
POY 4.0 Beta

QuickStart Guide and Program Documentation
Version 4.0.1983

Program and Documentation
Andrés Varón

Le Sy Vinh
Illya Bomash

Ward C. Wheeler

Documentation
Ilya Tëmkin

Kurt M. Pickett
Julián Faivovich

Taran Grant
William Leo Smith

Andrés Varón
Division of Invertebrate Zoology, American Museum of Natural History
Computer Science Department, The Graduate School and University Center, The
City University of New York
Le Sy Vinh
Ward C. Wheeler
Ilya Tëmkin
Taran Grant
Division of Invertebrate Zoology, American Museum of Natural History
Kurt M. Pickett
Department of Biology, University of Vermont
Julián Faivovich
Departamento de Zoologia, Instituto de Biociências, Universidade Estadual
Paulista
William Leo Smith
Division of Vertebrate Zoology, American Museum of Natural History

The American Museum of Natural History
c©2007 by The American Museum of Natural History
All rights reserved. Published 2007

Varón, A., L. S. Vinh, I. Bomash, W. C. Wheeler. 2007. POY 4.0.1983 Beta. New
York, American Museum of Natural History. Documentation by Varón, A., L. S.
Vinh, I. Bomash, W. Wheeler, I. Tëmkin, K. M. Pickett, J. Faivovich, T. Grant,
and W. L. Smith. http://research.amnh.org/scicomp/projects/poy.php

Available online at http://research.amnh.org/scicomp/projects/poy.php.

http://research.amnh.org/scicomp/projects/poy.php
http://research.amnh.org/scicomp/projects/poy.php

Contents

1 POY4 Quick Start 7
1.1 What is POY4 . 7
1.2 The structure of POY4 documentation 8
1.3 Requirements: software and hardware 8

1.3.1 Software . 8
1.3.2 Hardware . 9

1.4 Obtaining and installing POY4 9
1.5 Starting a POY4 session . 12
1.6 POY4 interface . 14
1.7 Navigating the interface . 17

1.7.1 Entering commands 17
1.7.2 Browsing the output 17
1.7.3 Switching between the windows 17
1.7.4 Interrupting a process 18

1.8 Errors . 18
1.9 Obtaining help . 18
1.10 Exiting . 20
1.11 WWW resources . 21
1.12 Using POY4 . 22

1.12.1 Importing data . 22
1.12.2 Inspecting data . 25
1.12.3 Building initial trees 26
1.12.4 Performing a local search 28
1.12.5 Selecting trees . 29
1.12.6 Visualizing the results 30
1.12.7 Running scripts . 31
1.12.8 Known issues . 33

3

4 CONTENTS

2 POY4 Commands 35
2.1 POY4 Command Structure . 35

2.1.1 Brief Description . 35
2.1.2 Grammar Specification 36

2.2 Notation . 38
2.3 Command Reference . 39

2.3.1 build . 39
2.3.2 calculate support . 41
2.3.3 clear memory . 46
2.3.4 cd . 46
2.3.5 echo . 47
2.3.6 exit . 48
2.3.7 fuse . 49
2.3.8 help . 50
2.3.9 inspect . 51
2.3.10 load . 52
2.3.11 perturb . 53
2.3.12 pwd . 56
2.3.13 quit . 56
2.3.14 read . 57
2.3.15 rediagnose . 63
2.3.16 recover . 63
2.3.17 redraw . 64
2.3.18 rename . 64
2.3.19 report . 65
2.3.20 run . 74
2.3.21 save . 74
2.3.22 search . 75
2.3.23 select . 77
2.3.24 set . 81
2.3.25 store . 83
2.3.26 swap . 84
2.3.27 transform . 89
2.3.28 use . 99
2.3.29 version . 99
2.3.30 wipe . 99

CONTENTS 5

3 POY4 Tutorials 101
3.1 Basic Search . 102
3.2 Advanced Search . 103
3.3 Fusing and Ratcheting . 105
3.4 Trees and Step Matrices . 106
3.5 Bremer Support . 107
3.6 Bootstrap Support . 108
3.7 Bootstrap Support with Static Homologies 108
3.8 Chromosome Analysis . 109
General Index . 113
POY 3.0 Command Line Index . 114

6 CONTENTS

Chapter 1

POY4 Quick Start

1.1 What is POY4

POY4 is a flexible, multi-platform program for phylogenetic analysis of mole-
cular and other data under various optimality criteria. An essential feature
of POY4 is that it implements the concept of dynamic homology allowing op-
timization of unaligned sequences. POY4 offers great flexibility for designing
heuristic search strategies and implements an array of algorithms includ-
ing swapping, tree fusing, tree drifting, and ratcheting. As output, POY4
generates a comprehensive character diagnosis, graphical representations of
cladograms and their user-specified consensus, as well as support values,
and implied alignments. POY4 provides a unified approach to co-optimizing
different types of data, such as morphological and molecular sequence data.
In addition, POY4 can analyze entire chromosomes and genomes and take
into account large-scale genomic events (translocations, inversions, and du-
plications).

Currently POY4 is beta software, and therefore it has some known glitches.
Most of them will be worked out in the following months, and updated ver-
sions will be available on the program’s webpage as we produce them. Our
current schedule of work expect to have a final official version of the par-
simony components of the program and a release of the beta components
of the maximum likelihood components in mid may of 2007. For the list of
known issues see the Section 1.12.8.

7

8 CHAPTER 1. POY4 QUICK START

1.2 The structure of POY4 documentation

The first chapter, POY4 Quick Start, will get you started using POY4. The
first few sections are intended to provide detailed instructions on how to
obtain and install POY4, introduce the user to the program’s interface and
its navigation, and teach how to run the program and get help. Subsequent
sections (starting with 1.13 Using POY4) build on that knowledge and give
a step-by-step example on how to conduct a basic analysis and visualize
the results. The POY4 Quick Start is not a tutorial on POY4; using POY4
assumes a knowledge of POY4 commands and their valid syntax that are
detailed in the second chapter, POY4 Commands. More advanced operations
are described in the third chapter, POY4 Tutorials. In addition to the general
index, this document contains a POY3.0 Command Line Index, intended to
provide a link between the commands used in POY3 and the commands used
in POY4.

The Quick Start is created primarily for a typical user with limited expe-
rience using command-line applications and assumes little or no knowledge
of Unix. Consequently, certain operations suggested here could be performed
more efficiently by an experienced user, but in attempt to make the soft-
ware as accessible as possible, we provide simple and intuitive step-by-step
(platform-specific where necessary) instructions.

1.3 Requirements: software and hardware

1.3.1 Software

POY4 is a platform-independent, open-source program that is compiled for
Mac OSX, Microsoft Windows, and Linux systems. POY4 binaries (compiled
application file) is the only piece of software necessary to run POY4. Other
utility programs (that are typically installed with major operation systems),
can facilitate preparation of POY4 scripts (POY4 command batch files) and
formatting datafiles.

Windows

Notepad is a basic text editor that can be used to create POY4 scripts
and format datafiles. By default, it is located in the Accessories
folder under All Programs of the Start menu.

Command Prompt provides a working environment for POY4 and is
used to initiate a POY4 session. It can be accessed from the same

1.4. OBTAINING AND INSTALLING POY4 9

Accessories folder as Notepad.

Mac OSX

Terminal is an interface for UNIX operating systems and it provides a
working environment for POY4; it is used to initiate a POY4 session.
Terminal is located in the Utilities folder within the Applications
folder. (The program X11, that is also provided with OS X, can be
used as an alternative to Terminal.)

TextEdit is a basic text editor that can be used to create POY4 scripts
and format datafiles. By default, it is located in the Applications
folder. More flexible text editors, such as shareware applications like
BBEdit or TextWrangler, are good alternatives.

Linux

A simple text editor, such as nano, is sufficient, though more powerful
editors (such as vim or emacs) can make your life much easier writting
scripts for POY4.

1.3.2 Hardware

POY4 runs on a variety of computers computers from laptops and desktops
to Beowulf clusters of various sizes to symmetric multiprocessing hardware.
There are no particular requirements for disk space. Processor speed and
memory (and communications bandwidth and latency in parallel environ-
ments) are important. Depending on the size and complexity of the data,
and the computational complexity of requested operations, a POY4 session
can consume large amounts of memory. However, the flexible structure of
POY4 allows for partitioning of individual tasks to prevent overwhelming the
hardware. Strict guidelines cannot be provided because the performance
depends on the specifics of a given dataset; however, one can estimate the
the memory requirements by running a test command or script under less
demanding settings.

1.4 Obtaining and installing POY4

Compressed files of POY4 binaries, source code, and documentation in PDF
format are available for various Linux distributions, Microsoft Windows XP,
and Mac OSX Tiger at the American Museum of Natural History Compu-
tational Sciences POY4 website:

http://www.nano-editor.org/
http://www.vim.org
http://www.gnu.org/software/emacs/

10 CHAPTER 1. POY4 QUICK START

http://research.amnh.org/scicomp/projects/poy.php

The following detailed step-by-step instruction will guide you through down-
loading, decompressing, and installing POY4 binaries for various platforms.

Windows

• Download the Windows compressed binary file to the desktop.

• Typically, double-clicking on the compressed file will decompress it
into an executable program. If this does not work, decompress it
using a the standard compression utility program (such as WinZip).

• Move the executable file to your home directory (typically the
directory holding My Documents). This will make the program
available for running under your user name.

Mac OSX

Download the disk image file to the desktop. There are versions for single
processor and multiple processor machines. If you have more than one
processor in your computer, download both; the single processor version of
POY4 provides a more user-friendly environment and allows for interruption
of jobs. The multiprocessor version, on the other hand, runs as many times
faster as there are processors available.
To install, simply double click on the icon. The program will appear in the
Applications folder.

Linux

Download the gzipped copy of the program and store it in any of the
folders of your PATH environment.

Compiling from the Source

In order to compile POY4 the following tools are required:

1. The GNU Make tool.

2. OCaml version 3.09.3. or later.

3. The GNU Compiler Collection version 3.4 or later.

4. The ncurses library if you want the nice interactive console, thought
this one is not obligatory.

http://research.amnh.org/scicomp/projects/poy.php
http://research.amnh.org/scicomp/projects/poy.php
http://www.gnu.org/software/emacs/
http://research.amnh.org/scicomp/projects/poy.php
http://research.amnh.org/scicomp/projects/poy.php
http://www.gnu.org/software/make/
http://www.ocaml.org
http://gcc.gnu.org/
http://www.gnu.org/software/ncurses/

1.4. OBTAINING AND INSTALLING POY4 11

Download, ungzip, and untar the POY4 source code; change the relevant
paths and desired options in the config file. Then just run make clean;
make depend; make mpoy.opt. The executable mpoy.opt can be found in
the src directory.

The (most relevant) options available in the config file are:

USEINTERFACE specifies the preferred user interface. There are four
supported interfaces, though 2 of them are only in early development
stages and are not recommended. The valid options are:

ncurses (default) provides a nice terminal based environment for in-
teractive experimentation with POY4. This is the most desirable
environment when POY4 is running as a standalone program in
a personal computer, or remotely in a server but with the user
issuing commands interactively. Users can use the tab to auto-
complete both commands and filenames This interface is par-
ticularly useful while learning POY4’s commands. Requires an
ncurses-compatible library.

flat provides an environment with minimal requirements and func-
tionality. This is the most desirable interface for parallel runs,
as there is no terminal requirements and a process output can
easily be redirected from the standard error and standard output
to files using regular shell facilities. The tab and arrow keys are
readline functional to allow the user to autocomplete filenames
and navigate the interface.

gtk2 provides a pre-alpha, extremely bad looking graphical user in-
terface that mimics the ncurses interface. It is intended for use
in Windows and Linux environments in the near future. It’s not
recommended for current use. Requires GTK+ and lablgtk.

cocoa provides a pre-alpha, extremely bad looking graphical user in-
terface using Mac OS X’s native cocoa environment. Well, it’s
bad looking, but how bad can it look in a Mac?. It’s not recom-
mented for current use. Requires Mac OS X.

USEPARALLEL specifies that POY4 should be compiled with support for
parallel environments using the Message Passing Interface. It can be
set to true or false (default). For further instructions see below.

USEGRAPHICS specifies that POY4 should be compiled with support for
on-screen tree graphical output. The output is crappy right now, use
it if you want to explore a dataset. The valid options are:

http://research.amnh.org/scicomp/projects/poy.php

12 CHAPTER 1. POY4 QUICK START

none (default) specifies that the program should not have on-screen
graphical output support.

ocaml specifies that the program should have on-screen graphical out-
put support. In Unix and Linux systems (including Mac OS X),
requires X11.

tk specifies that the program should have on-screen graphical output
support. This version drops the X11 requirement in Mac OS X
(though this was an experiment and is not recommended).

USEWIN32 ensures that compilation is prepared for Microsoft Windows
environments. The valid options are false (default) or true. Note
that compiling for Windows is tricky! specially because the ncurses
interface needs to be installed (this is easy if you have cygwin). If
you want to run POY4 in windows you are better off downloading the
binaries.

POY4 can be run in parallel environments using the Message Passing
Interface. There are multiple implementations, and if you have a parallel
environment, most likely your system administrator has already installed
one. Ask him for the proper paths to set in your config file.

1.5 Starting a POY4 session

Windows

• Open the Command Prompt window:
Start>All Programs>Accessories>Command Prompt.

• Resize the Command Prompt window to desirable dimensions. When
POY4 is running, resizing the window is not possible.

• Change from the home directory to the directory containing POY4
binaries and datafiles. At the prompt enter cd (“change directory”)
followed by a space and the name of the directory (such as “POY4” as
in the example below). Hit the Return key.

• Open POY4. At the prompt enter “poy4” and hit the Return key.
This will open POY4 interface that will occupy the entire Command
Prompt window.

