior probability density of a hypothesis/model/model parameters of 
interest, e.g. a phylogenetic tree, a clade, a substitution rate, etc.: 
 

P(tree, parameters | data) = P(data | tree, parameters) P(tree, parameters) / P(data) 
 
tree = tree topology and branch lengths 
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parameters = parameters of substitution model (e.g. GTR + I + gamma), other parameters 
data = sequence alignment or character matrix 
 
Unfortunately, finding the unconditional P(data) requires finding ∫ P(data | tree, parameters) P(tree, 
parameters) d(tree, parameters), which is impossible. 
 
 
 
Sampling the posterior distribution with Markov Chain, Monte Carlo (MCMC) method 
 
Monte Carlo: stochastic draws from distributions 
Markov Chain: the values of parameters are explored in a series of steps (a “chain”) 
 
MCMC method: 
 

1. Initialize tree + parameters (= “the model”) to some values (e.g. drawn from prior). 
 

2. Propose a new model, model’ 
 

3. Calculate the probability of the chain moving to the new model, using the following rule: 
 
R = min[  1,   P(model’ | data)   x  P(model | model’)  ] 
             [         P(model | data)        P(model’ | model) ]                        
 
 
The beauty here is that the P(data) cancels out: ( X = data,  psi or ψ = tree + parameters ) 
 

 
 
 

4. Draw a uniform random number from Uniform(0,1).  It is less than R, then switch the chain to 
the new model. 
 

5. Return to step #2 and repeat. 
 
 
This procedure is repeated many times.  This gradually explores the space of trees and parameters, 
spending more time on trees/models which confer a higher likelihood on the data.  Once the 
approximate maximum likelihood is reached, the algorithm will wander around.  Trees are saved at 
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regular intervals, and that collection of trees (from the wandering stage) is considered “a sample from 
the posterior distribution”. 
 
The collection of trees represents your estimate of the phylogeny.  As when you have multiple equally 
parsimonious trees, you can produce a consensus tree by strict consensus, majority rule, etc.  You can 
also find the proportion of trees which contain a particular clade of interest, which is the posterior 
probability of that clade, and this can be compared to the prior probability of the clade by computing a 
Bayes Factor. 
 
 
Details, sometimes problematic: 

• There is a bit of an art to thoroughly exploring a large, complex space, and not getting stuck 
on a local optimum.  “Proposal mechanisms” 
 

• MrBayes uses “metropolis coupled MCMC”, or MCMCMC, to help explore the space.  
Here, there are (by default) 4 chains, 1 cold and 3 hot.  The hot chains are allowed to vary 
more freely.  If a chain happen to find a region with higher likelihood, then (again at a certain 
rate determined by R), then the chain will become the new cold chain which gets sampled. 
 

• Convergence: typically 2 analyses are run independently, and their convergence is measured.   
The runs will initially be far apart, and approach each other.  This is the “burn-in” period.  As 
a rule of thumb, you want convergence of the average standard deviation of split frequencies to 
get below 0.01. 
 

• You can have convergence problems especially when searching a really big space, e.g. >150 
taxa, or when your data just doesn’t have enough signal to resolve the phylogeny. 

 
 
Some pros and cons 
 

1. Posterior probabilities of clades (“clade credibility values”) have a natural interpretation, 
unlike bootstraps.  (Bootstraps also tend to be “too conservative”.) 
 

2. Very flexible method to incorporate lots of different data 
 

3. But can be quite slow (hours-days) 
 

4. Various technical issues 
 
 
More discussion of MrBayes in lab… 