Mac OSX

http://www-unix.mcs.anl.gov/mpi/
http://www-unix.mcs.anl.gov/mpi/

1.5. STARTING A POY4 SESSION 13

• Open the Terminal window:
Macintosh HD>Applications>Utilities>Terminal. If a Terminal
window does not open by default, go to File>New Shell.

• Change from the home directory to the directory containing the
datafiles. At the Terminal prompt ($) enter cd (“change directory”)
followed by a space and drag the folder containing the datafiles in the
window (see Figure 1.1). This will automatically generate the path
to the folder where the datafiles are. (Alternatively, the path can be
typed in.) Hit the Return key.

• Open POY4. At the Terminal’ prompt enter poy and hit the Return
key. This will open POY4 interface.

• Resize the Command Prompt window to desirable dimensions. Use
lower right corner of the Terminal window to resize the interface to
the desired dimensions. Note that if the window is resized while POY4
performs a task, the interface might get distorted for the rest of the
process.

Linux

If you had placed the program in your PATH, then simply type poy in a
terminal; this will start the POY4 session.

Figure 1.1: Specifying the location of datafiles. The folder POY-Data is
dragged from the POY v3-4 folder directly in the Terminal window.

14 CHAPTER 1. POY4 QUICK START

Figure 1.2: Starting POY4. At the folder containing datafiles, entering poy
starts a POY4 session.

1.6 POY4 interface

The POY4 interface has the same appearance regardless of the operation
system under which POY4 is run (except under parallel environment settings;
see below). It has four windows: POY Output, Interactive Console, State of
Stored Search, and Current Job (Figure 1.3).

POY Output window displays the status of the imported data, outputs
the results of the phylogenetic analyses (such as trees, character diag-
noses, and implied alignments), reports errors, and displays descrip-
tions of POY4 commands. By default, POY4 reports the list of imported
data and generates error messages. Other outputs, however, must be
requested using the report() command.

Interactive Console is used to instruct POY4 to import data, specify the
kinds of analysis to be performed, and to request the desired output
interactively by typing POY4 commands at the POY4 prompt (poy>).
The commands are executed by hitting the Return key. The commands
can be executed one at a time or entered sequentially until the Return
key is pressed. (See Section 2.1.1 on the structure and syntax of POY4
commands.) Separating commands by spaces is optional but increases
legibility. Alternatively, a file containing the list of commands (POY4
script, see below) can also be imported and executed at the prompt in
the Interactive Console.

State of Stored Search displays the time (in seconds) elapsed since the
initiation of the current operation. This window also reports the num-
ber of trees currently in memory and provides the range of their costs.

Current Job describes the currently running operation. When the opera-
tion is completed, the window is blank.

This POY4 interface is not available for parallel environments. Once the
program is called, POY4 commands can be executed interactively or scripts

1.6. POY4 INTERFACE 15

Figure 1.3: POY4 interface displayed in the Terminal window prior to analy-
sis. Note the cursor at the POY4 prompt in the Interactive Console and that
the State of Stored Search and Current Job windows are empty.

16 CHAPTER 1. POY4 QUICK START

Figure 1.4: POY4 interface during a process. The POY Output window
displays (by default) the information on the input datafiles. The Interactive
Console lists the commands that have been consecutively executed. The
Current Job window shows the state of the current operation and the current
tree score. The State of Stored Search shows the time elapsed since the last
command, swap, was initiated.

1.7. NAVIGATING THE INTERFACE 17

can be submitted as when using the Interactive Console. By default, the
POY4 will print the output on screen (the same output that is reported in
POY Output under non-parallelized setting).

1.7 Navigating the interface

1.7.1 Entering commands

The Interactive Console is the only part of the interface that allows commu-
nication with POY4; that is where commands and scripts are executed. Once
the POY4 interface is called, the cursor appears in the Interactive Console
and POY4 is ready to accept commands. POY4 interface does not support
using the mouse and, as true for most command-line applications, the cur-
sor can be moved using the left and right arrow keys, and the Backspace
(in Windows) or Delete (in Mac) keys are used to erase individual char-
acters to the left of the current cursor position. To eliminate the need of
retyping commands anew during a POY4 session, keyboard shortcuts can be
used: Control-P (“previous”) and Control-N (“next”) will scroll through the
commands entered during the session.

1.7.2 Browsing the output

As more output is reported in the POY Output window, only the most
recent reports will be seen in the window. Using the Up and Down keys
allows to scroll up and down the POY Output window to see the welcome
line, and previously printed reports and help descriptions. Pressing Up and
Down keys automatically places the cursor in the lower left corner of the
POY Output window indicating that you are interacting with that window.
It is important to know that only 1000 lines are stored in the memory and
the output that was reported before that will not be accessible by scrolling.
If it is desired to keep the entire output or specific items in the output, the
log can be created (using the command set(), see log (Section 2.3.24)) or
specific outputs can be redirected to files (see report (Section 2.3.19)).

1.7.3 Switching between the windows

To return to the Interactive Console start typing and the cursor will au-
tomatically be placed back at the POY4 prompt. When an operation is in
progress (which is shown in the Current Job window), the cursor stays in
the upper left corner of the State of Current Search window, and switching

18 CHAPTER 1. POY4 QUICK START

between the Interactive Console and the POY Output window is disabled.
There are no user interactions with the Current Job and State of the State
of Current Search.

1.7.4 Interrupting a process

To interrupt a process, press Control-C. By default, an error, Error:
Interrupted, is reported in the POY Output window. The program does
not close, however, and a new command can be entered. This command
does not close the program, it only stops the last process that was running
keeping in memory all the data and the results of the operation executed
last. New commands can subsequently be entered.

1.8 Errors

POY4 reports errors in several ways. If there is an error pertaining to wrong
syntax (such as a typo in a command name), POY4 will indicate the location
of an error by underlining the problematic part of the input with “^” in
the Interactive Console (Figure 1.5). POY4 will also automatically display in
the POY Output window the description of the command, its syntax, and
examples of its usage. As explained above, the Up and Down keys can be
used to scroll through the output and determine the source of the error.
Certain kinds of errors will be reported explicitly (Figure 1.5).

1.9 Obtaining help

Instructions to run POY4, command descriptions, and the theory behind
POY4 can be obtained from a variety of sources.

POY contains a help file that can be accessed by entering help() at POY4
prompt in the POY Output window. This file contains descriptions
and examples of all currently implemented POY4 commands. Up and
down arrows allow to scroll through the file. To obtain help on a par-
ticular command, the name of the command must be specified in the
parentheses following help(). For example, to learn about the com-
mand exit, type help(exit). Help will appear in the upper window,
as shown in Figure 1.7.

POY4 Quick Start will help you to get familiar with the appearance and
navigation of POY4 interface, and will provide you with step-by-step
instructions on how to run your first analysis.

1.9. OBTAINING HELP 19

Figure 1.5: Displaying errors. POY4 displays error messages in several ways.
In the example in the left panel, the command build was entered without
parentheses, which is required for a valid POY4 command syntax; The exact
place of the error is marked by “^”, in this case following the build com-
mands. Examples of the proper usage of the command are automatically
displayed in the POY Output. In other cases (right panel), error messages
are explicitly reported in the POY Output window. The first and second
error messages indicate that the datafile SSU.seq is not present, which could
have been caused either by a mistake in the name of the file, missing file, or
the location of the file in a directory, other than the one specified prior to
starting the POY4 session. The third error message indicates that the valid
syntax of exit requires the parentheses following the command name (also
shown by “^” in the Interactive Console).

20 CHAPTER 1. POY4 QUICK START

POY Commands Reference contains detailed descriptions of all POY4
commands and arguments, together with comprehensive examples of
their usage. This is an essential document that will provide you with
necessary information to fully customize every stage of your analysis.

POY Book (Wheeler et al., 2006 Dynamic Homology and Phylogenetic
Systematics: A Unified Approach Using POY) provides a review of
the theory behind POY4, and contains formal descriptions of many
algorithms implemented in the program and the descriptions of com-
mands of the earlier version, POY3.

POY4 Mail Group is an Internet-based forum for discussing all issues
related to POY4 and provides the best way to communicate with POY4
developers on specific issues (see WWW resources below). The website
is located at http://groups.google.com/group/poy4.

Figure 1.6: The POY4 Book.

The POY Book and the document containing the POY4 QuickStart, POY4
Command References, and POY4 Tutorials can be downloaded as PDF files
from POY4 web site at

http://research.amnh.org/scicomp/projects/poy.php

1.10 Exiting

To finish a POY4 session, enter command exit() (Figure 1.7) or quit().
This will close the POY4 interface and resume the Terminal window (Mac)
or the Command Prompt window (Windows).

1.11. WWW RESOURCES 21

Figure 1.7: Exiting POY4

1.11 WWW resources

POY4 is an ongoing project and new versions are being continuously devel-
oped to include new procedures, improve performance, and eliminate re-
ported bugs. Therefore, it is imperative to keep up with the program’s de-
velopment and check regularly for updates. There are several Internet-based
resources that offer this information, and, additionally, provide a forum for
discussing specific issues using POY4, and present an efficient way to com-
municate with POY4 developers regarding any technical difficulties, reporting
bugs, and obtaining help.

POY4 Web Site has downloadable compressed files of POY4 binaries, source
code, and documentation in PDF format. It also provides a links to
the POY Mail Group. The website is hosted by AMNH Computational
Sciences at

http://research.amnh.org/scicomp/projects/poy.php

POY4 Mail Group informs registered users via email of new develop-
ments, such as new versions and updates. It also provides a way for
reporting bugs and other problems with POY4 and its documentation,
as well as an additional resource for obtaining help on specific issues.
In addition, it allows users to receive and respond to each other’s
questions thus providing an open forum to discuss the methods and
applications of POY4. The users who choose not to register, will have
access to the archives of the postings but will not be able to either
submit or receive emails from other users and POY4 developers. The
POY4 Mail Group is hosted by Google at

22 CHAPTER 1. POY4 QUICK START

http://groups.google.com/group/poy4

1.12 Using POY4

This section will help you get started using POY4 and will prepare you for the
more extensive, technical descriptions in the next chapter, POY4 Commands.
Now that you are acquainted with the program’s interface, learned how to
initiate, and exit or interrupt) a POY4 session, and how to obtain help, you
are well prepared to run your first analysis. This chapter will teach you
how to read (import) datafiles, check the data you are analyzing, generate a
set of initial trees, do basic branch swapping to find a local optimum, and,
finally, produce and visualize the resultant trees, their strict consensus, and
generate support values.

For the purpose of this exercise, three datalfiles are used. These sample
files can be downloaded from
http://research.amnh.org/scicomp/projects/poy.php:

• 18s.fas contains unaligned DNA sequence data for a single locus (par-
tial 18S ribosomal DNA) in FASTA format.

• 28s.fas contains unaligned DNA sequence data for a single locus (par-
tial 28S ribosomal DNA) in FASTA format.

• morpho.ss contains a morphological data matrix in Hennig86 format.

Once POY4 has been launched and the interface (Figure 1.3) had appeared
on the screen, the data can be imported and the analysis can proceed. As you
follow the instructions, you are encouraged to consult the help file by using
the command help (see Section 1.9 to learn more about POY4 commands
and their arguments).

1.12.1 Importing data

The basic command to input data in POY4 is read(), which includes the
list of files (in quatation marks and separated by commas) enclosed in
parentheses. Suppose that we would like to simultaneously analyze morpho-
logical and molecular datasets, contained in separate datafiles, morpho.ss
and 28s.fas, respectively. We can issue a pair of read() commands (Fig-
ure 1.8):

read("morpho.ss")
read("28s.fas")

1.12. USING POY4 23

Figure 1.8: Importing datafiles. Two consecutive read commands import
both the morphological datafile (morpho.ss) in Hennig86 format , and the
molecular datafile (28s.fas) in Fasta format. Note that POY4 automatically
reports in the POY Output window the names and types of files that have
been imported.

The syntax of read is not unique; in fact, every command in POY4 con-
tains two elements: the name of the command (e.g. read), followed by the
list of arguments separated by commas and enclosed in parentheses. Typ-
ically, the arguments of the command read() are names of datafiles, each
being enclosed in double quotes (as shown in the example above). Even-
though arguments there might be only one argument or it might be absent
or omitted in some commands, parentheses (e.g.read()) always follow the
command name. An exhaustive discussion of POY4 command structure and
detailed descriptions of all commands with examples of their usage are pro-
vided in the POY Commands Reference document.

Most of the time users are interested in importing multiple datafiles to
analyze on the entire dataset. In this case, multiple datafiles can be specified
as arguments for a single command. For example, importing both files, mor-
pho.ss and 28s.fas, can be written more succinctly: read("morpho.ss",
"28s.fas"). This is equivalent to sequentially importing each file at a time
as was shown previously (Figures 1.8 and 1.9).

Figure 1.8 also illustrates an important feature that makes POY4 differ-
ent from many other phylogenetic analysis programs: every time a file is
imported during a POY4 session, the input data is added to the current data
in memory, it does not replace it. This allows additional analytical flexibility.
For example, if only morphological data are read and trees are built based
on these data alone, a subsequently imported molecular character dataset
will be used in conjunction with the previously imported morphological data
in subsequent operations, despite the fact that the trees were generated only

24 CHAPTER 1. POY4 QUICK START

Figure 1.9: Building trees with morphological data only but continuing an-
alysis using combined morphological and molecular data. This example
shows how we can add data to the analysis incrementally by loading files at
different points in the search. First, the morphological data are imported
from morpho.ss file using read() the and trees are built based on these
data. Then molecular data from the 28s.fas file are loaded into memory
in addition to previously imported morphological data. Finally, subsequent
analyses, rediagnose() and swap(), are conducted using the data in mem-
ory, that is the trees based on morphological data, and both morphological
and molecular character sets.

from morphological data (Figure 1.9):

read("morpho.ss")
build()
read("28s.fas")
rediagnose()
swap()

It must be noted that if the number of terminals differs among datafiles,
only the data that corresponds to the terminals used to generate the trees
(from the morphological datafile in our example) are used; the rest of the
character data are ignored.

Also, because POY4 appends trees and data in memory, it is a good
practice to empty the memory when starting a new analysis using use the
wipe() command (see also clear memory()).

1.12. USING POY4 25

Valid input files include nucleotide and amino acid sequence files in many
formats, and morphological data in Hennig 86 format. For information
on specific formats supported by POY4 and other types of input files see
help(read).

1.12.2 Inspecting data

Once a dataset (or multiple datasets) is imported, POY4 automatically re-
ports a brief description of contents for each loaded file in the POY Output
window as shown in Figure 1.8. However, it may be desirable to inspect the
imported data in greater detail to ensure that the format and contents of
the files has been interpreted correctly. This practice allows to avoid com-
mon errors, such as misspelled terminal names, which may result in bogus
results, produce error messages, and aborted jobs.

The basic command for outputting information is report(). One of its
arguments, data, outputs a set of tables showing the list of terminals, the
number and type of characters, the list of files that have been imported so
far, and the lists of terminals and characters excluded from the analysis.
For example, to produce such report of the same datafiles that were used
in the previous example (morpho.ss and 28s.fas), we import the data and
execute report(data):

read("morpho.ss","28s.fas")
report(data)

This will generate an extensive, detailed output, partial views of which are
shown in Figure 1.10. Obviously, the entire report will not be visible in the
POY Output window. Therefore, the Up and Down arrow keys should be
used to scroll through it.

In this example, all the imported data is analyzed and, therefore, the
report fields that list excluded data will appear empty in the report. One
can, however, exclude specific characters or terminals from the analysis using
additional commands (see select()).

By default, POY4 reports the results of executed commands in the POY
Output window. However, the same output can be redirected to a file sim-
ply by adding the name of the output file in the list of argument of the
command report() before the argument that specified the type of the re-
quested report (in this case data). For instance, if we would like to out-
put into the file “data analyzed.txt”, we would write report("data ana-
lyzed.txt", data).

26 CHAPTER 1. POY4 QUICK START

Figure 1.10: Inspecting imported data. The figure shows segments of a data
report generated by report(data). The left and right panels demonstrate
a typical table output the character and terminal data respectively.

Another useful argument of report is cross references. It displays
which terminals are present or absent in each one of the imported files,
providing a comprehensive visual overview of the missing data. Building
on the previous example, such output can be generated by the following
sequence of commands:

read("morpho.ss", "28s.fas")
report(cross references)

A typical output of cross references command is shown in Figure
1.11.

1.12.3 Building initial trees

The command to build trees is build (already been mentioned in Sec-
tion 1.12.1). After importing morpho.ss and 28s.fas, executing the com-
mand build() without specifying any arguments will generate 10 Wagner
trees by random addition sequence (the default setting of the command).
Make sure that if you plan to build trees based on other data you have to
purge the memory first by using wipe() command Many POY4 commands
operate under default settings when executed without arguments. (To learn
what the default settings are for a particular command, use either help()
command with the command name of interest inserted in parentheses or
consult the POY Commands Reference; see Section 1.9.) If you would like
to build more trees, 100 for instance, an argument trees followed by a colon
(“:”) and an integer specifying the number of trees must be included in the
argument list of the build command: build(trees:100). This command
has a shortcut that omits the argument trees; therefore, build(trees:100)

1.12. USING POY4 27

Figure 1.11: Visualizing missing data. The command cross references
displays a table showing whether a given terminal (in the left column) is
present (“+”) or absent (“-”) in each datifie. In this example, the data for
all the the taxa listed in the POY Output window are present both datafiles,
morpho.ss and 28s.fas.

is equivalent to build(100). As defaults, the shortcuts are fully described
in the POY Commands Reference. The entire sequence of commands mini-
mally required to import the data and build 100 trees is the following:

read("morpho.ss","28s.fas")
build(100)

As the tree building advances, the Current Job window displays the
current status of the operation (Figure 1.12). It shows how many Wagner
builds have been performed out of the total number requested, the number of
terminals added in the current build, the cost of a current tree (recalculated
after each terminal addition), and the estimated time (in seconds) for the
completion of all the builds. When all the trees are generated, the State of
Stored Search window displays the range of tree costs (the best and worst
costs), the number of trees stored in memory, and the number of trees with
the best cost.

28 CHAPTER 1. POY4 QUICK START

Figure 1.12: Generating Wagner trees. During the process of tree building
(left panel), the Current Job window displays how many builds have been
performed so far (57 of 100), the number of terminals added in the current
build (13 of 17), a cost of a current tree recalculated after each terminal
addition (362), and the estimated time (in seconds) for the completion of
the operation (4 s). Because the process is not complete, the State of Stored
Search window contains no trees. Once tree building is finished, the State
of Stored Search window displays the best (451) and worst (472) costs, the
number of trees stored in memory (100), and the number of trees with the
best cost (2).

1.12.4 Performing a local search

Now, that the trees have been generated and stored in memory, a local
search can be performed to refine and improve the initial trees by examin-
ing additional topologies of potentially better cost. The command swap()
implements an efficient strategy by performing SPR and TBR branch swap-
ping iteratively. As with other commands, the arguments of swap() allow
customization of the performance of the command. In case of swap(), ad-
ditional options specify which algorithms are used in swapping and restrict
swapping to certain sections of trees. In the following example, branch swap-
ping is performed under the default settings on each of the 100 trees build
in the previous step:

read("morpho.ss","28s.fas")
build(100)
swap()

Branch swapping is performed sequentially on all trees stored in mem-
ory. During swapping, the Current Job window reports the number of a
tree that is currently being analyzed, the method of branch swapping, the
specific routine being currently performed, and the cost of the current tree
(Figure 1.13). When the process is complete, the State of Stored Search

1.12. USING POY4 29

Figure 1.13: Performing a local search. When searching (left panel), the
Current Job window reports the number of the tree that is currently be-
ing analyzed (73 of 100), a method of branch swapping (Alternate), a
function being currently performed (SPR search), and a cost of the current
tree (456). When the searching is finished (right panel), the State of Stored
Search window displays the best (446) and worst (463) costs, the number of
trees stored in memory (100), and the number of trees of the best cost (9) re-
covered from independent tree builds. Note these trees may not necessarily
have unique topology.

window displays the range of tree costs (the best and worst costs), the num-
ber of trees stored in memory, and the number of trees of the best cost
(Figure 1.13). Note that the local search had reduced the costs of the initial
best (from 451 to 446) and narrowed the range of tree costs.

Using different combinations of the arguments of swap() allows to de-
sign a large number of search strategies of different levels of complexity.
Some simple options allow the choice between SPR and TBR. More com-
plex strategies allow keeping a specific number of best trees per single ini-
tial tree (generated during the building step). For example, the command
swap(trees:10) will keep up to 10 best trees generated during branch swap-
ping on a single initial tree. Consequently, if 100 trees were built initially,
this command will produce 1,000 trees. The argument threshold allows
the retention of suboptimal trees within a specified percent of cost difference
from the current best tree. For example, swap(trees:10, threshold:10).
Other options provide the means to sample trees as they are evaluated, time-
out after certain number of seconds, transform the cost regime, and other
perform other functions in conjunction with other POY4 commands.

1.12.5 Selecting trees

Having performed the basic steps of importing character data, building ini-
tial trees, and conducting a local search, we obtained a set of local optimum
trees in memory. Most of the time, a user would like to select only those

30 CHAPTER 1. POY4 QUICK START

Figure 1.14: Selecting unique best trees. Executing select() keeps only
unique tees of best cost. The State of Stored Search window reports that
there is only one unique tree of best cost (446).

trees that are optimal and topologically unique and the default setting of the
select() does exactly that. Adding select() to our example of command
sequence for the basic analysis

read("morpho.ss","28s.fas")
build(100)
swap()
select()

will select only unique trees of best cost; the remaining trees will be deleted
from memory. The State of Stored Search window will report the number
and the cost of the best tree(s) (Figure 1.14).

select() is another multifunctional command the arguments of which
are also used to select (include or exclude) specific terminals, characters,
and trees.)

Comparing the output reported in the State of Stored Search before (Fig-
ure 1.13) and after (Figure 1.14) executing select() shows that swapping
on 9 of 100 initial trees produced the trees of best cost (446), but these trees
are identical, because only one was retained when filtered using select().

1.12.6 Visualizing the results

There are several ways to visualize results. A quick way to see the tree(s) on
screen is to use the command report(asciitrees) that will draw a clado-
gram in the POY Output window (Figure 1.15). The ascii tree can also be
reported in a file, if the output file name is specified (in parentheses and sep-
arated from the argument asciitrees by a comma). However, for reporting
trees to a file there are better options. First, the command report("my -
first tree", graphtrees) will output a cladogram in postscript format
(Figure 1.15) which can be edited using graphics software (such as Adobe

1.12. USING POY4 31

Figure 1.15: Visualizing trees. An ascii tree (left) is generated using the
command asciitrees. The same tree is reported to a file in a postscript
format (right) using report("my first tree", graphtrees). Note that
both representations of trees are preceded by their costs.

Illustrator or Corel Draw). (POY4 will also append the “ps” extension when
generating graphic output to a file.)

report("my first trees", trees) will report the trees in memory to
the file my first trees that can be imported in other programs (such as
TNT). Other supported tree tree formats include Newick and Hennig86. re-
port() can also generate consensus trees in the graphical (postscript) format
when appropriate arguments are specified (for example, report("strict -
consensus", graphconsensus)).

1.12.7 Running scripts

So far, we have communicated with POY4 interactively, by executing com-
mands from the Interactive Console window. Another way of conducting
an analysis is to run a script: a file containing the list of commands to be
performed (Figure 1.16). This allows a user to design a search strategy in
advance and run the entire script using a single command, run() or, at start

32 CHAPTER 1. POY4 QUICK START

Figure 1.16: Using POY4 scripts. Executing the list of commands the Inter-
active Console (left) is equivalent to running a script containing the same
list. Note, that the header of the script is a comment, inclosed in “(* *)”,
that is ignored by POY4. Also note, that commands can either be listed in a
row or in a column (compare build() and swap() in the console and in the
script) and different arguments of the same command can either be speci-
fied separately or combined in a single argument list (compare report() in
the console and in the script). (Both conventions are valid for interactive
command submission and for scripts.)

up, by entering the names of the script files (without quotes and parenthe-
ses). This is extremely useful in cases when operations take may take long
time and you do not want to sit in front of the computer waiting for a part
of your analysis to finish in order to execute the next command. Another
advantage of using scripts is that it can contain comments that are ignored
by POY4 but can be helpful to describe the contents of the files used and
provide any other annotations. The comments are enclosed in parenthe-
sis and asterisks. For example, (*this is a comment*). Comments can
also be entered interactively from the Interactive Console. Their utility in
that context is, however, limited unless the comments are featured in some
output files.

There are two ways to run a script:

1. From the Interactive Console use the command run("script.txt"),
where script.txt is the name of the file containing the script.

2. From the command line you use to start POY4, include the filename of
the script, as in poy script.txt.

In both cases, the script must include the command exit() at the end
to finish the session, otherwise POY4 will wait for further instructions to be
entered after executing the script’s contents.

Enjoy POY4!

1.12. USING POY4 33

1.12.8 Known issues

The following issues are known to occur in this beta release. The core POY4
development group is presently working on fixing these issues.

1. If the window is resized during a search, it will not be updated until
the job is finished.

2. The diagnosis report is rudimentary but will be greatly expanded in
the next version.

3. The analysis of static homology characters is slow.

4. The output of the flat interface is reported differently than that of the
ncurses interface.

5. The parallel version reports the number of jobs currently running on
only one of the processors, not in all of them.

6. NEXUS files are not always parsed correctly.

34 CHAPTER 1. POY4 QUICK START

Chapter 2

POY4 Commands

2.1 POY4 Command Structure

2.1.1 Brief Description

POY4 interprets and executes scripts issued by the end user. These can come
from the command line in the interactive console of the program, or from
an input file. A script is a list of commands, separated by any number of
whitespace characters (spaces, tabs, or newlines). Each command consists of
a name in lower case (LIDENT), followed by a list of arguments separated by
commas and enclosed in parentheses. Most of the arguments are optional,
in which case POY4 has default values.

In POY4, we recognize four types of command arguments: primitive val-
ues, labeled values, commands, and lists of arguments.

Primitive values can be either an integer (INTEGER), a real number
(FLOAT), a string (STRING), or a boolean (BOOL).

Labeled values are a lowercase identifier (which we will call the label),
and an argument, separated by the colon character. “:”.

List of Arguments are several arguments enclosed in parenthesis and
separated by commas, “,”.

Commands are standard commands that can affect the behavior of an-
other command when included in its arguments.

35

36 CHAPTER 2. POY4 COMMANDS

Thus, certain commands can function as arguments of other commands.
Moreover, some commands share arguments. Although such compositive
use of commands might seem complex, this structure provides much more
intuitive control and greater flexibility. The fact that the same logical opera-
tion that functions in different contexts maintains the same name (typically
suggestive of its function), substantially reduces the number of commands
without limiting the number of operations. Using a linguistic analogy, POY4
specifies a large number of procedures by a more complex grammar (specific
combinations of commands and arguments) rather than by increasing the
vocabulary (the number of specific commands and arguments). For example,
the command swap specifies the method of branch swapping. This command
is used to conduct a local search on a set of trees. In addition, swap func-
tions as an argument for calculate support to specify the branch swapping
method used in each pseudoreplicate during Jackknife or Bootstrap resam-
pling. swap can also be used to set the parameters for local tree search
based on perturbed (resampled or partly weighted) data as an argument of
the command perturb. Therefore, to take the maximum advantage of POY4
functionality, it is essential to get acquainted with the grammar of POY4.

2.1.2 Grammar Specification

The following is the formal specification of the valid grammar of a script in
POY4 4:

script: | command
| command script

command: LIDENT "(" arguments ")"

arguments: |
| argument
| argument "," arguments

argument: | primitive
| LIDENT
| LIDENT ":" arguments
| command
| "(" arguments ")"

primitive: | INTEGER

2.1. POY4 COMMAND STRUCTURE 37

| FLOAT
| BOOLEAN
| STRING

LIDENT: [a-z_][a-zA-Z0-9_]*

INTEGER: [0-9]+

FLOAT: | INTEGER
| [0-9]+ "." [0-9]*

STRING: """ [^"]* """

The following examples show graphically a typical structure of valid POY4
commands formally defined above. The Figure 2.1 illustrates the syntax of
the command swap. The name of the command (swap) is followed by a list
of two arguments, tbr and trees:2, inclosed in parentheses and separated
by a comma. Note that trees:2 is a labeled-value argument, that is it
contains a label (trees) and a value (2) separated by a colon.

Figure 2.1: A structure of a simple POY4 command. The entire command
(highlighted in blue), consists of a command name followed by a list of
arguments (enclosed in red box). See text for details.

Figure 2.2 shows a compound command perturb, because the list of its
arguments contains another command, swap. This means that executing
perturb will perform a set of specified operations that contains a nested
set of operations specified by swap. Note also that in contrast to the first
labeled-values argument iterations, the second labeled-values argument
ratchet has multiple values (a float and an integer), the values must be
enclosed in parentheses and separated by a comma. The third argument
is a command (swap), therefore it is syntactically distinguished from other
arguments, labeled and unlabeled alike, by having parentheses following the

38 CHAPTER 2. POY4 COMMANDS

command name. It must be emphasized that the parentheses always follow
the command name even if no arguments are specified. (If no arguments are
specified, a command is executed under its default settings if they exist.)

Figure 2.2: A structure of a compound POY4 command. Note that the list of
arguments (enclosed in red box) includes a command (highlighted in blue).
Also, note that ratchet accepts multiple values, a float and an integer, that
are inclosed in parentheses and separated by a comma. See text for details.

2.2 Notation

Some arguments are obligatory, whereas others are not; some commands
accept an empty list of arguments, but others do not; some argument la-
bels have obligatory values, whereas values of others are optional. In the
descriptions of POY4 commands below, the elements of POY4 grammar are
emphasized in the text using the following conventions:

• A command that could be included in a POY4 script (that is can be
entered in the interactive console or included in an input file) is shown
in terminal type.

• Optional items are inclosed in [square brackets].

• Primitives are shown in UPPERCASE.

Each command description entry contains the following sections:

• The name of the command.

• A brief description of the command’s function.

• Cross references to related commands.

• The valid syntax for the command.

• The list of descriptions of valid arguments.

• Description of default settings.

2.3. COMMAND REFERENCE 39

• Some examples of its usage.

NOTE

Default syntax. The default syntax for all commands is the same:
it includes the command name followed by empty parentheses. For
example, swap(). The descriptions of default settings, however, in-
clude the entire argument list for the obvious reason of showing what
is included in the omitted argument list.

NOTE

Command order. The effect of the order of arguments in a com-
mand is context dependent. If arguments are not logically inter-
connected, their order is not important. For example, commands
build(10,randomized) and build(randomized,10) are equiva-
lent. However, executing commands transform(tcm:(1,1),gap -
opening:4) and transform(gap opening:4,tcm:(1,1)) will pro-
duce different results because gap opening modifies the values set
by tcm, while tcm overrides the values set by gap opening.

NOTE

Output files. When an output file is specified, the file name (in
double quotes and followed by a comma) must precede the argument.

NOTE

Certain command arguments are mainly useful to POY4 developers,
and those arguments are preceded by an underscore.

2.3 Command Reference

2.3.1 build

Syntax

build([argument list])

Description

Builds Wagner trees [6]. The arguments of the command build specify the
number of trees to be generated and the order in which terminals are added

40 CHAPTER 2. POY4 COMMANDS

during a singe tree building procedure. The sequence of taxon addition can
either be random or correspond to the order of terminals as they are listed in
the first imported datafile. During tree building, POY4 reports in the Current
Job window of the ncurses interface which of the terminal addition strategies
is currently used. Building multiple trees with a randomized addition of
terminals allows for the evaluation of many more possible tree topologies
and generates a diversity of trees for subsequent analysis.

By default POY4 replaces the trees stored in memory with those gener-
ated in a subsequent build. For example, executing build(10) followed by
build(20) will replace 10 trees generated during the first build with 20 new
trees. However, it might be desirable (for example, if computer memory were
limited) to generate a large number of trees by appending trees from mul-
tiple separate builds. To keep trees from consecutive builds, a tree output
file must be specified using report (Section 2.3.19) that must precede the
subsequent build command. This will produce a file containing the trees
appended from all builds. Alternatively, trees from different builds can be
redirected to separate files if different file names are specified.

The command build is also used as an argument for the command
calculate support.

Arguments

as is Indicates that in one of the trees to be built, the terminals are added
in the order in which they appear in the first imported datafile, and
all others are built using a random addition sequence.

randomized Indicates that terminals are added in random order on every
Wagner tree built.

trees:INTEGER The integer value specifies the number of independent,
individual Wagner tree builds. The label trees is optional: it is suf-
ficient to specify only the integer without the trees label. Therefore,
build(5) is equivalent to build(trees:5). Note that trees is also
used as an argument of the command swap (Section 2.3.26) but with
different meaning.

The value 0 generates no trees, but, unlike other values, it retains all
trees in memory instead of eliminating them. This is useful, for exam-
ple, in the bremer (Section 2.3.2) support calculation, where instead
of generating new trees per each node, the searches are performed on
the trees in the neighborhood of the current trees in memory.

2.3. COMMAND REFERENCE 41

INTEGER The integer argument specifies the number of independent, indi-
vidual Wagner tree builds. This is a shortcut of the argument trees.

of file:STRING Imports tree file included in the file path of the argument.
This command is useful for importing starting trees for calculating
bremer (Section 2.3.2) support. In other contexts the command read
(Section 2.3.14) is used.

STRING This is a shortcut of the argument of file.

all Turns off all preference strategies to make a join, simply try all possible
join positions for all terminals added.

Defaults

build(trees:10, randomized) By default, POY4 will build 10 trees using
a random addition sequence for each of them.

Examples

• build(20)
Builds 20 Wagner trees randomizing the order of terminal addition
(note that since random is the default, it is not written).

• build(trees:20, randomized)
A more verbose version of the previous example. By default a build is
randomized, but in this case the addition sequence is explicitly set. For
the total number of trees, instead of simply specifying 20, we use the
label trees (this might be desirable to improve a script’s readability).

• build(15, as is)
Builds the first Wagner tree using tree using the order of terminals
in as they are listed in the first imported datafile and generates the
remaining 14 trees using a random addition sequence.

2.3.2 calculate support

Syntax

calculate support([argument list])

42 CHAPTER 2. POY4 COMMANDS

Description

Calculates the requested support values. POY4 implements support esti-
mation based on resampling methods (Jackknife and Bootstrap) and Bre-
mer support. Calculation of Bremer support presupposes that at least one
tree (for which support is estimated) is in memory. All the arguments of
calculate support command are and their order is arbitrary.

NOTE

The placement of the root affects calculation of the support val-
ues. Therefore, it is critical to define the root prior to executing
calculate support. See the description of the command set (Sec-
tion 2.3.24) on how to specify the root.

POY4 does not report support values by default; the output of support
values must be requested using report (Section 2.3.19). This is particularly
important for Jackknife and Bootstrap support values, as these sampling
techniques do not require the existence of trees in memory. Therefore, it
is possible to perform the sampling for support values before the tree of
interest has been found.

2.3. COMMAND REFERENCE 43

NOTE

It is critical to understand that in the context of dynamic homo-
logy, the characters being sampled during pseudoreplicates are en-
tire sequence fragments, not individual nucleotides. Consequently,
the bootstrap and jackknife support values calculated for dynamic
characters are not directly comparable to those calculated based on
static character matrices. If it is desirable to perform character sam-
pling at the level of individual nucleotides, the dynamic characters
must be transformed into static characters using static approx ar-
gument of the command transform (Section 2.3.11) prior to ex-
ecuting calculate support. Alternatively, an output file in the
Hennig86 format can be generated based on an implied alignment
using phastwinclad (Section 2.3.19) that can subsequently be ana-
lyzed using other programs such as NONA or TNT.
It is important to remember that the local optimum for the dynamic
homology characters can differ from that for the static homology
characters based on the same sequence data. Therefore, in calculat-
ing support values by sampling individual nucleotides based on the
static homology data (obtained by static approx) can produce a
discrepancy in tree costs when compared to the tree cost based on
the original dynamic homology data. Therefore, it is recommended
to perform an extra round of swapping on the transformed data to
insure that the local maximum is reached for the static homology
characters prior to calculating support values.

Arguments

Support calculation methods The following commands allow to choose
among several methods for calculating support.

bremer Calculates Bremer support [2, 10] for each tree in memory by per-
forming independent searches for each node. The parameters for the
searches can be modified using arguments described under Search
strategy. The argument bremer takes no values.

bootstrap[:INTEGER] Calculates Bootstrap support [7]. The integer value
specifies the number of resampling iterations (pseudoreplicates). If the
value is omitted, POY4 performs 5 pseudoreplicates by default.

jackknife[:([argument list])] Calculates Jackknife support [4] using
the sampling parameters specified by the arguments. The arguments

44 CHAPTER 2. POY4 COMMANDS

of jackknife are optional and their order is arbitrary. If both values
are omitted, POY4 uses the default values of the arguments.

remove:FLOAT The value of the argument remove specifies the per-
centage of characters being deleted during a pseudoreplicate. The
default of remove is 36 percent.

resample:INTEGER The value of the argument resample specifies
the number of resampling pseudoreplicates. The default of resample
is 5.

Search strategy The calculation of the support values requires a local
search, that is performed under the default settings unless the values of the
following arguments are specified .

build For calculating Bremer support, the integer value of build speci-
fies the number of independent Wagner tree builds per node. The
integer value 0 (build:0) specifies that Bremer support values are
calculated on the starting trees currently in memory, rather than on
newly generated trees. Alternatively, the initial trees for calculating
Bremer support can be imported using the argument of file of the
command build (Section 2.3.1).

For calculating Jackknife and Bootstrap supports, it specifies the num-
ber of Wagner tree builds per pseudoreplicate. Single best trees from
all psudoreplicates are used to calculate the support values. If mul-
tiple best trees are recovered in a pseudoreplicate, only one of them
is selected at random. If build is omitted from the argument list
of calculate support, POY4 a single random addition Wagner tree
per pseudoreplicate by default. This is equivalent to build(trees:1,
randomized). See build (Section 2.3.1) for a detailed discussion of
arguments of the command build.

swap Specifies the method and parameters for local tree search. If the ar-
gument swap is omitted, the search is performed under the default
settings of the command swap (Section 2.3.26).

Defaults

calculate support(bremer, build (trees:1, randomized), swap (trees:1))
By default POY4 will calculate the bremer support for each tree in memory
node by node. However, if no trees loaded in memory, executing the com-
mand calculate support() does not have any effect.

2.3. COMMAND REFERENCE 45

Examples

• calculate support(bremer)
Calculates Bremer support values by performing independent searches
for every node. This is equivalent to executing
calculate support() (the default setting.)

• calculate support(bremer, build(trees:0), swap(trees:2))
Calculates Bremer support values by performing swapping on each
tree in memory for every node and keeping up to two best trees per
search round.

• calculate support(bremer, build(of file:"new trees"), swap(tbr,
trees:2))
Calculates Bremer support values by performing TBR swapping on
each tree in the file new trees located in the current working direc-
tory for every node and keeping up to two best trees per search round.

• calculate support(bootstrap)
Calculates Bootstrap support values under default settings. This com-
mand is equivalent to calculate support(bootstrap:5,
build(trees:1, randomized), swap(trees:1)).

• calculate support(bootstrap:100, build(trees:5),
swap(trees:1))
Calculates Bootstrap support values performing 1 random resampling
with replacement, followed by 5 Wagner tree builds (by random addi-
tion sequence) and swapping these trees under the default settings of
the command swap, and keeping 1 minimum-cost tree. The procedure
is repeated 100 times.

• calculate support(jackknife:(resample:1000),
build(), swap(tbr, trees:5))
Calculates Jackknife support values randomly removing 36 percent of
the characters (the default of jackknife), building 10 Wagner trees
by random addition sequence (the default of build), swapping these
trees using tbr, and keeping up to 5 minimum-cost tree in the final
swap. The procedure is repeated 1000 times.

See also

• report (Section 2.3.19)

46 CHAPTER 2. POY4 COMMANDS

• supports (Section 2.3.19)

• graphsupports (Section 2.3.19)

2.3.3 clear memory

Syntax

clear memory([argument list])

Description

Frees unused memory. Rarely needed, this is a useful command when the
resources of the computer are limited. The arguments are optional and their
order is arbitrary.

Arguments

m Includes the alignment matrices in the freed memory.

s Includes the unused pool of sequences in the freed memory.

Defaults

clear memory() By default POY4 clears all memory except for the pool of
unused sequences and the matrices used for the alignments.

Examples

• clear memory(s)
This command frees memory including all alignment matrices but
keeping unused pool of sequences.

See also

• wipe (Section 2.3.30)

2.3.4 cd

Syntax

cd(STRING)

2.3. COMMAND REFERENCE 47

Description

Changes the working directory of the program. This command is useful when
datafiles are contained in different directories. It also eliminates the need to
enter to the working directory before beginning a POY4 session. To display
the path of the current directory, use the command pwd (Section 2.3.12).

Arguments

STRING The value specifies a path to a directory.

Examples

• cd ("/Users/username/docs/poyfiles")
Changes the current directory to the directory
/Users/username/docs/poyfiles.

See also

• pwd (Section 2.3.12)

2.3.5 echo

Syntax

echo(STRING, output class)

Description

Prints a the content of the string argument into a specified type of output.
Several types of output are generated by POY4 which are specified by the
“output class” of arguments (see below). If no output-class arguments are
specified, the commands does not generate any output.

Arguments

Output class

error Outputs the specified string as an error message (stder in the flat
interface).

info Outputs the specified string as an information message (stder in the
flat interface).

48 CHAPTER 2. POY4 COMMANDS

output[:STRING] Reports a specified string on screen or to a file, if the
filename string (enclosed in parentheses) is specified following output
and separated from it by a colon, “:”.

Examples

• echo("Building with indel cost 1", info)
Prints to the output window in the ncurses interface and to the stan-
dard error in the flat interface the message Building with indel
cost 1.

• echo("Final trees", output:"trees.txt")
Prints the string Final trees to the file trees.txt.

• echo("Initial trees", output)
Prints the string Initial trees to the output window in the ncurses
interface, and to the standard output in the flat interface.

See also

• report (Section 2.3.19)

2.3.6 exit

Syntax

exit()

Description

Exits a POY4 session. This command does not have any arguments. exit is
equivalent to the command quit.

NOTE

To interrupt a process without quitting a POY4 session, use Control-
C. It aborts a currently running operation but keeps all the previ-
ously accumulated data in memory. It does not abort the current
session permitting entering new command and continuing the ses-
sion.

2.3. COMMAND REFERENCE 49

Examples

• exit()
Quits the program.

See also

• quit (Section 2.3.13)

2.3.7 fuse

Syntax

fuse([argument list])

Description

Performs Tree Fusing on the trees in memory. Tree Fusing is a genetic algo-
rithm technique that allows the escaping the local optimum by exchanging
clades with identical composition of terminals between pairs of trees. Only
one pair of trees is evaluated during a single iteration. The size of the clades
being exchanged is not determined.

Arguments

keep:INTEGER Specifies the maximum number of trees to be kept between
iterations. By default, the number of trees retained is the same as the
number of starting trees.

iterations:INTEGER Specifies the number of iterations of tree fusing to
be performed. The number of iterations is effectively the number of
pairwise clade exchanges. The default number of iterations is four
times the number of retained trees (as specified by keep).

replace:argument Specifies the method for tree selection. Acceptable val-
ues are:

better Replaces parent trees with trees of better cost produced during
a fusing iteration.

best Keeps a set of trees of the best cost regardless their origin.

The default is best.

50 CHAPTER 2. POY4 COMMANDS

swap Specifies tree swapping strategy to follow each iteration of tree fus-
ing. No swapping is performed under default settings. See the com-
mand swap (Section 2.3.26).

Defaults

fuse(replace:best) By default POY4 performs fusing keeping the same
number of trees per iterations as the number of the starting trees. The
number of iterations is four times the number starting trees. During the
procedure, only the best trees are retained. No swapping is performed sub-
sequent to tree fusing.

Examples

• fuse(iterations:10, replace:best, keep:100 swap())
This command executes the following sequence of operations. In the
first iteration, clades of the same composition of terminals are ex-
changed between two trees from the pool of the trees in memory. The
cost of the resulting trees is compared to that of the trees in memory
and a subset of the trees containing up to 100 trees of best cost is
retained in memory. These trees are subjected to swapping under the
default settings of swap. The entire procedure is repeated nine more
times.

• fuse(swap(constraint))
This command performs tree fusing with modified settings for swap-
ping that follows each iteration. Once a given iteration is completed,
a consensus tree of the files in memory is computed and used as con-
straint file for subsequent swapping (see the argument constraint
(Section 2.3.26) of the command swap).

See also

• swap (Section 2.3.7)

2.3.8 help

Syntax

help([argument])

2.3. COMMAND REFERENCE 51

Description

Reports the requested contents of the help file on screen.

Arguments

LIDENT Specifies a command name, the help for which is requested.

STRING Specified the expression (treated as an emacs regular expression),
every occurrence of which in the help file is reported on screen.

Defaults

help() By default POY4 displays the entire content of the help file on screen

Examples

• help(swap)
Prints the description of the command swap in the POY Output win-
dow of the ncurses interface or to the standard error in the flat inter-
face.

• help("log")
Finds every command with text containing the substring log and
prints them in the POY Output window of the ncurses interface or
to the standard error in the flat interface.

2.3.9 inspect

Syntax

inspect(STRING)

Description

Retrieves the description of a POY4 file. If the description was not specified
by the user, inspect reports that the description is not available. If the file
is not a proper POY4 file format, a message is printed out in the POY Output
window of the ncurses interface or the standard error of the flat interface.

POY4 files are not intended for permanent storage: they are recommended
for temporary storage of a POY4 session, checkpointing the current state of
the search (to avoid losing data in case the computer or the program fails),
or reporting bugs. POY4 also automatically generates POY4 files in cases of
terminating errors (important exceptions are out-of-memory errors).

52 CHAPTER 2. POY4 COMMANDS

Examples

• inspect("initial search.poy")
Prints the description of the POY4 file initial search.poy (located
in the current working directory) in the POY Output window of the
ncurses interface or to the standard error in the flat interface). If
the file was saved using the command save ("initial search.poy",
"Results of Total Analysis"), then the output message is: Results
of Total Analysis.

See also

• save (Section 2.3.21)

• load (Section 2.3.10)

• cd (Section 2.3.4)

• pwd (Section 2.3.12)

2.3.10 load

Syntax

load(STRING)

Description

Reads and imports a POY4 file, the name of which (or its path if the file is not
located in the current working directory) is included in the string argument.
All the information of the current POY4 session will be replaced with the
contents of the POY4 file. If the file is not in proper POY4 file format, an error
message is printed in the POY Output window of the ncurses interface, or
the standard error in the flat interface. See the description of the command
save (Section 2.3.21) on the POY4 file and its usage.

POY4 files are not intended for permanent storage: they are recommended
for temporary storage of a POY4 session, checkpointing the current state of
the search (to avoid losing data in case the computer or the program fails),
or reporting bugs. POY4 also automatically generates POY4 files in cases of
terminating errors (important exceptions are out-of-memory errors).

2.3. COMMAND REFERENCE 53

Examples

• load("initial search.poy")
Reads and imports the contents of the POY4 file initial search.poy,
located in the current working directory (as printed by the pwd) com-
mand.

• load("/Users/andres/test/initial.poy")
Reads and imports the contents of the POY4 file initial.poy in the
absolute path described by the argument.

See also

• save (Section 2.3.21)

• inspect (Section 2.3.9)

• cd (Section 2.3.4)

• pwd (Section 2.3.12)

2.3.11 perturb

Syntax

perturb([argument list])

Description

Performs a search using a temporarily modified (“perturbed”) characters
starting with the trees currently in memory. Once a local optimum is found
for the perturbed characters, a new round of search using the original (non-
modified) characters is performed. Subsequently, the costs of the initial and
final trees are compared and the best trees are selected. If there are n trees
in memory prior to searching using perturb, then the n best trees are se-
lected at the end. For example, if there are 20 trees currently in memory,
20 individual perturb procedures will be performed (each procedure start-
ing with one of the 20 initial trees), and 20 final trees are produced. This
command allows the escape from a local optimum in the tree space by per-
turbing the character space (hence the name). The arguments specify the
type of perturbation (ratchet, resample, and transform), the parameters
of the subsequent search (swap), and the number of iterations of the perturb
operation (iterations).

54 CHAPTER 2. POY4 COMMANDS

No new Wagner trees are generated following the perturbation of the
data; the search is performed by local branch swapping (specified by swap).
If perturb is executed with no trees in memory, an error message is gener-
ated. The arguments of perturb are optional and their order is arbitrary.

Arguments

iterations:INTEGER Repeats (iterates) the perturb procedure for the
number of times specified by the integer value. The number of itera-
tions is reported in the Current Job window of the ncurses interface
and to the standard error in the flat interface.

ratchet:(FLOAT, INTEGER) Perturbs the data by implementing a variant
of the parsimony ratchet [14]. For unaligned data, ratchet randomly
selects and reweighs a fraction of sequence fragments (not individ-
ual nucleotides) specified by the float (decimal) value, upweighted by
a factor specified by the integer value (severity). For static matrices,
such as those obtained using the command transform (Section 2.3.27),
ratchet randomly selects and reweights individual nucleotide posi-
tions (column vectors), as in Nixon’s original implementation.

Under default settings, ratchet selects 25 percent of characters and
upweights them by a factor of 2. Unless ratchet is performed under
default settings (that does not require the specification of the fraction
of data to be reweighted and the severity value), both values must
be specified in the proper order and separated by a comma. This
argument is only used as an argument for perturb.

resample:(INTEGER, LIDENT) Resamples the data (characters or termi-
nals) in random order with replacement. The resample string consists
of an integer value specifying the number of items to be resampled (fol-
lowed by a comma) and a lident value specifying whether characters or
terminals (values characters and terminals, respectively) are to be
resampled. Specifying both values is required. No default settings are
available for resample. This command is only used as an argument of
perturb.

swap Specifies the method of branch swapping for a local tree search based
on perturbed data. If the argument swap is omitted, the search is per-
formed under default settings of the command swap (Section 2.3.26).

transform Specifies a type of character transformation to be performed
before executing a perturb procedure. See the command transform

2.3. COMMAND REFERENCE 55

(Section 2.3.27) for the description of the methods of character type
transformations and character selection.

Defaults

perturb(ratchet, swap (trees:1)) By default, POY4 performs the ratchet
procedure under default settings.

Examples

• perturb(resample:(50,terminals), iterations:10)
Performs 10 successive repetitions of random resampling of 50 termi-
nals with replacement. Branch swapping is performed using alternat-
ing SPR and TBR, and and keeping 1 minimum-cost tree (the default
of swap).

• perturb(iterations:20, ratchet:(0.18,3))
Performs 20 successive repetitions of a variant of the ratchet (see
above) by randomly selecting 18 percent of the characters (sequence
fragments) and upweighting them by a factor of 3. Branch swapping
is performed using alternating SPR and TBR, and keeping 1 optimal
tree (the default of swap).

• perturb(iterations:1, transform (tcm:(4,3)))
Transforms the cost regime of all applicable characters (i.e. molecular
sequence data) to the new cost regime specified by transform (cost
of substitution 4 and cost of indel 3. Subsequently a single round of
branch swapping is performed using alternating SPR and TBR, and
and keeping 1 optimal tree (the default of swap).

• perturb(ratchet:(0.2,5), iterations:25, swap(tbr, trees:5))
Performs 25 successive repetitions of a variant of the ratchet (see
above) by randomly selecting 20 percent of the characters (sequence
fragments) and upweighting them by a factor of 5. Branch swapping
is performed using TBR and keeping up to 5 optimal trees in each
iteration.

• perturb(transform(static approx), ratchet:(0.2,5),
iterations:25, swap(tbr, trees:5))
Transforms all applicable (i.e. dynamic homology sequence charac-
ters) using transform into static characters. Therefore, the subse-
quent ratchet is performed at the level of individual nucleotides (as in

56 CHAPTER 2. POY4 COMMANDS

the original implementation), not sequence fragments. Thus, ratchet
is performed by selecting 20 percent of the characters (individual nu-
cleotides) and upweighting them by a factor of 5. Branch swapping
is performed using TBR and keeping up to 5 optimal trees in each
iteration as in the example above.

See also

• swap (Section 2.3.26)

• transform (Section 2.3.27)

2.3.12 pwd

Syntax

pwd()

Description

Prints the current working directory in the POY Output window of the
ncurses interface and the standard error of the flat interface. The command
pwd does not have arguments; the default working directory is the shell’s
directory when POY4 started.

Examples

• pwd()
This command will generate the following message: “The current
working directory is /Users/myname/datafiles/”. The reported ac-
tual directory will vary depending on the directory of the shell when
POY4 started, or if it has been changed using the command cd().

See also

• cd (Section 2.3.4)

2.3.13 quit

Syntax

quit()

2.3. COMMAND REFERENCE 57

Description

Exits POY4 session. This command does not have any arguments quit is
equivalent to the command exit.

NOTE

To interrupt a process without quitting a POY4 session, use Control-
C. It aborts a currently running operation but keeps all the previ-
ously accumulated data in memory. It does not abort the current
session permitting entering new command and continuing the ses-
sion.

Examples

• quit()
Quits the program.

See also

• exit (Section 2.3.6)

2.3.14 read

Syntax

read([argument list])

Description

Imports data files and tree files. Supported formats are ASN1, Clustal,
FASTA, GBSeq, Genbank, Hennig86, Newick, NewSeq, Nexus, PHYLIP,
POY3, TinySeq, and XML. Filenames should be enclosed in quotes and if
multiple filenames are specified, they must be separated by commas. read
automatically detects the type of the input file. read can use wildcard
expressions (such as *) to refer to multiple files in a single step: for example,
read ("biv*") imports all data files the names of which start with biv or
read ("*.ss") imports all files with the extension .ss (given that the data
files are in the current directory). Specifying filename(s) is obligatory; an
empty argument string, read(), results in no data being read by POY4. The
list of imported files and their content can be reported on screen or to a file
using report(data).

58 CHAPTER 2. POY4 COMMANDS

If a file is loaded twice, POY4 issues an error message but this will not
interfere with subsequent file loading and execution of commands.

POY4 automatically reports in the POY Output window of the ncurses
interface or to the standard error in the flat interface the names of the
imported files, their file type, and a brief description of their contents. A
more comprehensive report on the contents of the imported files can be
requested (either on screen or to a file) using the argument data of the
command report (Section 2.3.19).

NOTE

Although POY4 recognizes multiple data file formats, it does not in-
terpret all of their contents. Instead, it will recognize and import
only character data and ignore other content (such as blocks of com-
mands, etc.). For certain data file formats, POY4 will interpret addi-
tional information as detailed for each file type below.

NOTE

Unlike many phylogenetic programs, POY4 does not clear the mem-
ory buffer upon reading a second file. Instead, any subsequently
read files will be added to the total data being analyzed. If a new
taxon appears in a file, then it will be assigned missing data for all
previously loaded characters. If a taxon does not appear in a file, it
will be assigned missing data for the characters appearing on it.
If the user wants to eliminate any data read, and then read a new
file to be analyzed alone, the wipe() command must be issued first.

NOTE

If one of the taxon names in an imported molecular file contains a
space, “ ”, POY4 will issue a warning. This will also happen if a taxon
name appears to match a nucleotide sequence.

Arguments

Data file types To import data files, individual data file names must be
included in the list of read arguments, enclosed in quotes, and separated by
commas. If no data file types are specified, the types of the imported files are
recognized automatically. To specify the data type, an additional argument
that explicitly denotes the data type, is included; it is followed by a colon
(“:”) and then enclosed in parentheses, the list of data file names, separated

2.3. COMMAND REFERENCE 59

by commas and enclosed in quotes. This format prevents any ambiguity
in importing multiple data file types simultaneously (i.e. included in an
argument list of a single read) command.

STRING Reads the file specified in the path included in the string argument.
A path can be absolute or relative to the current working directory
(as printed by pwd()). The file type is recognized automatically.

Molecular files are assumed to contain nucleotide sequences; valid files
to read using this command are: tree files using parenthetical notation
(newick, POY4 trees), Hennig86 files, Nona files, Sankoff character files
as used in POY 3, FASTA files (and virtually any file generated by
Genbank), and NEXUS files. Only taxon names, trees, characters,
and cost regimes will be imported from each one of this files, no other
commands are currently recognized.

aminoacids:(STRING list) Specifies that the data listed in the string ar-
gument are amino acid sequences in FASTA format.

annotated:(STRING list) Specifies that the data listed in the string ar-
gument are chromosomal sequences with pipes (“ ”) separating in-
dividual loci. This data type allows for locus-level rearrangements
specified by the argument dynamic pam (Section 2.3.27) of the com-
mand transform (Section 2.3.27). Locus homologies are determined
dynamically, but based on annotated regions.

breakinv:(STRING, STRING, [orientation:BOOL, init3D:BOOL]) An en-
hancement of the data file type custom alphabet allowing rearrange-
ment events specified using dynamic pam(). Syntactically, breakinv
data type is identical to custom alphabet data type.

chromosome:(STRING list) Specifies that the data in the files listed in
the string argument are chromosomal sequences without predefined lo-
cus boundaries. Specifying that imported sequences are chromosome
type data enables the application of parameter options that optimize
chromosome-level events such as rearrangements, inversions, and large-
scale insertions and deletions (including duplications). These param-
eter options (e.g. inversion cost) are specified using the argument
dynamic pam in the command transform (Section 2.3.27). Unlike
when using annotated data type, both locus-level and nucleotide-level
homologies are determined dynamically. If chromosome sequences

60 CHAPTER 2. POY4 COMMANDS

were imported as nucleotide type data, they can be converted to chro-
mosome type data using the argument seq to chrom of transform
(Section 2.3.27).

custom alphabet:(STRING, STRING, [orientation:BOOL, init3D:BOOL])
Reads the data in the user-defined alphabet format. The first string
argument is the name of a datafile that contains custom-alphabet se-
quences in FASTA format. The characters can be (but are not required
to be) separated by spaces.

The second string argument is the name of a custom-alphabet input
file that contains two parts: an alphabet itself, where the alphabet
elements are separated by spaces, and a transformation cost matrix.
The elements in an alphabet can be letters, digits, or both, as long as
one element is not a prefix of another (“prefix-free”). For example, the
following pairs of custom-alphabet elements are not valid because the
first is a prefix of the second (which would prevent the proper parsing
of an input file): AB and ABBA or 122 and 122X. The transformation
cost matrix contains the rows and columns in which the positions
from left to right and top to bottom correspond to the sequence of
the elements as they are listed in the alphabet. Aa extra rightmost
column and lowermost row correspond to a gap. It is impotant that
the cost matrix must be symmetrical. Here is an example of a valid
custom alphabet input file:

alpha beta gamma delta
0 2 1 2 5
2 0 2 1 5
1 2 0 2 5
2 1 2 0 5
5 5 5 5 0

In this example, the cost of transformation of alpha into beta is 2,
and cost of a deletion or insertion of any of the four elements costs 5.

An example of a corresponding input file:

>Taxon1
alphabetagammadelta
>Taxon2
alphabetabetagammadelta
>Taxon3
alphabetabetadelta

2.3. COMMAND REFERENCE 61

The optional arguments of custom alphabet include orientation
and init3D, both of which require obligatory boolean values. The
argument orientation allows the user to specify the orientation of
custom-defined alphabet characters. The tilde symbol (“∼”) preceding
an alphabet character indicates the negative orientation. The options
are orientation:true or orientation:false. The default option is
true.

The argument init3D indicates that if program will calculate in ad-
vance the medians for all triplets of characters (a, b, c). The options
are init3D:true or init3D:false. The default option is true.

custom alphabet can be transformed into breakinv using transform().

genome:(STRING list) Specifies that the data listed in the string argument
are multichromosomal nucleotide sequences with the “@” sign separat-
ing individual chromosomes. This data type allows for chromosome-
level rearrangements specified by the argument dynamic pam (Sec-
tion 2.3.27) of the command transform (Section 2.3.27). Chromosome
homologies are determined dynamically using distance threshold lev-
els specified by the argument chrom hom (Section 2.3.27) of transform
(Section 2.3.27).

nucleotides:(STRING list) Specifies that the data in the list of files hold
nucleotide sequences in FASTA format.

prealigned:(read argument, tcm:STRING) Specifies that the input se-
quences are prealigned and should be assigned the transformation cost
matrix specified in the input file. (See tcm.)

prealigned:(read argument, tcm:(INTEGER, INTEGER)) Specifies that the
input sequences are prealigned and should be assigned substitution and
indel costs as defined in the tcm argument. (See tcm.)

Defaults

read() If no data files are specified, POY4 does nothing. If however, data
files are listed but character type is not indicated, POY4 automatically detects
data file types and interprets sequence files as nucleotides-type data.

62 CHAPTER 2. POY4 COMMANDS

Examples

• read("/Users/andres/data/test.txt")
Reads the file test.txt located in the path “/Users/andres/data/”.

• read("28s.fas", "initial trees.txt")
Reads the file 28s.fas and loads the trees in parenthetical notation
of the file initial trees.txt.

• read("SSU*", "*.txt")
Reads all the files the names of which start with SSU, and all the files
with the extension .txt. The types of the datafiles are determined
automatically.

• read(nucleotides:("chel.FASTA", "chel2.FASTA"))
Reads the files chel.FASTA and chel2.FASTA, containing nucleotide
sequences.

• read(aminoacids:("a.FASTA", "b.FASTA", "c.FASTA"))
Reads the amino acid sequence files a.FASTA, b.FASTA, and c.FASTA.

• read("hennig1.ss", "chel2.FASTA", aminoacids:("a.FASTA"))
Reads the Hennig86 file hennig1.ss, the FASTA file chel2.FASTA
containing nucleotide sequences (the default), and the amino acid se-
quence file a.FASTA.

• read(custom alphabet:("my data", "alphabet",))
Reads the first file, my data, containing data in the format of a cus-
tom alphabet, which is defined in the second input file, alphabet.
By default, the forward and reverse orientation (orientation:true)
of custom-alphabet characters is considered and prior calculation of
medians for their triplets (init3D:true) is performed.

• read(annotated:("filea.txt", "fileb.txt"),
chromosome:("filec.txt"))
Reads three files containing chromosome-type sequence data. The se-
quences in two files, filea.txt and fileb.txt, contain pipes (“ ”)
separating individual loci, whereas the sequences in the third, are with-
out predefined boundaries.

• read(genome:("mt genomes", "nu genomes").
Reads two files containing genomic (multi-chromosomal) sequence data.

2.3. COMMAND REFERENCE 63

• read(prealigned: ("18s.aln", tcm:(1, 2))
Reads the prealigned data file18s.aln generated from the nucleotide
file 18s.FASTA using the the transformation costs of 1 for substitutions
and 2 for indels.

See also

• report (Section 2.3.19)

2.3.15 rediagnose

Syntax

rediagnose()

Description

Performs a reoptimization of the trees currently in memory. This function
is only useful for sanity checks of the consistency of the data. Its main usage
is for the POY4 developers. This command does not have arguments.

Examples

• rediagnose()
See the description of the command.

2.3.16 recover

Syntax

recover()

Description

Recovers the best trees found during swapping, even if the swap was can-
celled. This command functions only if a previously executed (in the cur-
rent POY4 session) command swap included the argument recover (Sec-
tion 2.3.26). Otherwise, it has no effect.

The trees imported by recover are appended to those currently stored
in memory.

Note that using recovered trees is not intended for temporary storage of
trees; it is useful only as an intermediary operation in a given part of a POY4
session. When other commands that require clearing memory are executed

64 CHAPTER 2. POY4 COMMANDS

(such as build, calculate support, or another swap), the trees stored by
recover can no longer be retrieved.

Examples

• recover()
If the command swap (executed earlier in the current POY4 session)
contained the argument recover, for example, swap(tbr,recover),
this command will restore the best trees recovered during swapping.

See also

• swap (Section 2.3.26)

• recover (Section 2.3.26)

2.3.17 redraw

Syntax

redraw()

Description

Redraws the screen of the terminal. This command is only used in the
ncurses interface, other interfaces will ignore it. redraw clears the contents
of the Interactive Console window but retains the contents of the other
windows. It does not affect the state of the search and the data currently
in memory.

Examples

• redraw()
See the description of the command.

2.3.18 rename

Syntax

rename(argument)

2.3. COMMAND REFERENCE 65

Description

Changes the name of specified items from one string to another. Valid
rename arguments can be character, terminals, a filename, or a pair of
strings. Specifying ("a", "b") would rename the character or taxon a to
b.

2.3.19 report

Syntax

report([argument])

Description

Outputs the results of current analysis or loaded data in the POY Output
window of the ncurses interface, the standard output of the flat interface,
or to a file. To redirect the output to a file, the file name in quotes and
followed by a comma must be included in the argument list of report. All
arguments for report are optional.

Arguments

Reporting to files

STRING Specifies the name of the file to which all the specific types of re-
port outputs, designated by additional arguments, are printed. If no
additional arguments are specified, the data, trees, and diagnosis are
reported to that file by default.

A string (text in quotes) argument is interpreted as a filename. There-
fore, "/Users/andres/text" represents the file text in the directory
/Users/andres (in Windows C:\users\andres). If no path is given,
the path is relative to the current working directory as printed by
pwd(). See the examples for the file outputting usage.

Terminals and characters This set of arguments reports the current
status of terminals and characters from the imported data files.

compare:(BOOL, identifiers, identifiers) Given an argument value
(a, b, c), report the ratio between the all pairs distance and their
maximum length, between the characters listed in b and c. If a is

66 CHAPTER 2. POY4 COMMANDS

true, then compute the complement sequence of all the characters in
c before reporting the distance.

cross references[:identifiers[:STRING]] Reports a table with termi-
nals being analyzed in rows, and the data files in columns. A plus
sign (“+”) indicates that data for a given terminal is present in the
corresponding file; a minus sign (“-”) indicates that it is not. cross -
references is a very useful tool for visual representation of missing
data.

Under default settings, cross-references are reported for all imported
datafiles. To report cross-references for some of the fragments within
a given file, a single character, or a subset of characters, optional ar-
guments must be specified. A combination of a character identifier
(see command select (Section 2.3.23)) and the file names (specified
in the the string value) is used to select specific datafiles to be cross-
referenced. For example, if a command cross references:names:("file1")
is executed, the output is produced only for file1.

The argument cross references:all generates a table that shows
presence and absence of fragments contained within each file. (If each
datafile contains a single fragment, executing cross references:all
is equivalent to executing cross references.)

By default, the cross-reference table is printed on screen or to an out-
put file if specified.

data Outputs a summary of the input data. More specifically, POY4 will
report the number of terminals to be analyzed, a list of included termi-
nals with numerical identification numbers, list of synonyms (if spec-
ified), a list of excluded terminals, a number of included characters
in each character-type category (i.e. additive, non-additive, Sankoff,
etc.) with corresponding transformation cost matrix (if specified), a
list of excluded characters, and a list of input files.

seq stats:identifiers Outputs a summary of the sequences specified in
the argument value, for all taxa. The summary includes the maximum,
minimum, and average length and distance for all terminals.

terminals Reports a list and number of terminals included and excluded for
each input file. For information on including and excluding terminals
use the command select (Section 2.3.23).

2.3. COMMAND REFERENCE 67

treestats Reports the number of hits per cost found by POY4 in a table
format.

Trees This set of arguments outputs tree representations in graphical,
parenthetical, or ascii (simple text) formats. The arguments specify the
types of tree outputs that include actual trees resulting from current searches
or imported from files, their consensus trees, or trees displaying support
values.

The root can be specified using the command set (Section 2.3.24).
Most analyses produce more than a single tree and it is often desirable

to report only some of them. To report particular trees (for instance all
optimal trees, randomly-selected trees, or all unique trees, etc.), first the
command select (Section 2.3.23) must be applied to specify (select) the
desired trees from all those stored in memory.

all roots In a tree with n vertices (and therefore n − 1 edges), calculate
the cost of the n − 1 rooted trees as implied by a root located in the
subdivision vertex each edge in the unrooted tree in memory.

asciitrees[:collapse[:BOOL]] Draws textual representations of trees
stored in memory. The argument collapse collapses the zero length
branches if the boolean value is true (the default); if the boolean value
is false, the zero length branches are not collapsed.

clades Output a set of Hennig86 files. Each file (named file.hen, where
“file” is whatever string you pass to this function) contains information
on each clade for one of the trees currently stored. This is similar to
the utility jack2hen of POY3.

consensus[:INTEGER] Reports the consensus of trees in memory in par-
enthetical notation. If no integer value is specified, a strict consensus is
calculated [15]; if integer value is specified, a majority rule consensus
is computed, collapsing nodes with occurrence frequencies less than
the specified integer [13]. If a value less than 51 is specified, POY4 will
report an error.

graphconsensus[:INTEGER] Same as consensus except for consensus trees
are reported in graphical format, either in the ascii format on screen
or in the postscript format if redirected to a file.

68 CHAPTER 2. POY4 COMMANDS

graphsupports[:argument] This command outputs a tree with support
values that have been previously calculated using the calculate -
support (Section 2.3.2) either on screen in ascii format, or, if specified,
to a file in postscript format. The argument values are the same as
for supports (i.e. bremer, jackknife, and bootstrap).

graphtrees[:collapse[:BOOL]] If POY4 has been compiled with graph-
ics support, it will display a window in which you can browse graphical
representations of all the trees in memory. When working in this win-
dow, using “j” and “k” keys displays the previous or next tree respec-
tively. Pressing “q” key returns to the Interactive Console window.
The argument collapse will collapse the zero length branches if true,
otherwise not (default is true.)

supports[:argument] Outputs a parenthetical representation of a tree with
the support values has previously been calculated using the com-
mand calculate support (Section 2.3.2) (however see bremer), ei-
ther to the screen or to a file (if specified). If no argument is given,
all calculated support values are printed. The arguments bremer,
jackknife, and bootstrap specify which type of support tree to
report. bremer accepts an optional string argument (as in report
(supports:bremer:"file.txt"), which specifies a file containing a
list of trees and costs (as those generated by visited (Section 2.3.26)),
which should be used with their annotated cost to assign the bremer
support values. If no input file is given, or if bootstrap or jackknife
are needed, then the necessary information must have been calculated
using calculate support (Section 2.3.2).

trees:(argument list) Outputs the trees in memory in parenthetical no-
tation. The argument trees receives an optional list of values specify-
ing the format of the tree that has to be generated. The valid optional
arguments are:

total Includes the total cost of a tree in square brackets after each
tree

cost Include the cost of every subtree in the tree in square brackets.
hennig Prepends the tread command to the list of trees and separates

them with a star; this format is suitable for hennig86, NONA, and
TNT files.

newick Outputs the trees in the Newick format, with the terminals
separated with commas, and trees separated with semicolons.

2.3. COMMAND REFERENCE 69

margin:INTEGER Sets the margin width of the generated trees.

nomargin Outputs the trees in a single line. This is useful for some
programs (such as TreeView) that cannot read trees broken in
several lines.

collapse[:BOOL] If true, zero length branches are collapsed (the
default), but if false then no branches are collapsed.

Implied alignments This set of arguments will output implied align-
ment [18].

implied alignments[:STRING] Outputs the implied alignments of the
specified set of characters in FASTA format. The (optional) value
of the argument specifies the characters included in the output, us-
ing the same identifiers described for the character specification in the
entry for the command select (Section 2.3.23). If no characters are
specified, then the implied alignment of all the sequence characters
is generated. The output is reported on screen unless a name of an
output file (in parentheses) is specified, preceding the command name
and separated from it by a comma. This argument is synonymous
with the argument ia.

ia[:STRING] Synonym of implied alignments.

Exporting static homology data The following commands export the
static homology characters currently in memory.

phastwinclad Produces a file in the Hennig86 format that contains the ad-
ditive and nonadditive characters currently in memory. In order to
export an implied alignment as a Hennig86 file, the characters must
first be transformed into static characters using the transform com-
mand:

transform ((all, static approx))
report ("report.ss", phastwinclad)

To generate a file that contains implied alignments only for a subset
of fragments, an identifier must be included in the argument list of
transform. For example,

70 CHAPTER 2. POY4 COMMANDS

transform ((names:("fragment 1", "fragment 2"),
static approx))
report ("myfile.ss", phastwinclad)

will produce Hennig86 files only for fragment 1 and fragment 2.

The resulting file can be imported into other programs, such as Win-
Clada. This is equivalent to the phastwincladfile command in
POY3.

Diagnosis This set of arguments will output the diagnosis.

diagnosis Outputs the diagnosis of each tree to screen or to a file, if spec-
ified.

Other arguments

ci Calculates the ensemble consistency index (CI; [5, 12, ?]) for additive
and nonadditive characters. Dynamic homology characters are ignored
in calculating the CI, therefore, the dynamic homology characters
must be converted to static homology characters using the argument
static approx of the command transform (Section 2.3.27).

memory Reports on screen (or to file, if specified), the statistics of the
garbage collector. These statistics are only estimates in the native code
version but exact in the bytecode version of POY4. Note that the val-
ues consider only the OCaml-handled memory, the C data structures
(sequences, additive, and non-additive characters), are not included in
the reported values. For a precise description of each memory param-
eter, see the Objective Caml documentation.

ri Calculates the ensemble retention index (RI; [5]) for additive and non-
additive characters. Dynamic homology characters are ignored in cal-
culating the RI, therefore, the dynamic homology characters must be
converted to static homology characters using the argument static -
approx of the command transform (Section 2.3.27).

script analysis:STRING Reports the order in which commands listed of
the imported script (listed in the string argument) are going to be
executed. Unlike executing commands sequentially (when entering
commands interactively through the Interactive Console of the ncurses
interface or the flat interface), when commands are submitted in a

2.3. COMMAND REFERENCE 71

script, POY4 determines the logical interdependency of operations and
processes the commands in the order that yields the same results as
if they were executed sequentially. This substantially optimizes the
memory usage and improves parallelization.

The colored output in the POY Output window of ncurses interface
facilitates reading the output of script analysis: red lines mark
hard constraints that allow neither parallelization nor memory opti-
mizations, blue lines mark nice constraints that allow the program to
pipeline commands in parallel, and green lines mark fully parallelizable
commands. When POY4 is compiled with parallel off, all the operations
are sequential, therefore, each potentially parallel operation is done as
sequential repetitions of the subscripts described in the output of the
command, reducing memory consumption.

timer:STRING Reports the value and the user time (in seconds) elapsed
between two consecutive timer reports. The string value provides a
label (typically a textual description) that precedes the time report
in the output produced on screen (or redirected to a file, if specified).
The first timer report displays the time elapsed since the beginning of
the POY4 session. This command is useful for monitoring the execution
time of specific tasks.

Defaults

report(data, diagnosis, trees) By default, POY4 will print on screen
the following items: the tree(s) in parenthetical notation with corresponding
tree cost(s), diagnosis of each tree, and a graphical representation on the
tree(s) in ascii format. This output can be re-directed to a file by specifying
a file name enclosed in quotation marks, for example: report("filename").

Examples

• report("my results")
This commands outputs the data, trees, and diagnosis (by default) to
the file my results. Because no path is specified, the file is located in
the current working directory.

• report(data)
This command displays on screen a list of included and excluded ter-
minals, their names and codes, gene fragments, file names, and other
relevant data.

72 CHAPTER 2. POY4 COMMANDS

• report(treestats)
This example displays on screen the costs of all trees in memory and
the number of trees for each cost.

• report("filename", treestats)
This commands outputs the costs of all trees in memory and the num-
ber of trees for each cost to a file filename.

• report(cross references:names("file1", "file3"))
This command produces a table showing presence and absence of data
corresponding to all terminals contained in files file1 and file3.
Because an output file is not specified, the table is displayed on screen.

• report("taxa", terminals)
This command generates a file taxa that contains the lists and num-
bers of excluded and included terminals for each of the previously
imported datafiles.

• report(trees)
This command displays on screen the trees in memory in parenthetical
notation with zero-length branches collapsed and terminals separated
by spaces.

• report(trees:(total))
This command produces the same output as the example above but
also includes the total tree cost in square brackets following each tree.

• report("filename", trees:(collapse:false, newick))
This command produces a file filename that contains all trees in
Newick format with zero-length branches not collapsed.

• report("filename", graphtrees)
This command saves all trees in memory in postcript format to the
file filename.ps.

• report(asciitrees, "file1", trees:(newick, nomargin),
"file2", graphtrees)
This command displays a tree in ascii format on screen and outputs to
file1 trees with zero-length branches collapsed in Newick format in
a single line (using no margin, the format compatible with TreeView).
It also writes to file2 the graphical representation of these trees in
postscript format.

2.3. COMMAND REFERENCE 73

• report("hennig.ss", phastwinclad, trees:(hennig, total))
Output all the static homology characters, including their cost regime,
in the file hennig.ss; then append to the same file the trees currently
in memory using the Hennig format, including the total cost of each
tree in square brackets. The generated hennig.ss is compatible with
NONA, TNT, and Hennig86.

• report("my results", data, diagnosis, consensus, consensus:75,
"consensus", graphconsensus)
This commands reports the requested types of outputs (emphi.e. re-
ports on the data, diagnosis, and strict consensus and 75 percent
majority-rule consensus trees in parenthetical notation) to the file my -
results. In also outputs a strict consensus tree to the file consensus.

• report(graphsupports, "bremertree", graphsupports:bremer)
This commands reports on screen all previously calculated support val-
ues placed at the nodes of ascii trees and outputs to file the bremertree
only the tree(s) with bremer support values.

• report(implied alignments)
This command reports the implied alignment of all dynamic homology
characters on screen.

• report("align file", ia:names:("SSU", "LSU"))
This command generates the file align file that contains the implied
alignments only for characters contained in datafiles SSU and LSU.

• report("scipt1 analysis", script analysis:"/users/datafiles/script1.poy")
This command produces the file scipt1 analysis that lists the com-
mands from the input script file script1.poy in the order that opti-
mizes parallelization and memory consumption. In this example the
complete path (/users/datafiles/script1.poy) is provided, which
is not necessary if the directory containing the file script1.poy has
already been assigned using the command cd (Section 2.3.4) in the
same POY4 session.

• report("swapping", timer:"swap end")
This command generates the file swapping that contains the string
swap end followed by the number of seconds (in decimals) elapsed
since the execution of the previous timer argument.

74 CHAPTER 2. POY4 COMMANDS

See also

• calculate support (Section 2.3.2)

2.3.20 run

Syntax

run(STRING)

Description

Runs POY4 script file or files. The filenames must be included in quotes and,
if multiple files are included, they must be separated by commas. The script-
containing files are executed in the order in which they are listed in the string
argument. Executing scripts using run is useful in cases when operations
take take long time or many scripts need to be executed automatically, for
example, when conducting sensitivity analysis. There are no default settings
of run.

NOTE

Note that if any of the scripts contain commands exit or quit,
POY4 will quit after executing that file. Therefore, if multiple files
are submitted, only the last one must contain exit or quit.

Examples

• run("script1", "script2")
This command executes POY4 command scripts contained in the files
script1 and script2 in the same order as they are listed in the list
of arguments of run.

See also

• exit (Section 2.3.6)

• quit (Section 2.3.13)

2.3.21 save

Syntax

save(STRING [, STRING])

2.3. COMMAND REFERENCE 75

Description

Saves the current POY4 state to a file (POY4 file). The first, obligatory string
argument specified the name of the POY4 file. The second, optional string
argument specifies a string included in the POY4 file.

POY4 files are not intended for permanent storage: they are recommended
for temporary storing of a POY4 session by a user, checkpointing the current
state of a search to avoid loss work in case the computer or the program
itself fails, or to report bugs. POY4 will also automatically generate the file
in many cases when a terminating error occurs (an important exception is
out-of-memory errors).

Examples

• save("alldata.poy")
This command stores all the memory contents of the program in the
file alldata.poy located in the current working directory, as printed
by pwd().

• save("alldata.poy", "My total evidence data")
This command performs the same operation as described in the exam-
ple above, but, in addition, it includes the string My total evidence
data to the file alldata.poy, which can later be retrieved using the
command inspect (Section 2.3.9).

• save("/Users/andres/test/alldata.poy", "My total evidence data")
This command performs the same operation is the command described
above with the important difference that the file alldata.poy gener-
ated in the directory /Users/andres/test/ instead of the current
working directory.

See also

• inspect (Section 2.3.9)

• load (Section 2.3.10)

2.3.22 search

Syntax

search([argument])

76 CHAPTER 2. POY4 COMMANDS

Description

The command search implements a default strategy for a driven search.
The command integrates build, transform, and swap commands for an ef-
ficient initial search. Tree building and swapping are executed under default
settings; the transform provides an option of making sequential transforma-
tions of characters that substantially speeds up the search, however, at the
expense of accuracy in calculating tree cost. The arguments are optional and
their order is arbitrary. Even though the entire sequence of the commands
can also be specified by setting build, transform, and swap individually to
corresponding values, the advantage of using search command is that these
steps are already predefined.

Arguments

build[:BOOL] Specifies either to build new trees (boolean value true) or
to use the trees stored in memory (that is do not build new trees;
boolean value false). The default for build is false. Therefore,
executing search under default settings will produce no result if there
are no trees in memory.

transform[:BOOL] Specifies to either transform characters as part of the
search by sequential execution of commands auto sequence partition
and auto static approx (both arguments of the command transform
(Section 2.3.27)) (boolean value true) or not (boolean value false).
This combination of character transformations substantially acceler-
ates the search but at the expense of accuracy in calculating the exact
tree cost. The default is false (characters are not transformed).

Defaults

search(build:false, transform:false) Under default settings, all the
trees currently in memory (either from prior builds or imported as tree
files) are subjected to branch swapping using alternating SPR and TBR,
keeping one tree per swap (the default of swap), and without transforming
characters.

Examples

• search(build:true, transform:false)
This command builds 10 Wagner trees by random addition sequence
(the default of build), performs alternating SPR and TBR branch

2.3. COMMAND REFERENCE 77

swapping and keeping one tree per swap (the default of swap), and
does not transform characters. Because the default of the argument
transform is false, it can be omitted from the list of argument.
Therefore this command is equivalent to search(build:true). Note
that if currently there are trees in memory, the new trees generated
by search will replace them.

• search(transform:true)
This command performs branch swapping on the existing trees in
memory under default parameters of swap as shown in the exam-
ples above. The searches are performed on characters transformed us-
ing sequential application of transform arguments auto sequence -
partition and auto static approx to speed up the swapping proce-
dure.

See also

• build (Section 2.3.1)

• swap (Section 2.3.26)

• transform (Section 2.3.27)

2.3.23 select

Syntax

select([argument])

Description

Specifies a subset of terminals, characters, and/or trees from those currently
loaded in memory to use in subsequent analysis.

Arguments

Select terminals and characters Specifies terminals and/or charac-
ters to be used in subsequent analysis. The selection is based on terminal
and character names and the naming conventions are shared between both
classes. The arguments in this group specify whether terminals or characters
are being selected. Identifiers are used to specify which specific characters
or terminals are being selected, either by listing their names or importing a

78 CHAPTER 2. POY4 COMMANDS

file containing a list of terminals or characters (see the Character and ter-
minal identifiers argument group below for the description of methods for
selecting specific terminals or characters).

By default, POY4 assumes that the specification refers to terminals. For
example, to analyze only those terminals listed in the file opiliones using
the character data currently loaded in memory, use the command
select(files:("opiliones")). This command is equivalent to
select(terminals,files:("opiliones")).

When the command is executed, the list of selected terminals is printed
on screen. terminals is only valid as an argument of commands select
and rename.

NOTE

Note that once specific terminals and/or characters are selected, the
excluded data cannot be restored. To be able to reconstitute the
original data set or to experiment with various character and termi-
nal selections within a given POY4 session, use the commands store
(Section 2.3.25) and use (Section 2.3.28).

terminals Specifies that subsequently listed identifier(s) refer to terminals
to be selected.

characters Specifies that subsequently listed identifier(s) refer to charac-
ters to be selected.

STRING Selects terminals listed in the file specified by string argument.

Character and terminal identifiers Identifiers specify which charac-
ters or terminals are processed by a command. In addition to the command
select, identifiers are used as arguments for other commands that require
selection of specific terminals or characters, such as commands report (Sec-
tion 2.3.19) and transform (Section 2.3.27).

all Specifies all characters or terminals.

names:(STRING list) Specifies the names of the characters or terminals.

codes:(STRING list) Specifies the codes of characters or terminals. The
codes are unique numbers that are generated by POY4 when data files
are first imported. The codes can be reported using the argument data

2.3. COMMAND REFERENCE 79

(Section 2.3.19) of the command report. The codes are generated
anew when a given data file is reloaded; therefore, they can effectively
be used only within a current POY4 session.

files:(STRING list) Specifies the filename list containing lists of termi-
nals or characters.

missing:INTEGER Selects terminals or characters to be excluded from the
analysis based on the level of missing data. The integer value sets the
minimum percentage of missing data. Terminals or characters that
have more missing data than defined by the value are excluded from
the analysis.

NOTE

For dynamic homology characters, the missing data refers to
sequence fragments, whereas for static characters it refers to
individual nucleotide positions. Therefore, when excluding ter-
minals with missing data, the resulting set of selected terminals
depends on the character type might, or might not, be iden-
tical. For example, if a data file (containing sequences corre-
sponding to a single fragment) includes a very short sequence,
this sequence is not treated as missing data regardless of its
length. This is because in the context of dynamic homology a
fragment, rather than an individual nucleotide position, con-
stitutes a character. On the other hand, if the same data are
treated as static characters, the taxon represented by a very
short sequence might be excluded if the length of the sequence
exceeds the threshold defined by the value of missing.

static Specifies the static homology characters.

dynamic Specifies the dynamic homology characters.

not names:(STRING list) Specifies the characters or terminals other than
those the names of which are listed in the string list.

not codes:(STRING list) Specifies the characters or terminals other than
those the codes of which are listed in the string list.

not missing:INTEGER Selects terminals or characters to be excluded from
the analysis based on the relative of missing data. The integer value

80 CHAPTER 2. POY4 COMMANDS

sets the minimum percentage of missing data. Terminals or characters
that have less missing data than defined by the value are excluded
from the analysis. The integer value sets the minimum percentage
of missing data. Terminals that have less missing data than defined
by the value are excluded from the analysis. In effect, this selects a
complement of data selected by the argument missing.

Select trees Selects trees from the pool of trees currently in memory.

optimal Selects all trees of minimum cost.

best:INTEGER Selects the number of best trees specified by the integer
value. Best trees are not equivalent to optimal trees because best
trees can include suboptimal trees within in case the value of best
exceeds the number of optimal (minimal-cost) trees. If the number of
optimal trees exceeds the value of best, only a subset of optimal trees
(equal to the value of best is selected in unspecified order).

NOTE

There is no special command in POY4 to clear trees from mem-
ory. However, selecting zero best trees using the command
select(best:0) effectively removes all trees currently stored
in memory.

within:FLOAT Selects all optimal and suboptimal trees the costs of which
do not exceed the current optimal cost by the float value. For example,
if the current optimal cost is 507 and the float value of within is 3.0,
all trees with costs 507–510 are selected.

random:INTEGER Randomly selects the number of trees specified by the
integer value irrespective of cost.

unique Selects only topologically unique trees (after collapsing zero-length
branches) irrespective of their cost.

Defaults

select(unique, optimal) By default POY4 selects all unique trees of opti-
mal (best) cost. The rest of the trees are removed from memory.

2.3. COMMAND REFERENCE 81

Examples

• select(terminals,names:("t1", "t2", "t3", "t4", "t5"),
characters, names:("chel.aln:0"))
This commands selects only on terminals t1, t2, t3, t4, and t5 and
use data only from the fragment 0 contained in the file chel.aln.

• select(terminals, missing:50)
This commands excludes from subsequent analysis all the terminals
that have more than 50 percent of characters missing. The lists of
included and excluded terminals is automatically reported on screen.

• select(optimal)
Selects all optimal (best cost) trees and discards suboptimal trees from
memory. The pool of optimal trees might contain duplicate trees (that
can be removed using unique).

• select(unique, within:2.0)
This command selects all topologically unique optimal and suboptimal
trees the cost of which does not exceed that of the best current cost
by more than 2. For example, if the best current cost is 49, all unique
trees that fall within the cost range 49–51 are selected.

See also

• characters (Section 2.3.23)

• transform (Section 2.3.27)

2.3.24 set

Syntax

set([argument list])

Description

Changes the settings of POY4. This command performs diverse auxiliary
functions from setting the seed of the random number generator to selecting
a terminal for rooting output trees.

There is no default setting for set and the order of its arguments is
arbitrary.

82 CHAPTER 2. POY4 COMMANDS

Arguments

Application settings Some generic application settings. Have no effect
in the analyses themselves.

history:INTEGER Sets the size of the POY4 output history displayed in the
POY Output window to the number of lines specified by the integer
value. The size of the history must be greater than zero. This com-
mand has effect only in the ncurses interface. The default size of the
output history is 1000 lines.

log:STRING Directs a copy of a partial output to the file specified by the
string argument. The output includes the information in the POY
Output, Interactive Console, and State of Stored Search windows of
ncurses interface. Timers and current state of the search are not in-
cluded in the log. If the file already exists, POY4 will append the text
to it; if the file does not exist, then POY4 creates a new file. If the
user would like to delete the contents of a preexisting file, then the ar-
gument log:new:"logfile" creates a new initially empty file named
logfile.

nolog Stops outputting the log to any previously selected file. See log.

root:LIDENT Specifies the terminal with with the the output trees are
rooted. The terminal can either be indicated as a taxon name (a
STRING, which must appear in quotes, such as "Genus species") or
the code, that is automatically assigned to the taxon by POY4 at the
beginning of each POY4 session (for example, set(root:45). The codes
can be obtained using the command report(data)). The terminal
codes, however, are unique only within a current session.

Cost Calculation Intensity of the tree cost estimation routines. All these
arguments are mutually exclusive: only the last to appear in a set command
will be used.

normal do Use the standard Direct Optimization algorithm for the tree cost
estimation. This is the default and fastest technique.

exhaustive do Use the starndard Direct Optimization algorithm for the
tree cost estimation. The difference with normal do is that the calcu-
lation of the tree costs during a search are much more intense, always
looking for the best possible alignment for every single topology (in-
stead of a lazy and greedy strategy used by the normal do).

2.3. COMMAND REFERENCE 83

Randomized routines

seed:INTEGER Sets the seed of the random number generator to the argu-
ment’s value. If unspecified, POY4 uses the system’s time as seed. It is
reported when the program starts.

Defaults

set() If no argument are given, the command does nothing.

Examples

• set(history:1500, seed:45, log:"mylog.txt")
This command increases the size of the history in the ncurses interface
to 1500 lines, sets the random number generator to 45, and initiates a
log file mylog.txt, located in the current working directory, as printed
by the command pwd().

• set(root:"Mytilus edulis")
This commands selects terminal Mytilus edulis as a root for output
trees.

See also

• report (Section 2.3.19)

2.3.25 store

Syntax

store(STRING)

Description

Stores current state of POY4 session in memory. The stored information
includes character data, trees, selections, everything. Specifying the name of
the stored state of the search (using the string argument) does not, however,
generate a file under this name that can be examined; the name is used only
to recover the stored state using the command use.

In combination with use, the command store is extremely useful when
exploring alternative cost regimes and terminal sets within a single POY4
session.

84 CHAPTER 2. POY4 COMMANDS

Arguments

STRING Specifies the name of the stored search state of the current POY4
session.

Examples

• store("initial tcm")
transform(tcm:(1,1))
use("initial tcm")
The first command, store, stores the current characters and trees
under the name initial tcm. The second command, transform,
changes the cost regime of molecular characters, effectively changing
the data being analyzed. However, the third command, use, recovers
the initial state stored under the name initial tcm.

See also

• use (Section 2.3.28)

• transform (Section 2.3.11)

2.3.26 swap

Syntax

swap([argument list])

Description

swap is the basic local search function in POY4. This command implements
a family of algorithms collectively known as branch swapping in systematics
and as hill climbing in combinatorial optimization. They proceed by clipping
parts of a given tree and attaching them in different positions of the same
tree. It can be used to perform a local search in the set of trees loaded in
memory.

Swapping is performed on all trees in memory. During search, swap
collects information about the visited trees and perform various kinds of
checkpoints to reduce information loss in case if POY4 crashes.

swap is also used as an argument for other commands to specify a local
search strategy in other contexts, for example, in calculating support values
using the command calculate support (Section 2.3.2).

All arguments of swap are optional and their order is arbitrary.

2.3. COMMAND REFERENCE 85

Arguments

Neighborhood The basic standard procedures for local search in phylo-
genetic analysis are SPR and TBR [16]. The arguments in this group define
the parameters of these methods.

The nearest-neighbor interchanges (NNI) swapping strategy is imple-
mented by combining the arguments spr and sectorial (see Join method
group of arguments): swap(spr, sectorial:1).

alternate Performs spr and tbr swapping iteratively until a local optimum
is found. This is a specific strategy of performing tbr, as the trees
visited by spr are a subset of those visited by tbr.

spr[:once] This argument performs spr swapping, starting from the cur-
rent trees in memory and subsequently repeating the SPR procedure
until a local optimum is found. If the optional value once is specified,
spr will stop once the first tree with better cost is found.

tbr[:once] This argument performs tbr swapping, starting from the cur-
rent trees in memory and subsequently repeating the TBR procedure
until a local optimum is found. If the optional value once is specified,
tbr will stop once the first tree with better cost is found.

Trajectory The following arguments define the direction of the search in
the defined neighborhood.

around Similar to current neighborhood, this argument changes the tra-
jectory of a search, by completely exploring the neighborhood of the
current tree in memory, and choosing the best swap position among
in this neighborhood first before continuing. The default in POY4 is to
choose the first one available that shows a better cost than the current
best.

annealing:(FLOAT, FLOAT) Uses simmulated annealing [11]. If the ar-
gument’s value is (a, b), POY4 accepts a tree with cost c when the
best known tree has cost d with probability exp (−(c− d)/t), where
t = a × exp−i/b, and i is the number of tree evaluated in the local
search.

drifting:(FLOAT, FLOAT) Uses POY4 drifting function [8]. If the argu-
ment’s value is (a, b), then POY4 always accepts a tree with better cost
than the current best, with probability a a tree with equal cost, and

86 CHAPTER 2. POY4 COMMANDS

with probability 1/b + d a tree with cost d greater than the current
best.

Branch break order During the local search, a branch is broken and
local branch swapping is performed (see Neighborhood group of arguments),
the precise choice of which branches should be broken first can affect both
the speed and the local optimum found by the program. The following
commands select among the different strategies available in POY4.

once Breaks each edge only once during a local search; that is, if a broken
edge does not yield a better tree, it is never broken again, no matter
how many changes occur in the tree.

randomized Chooses edges uniformly at random for breakages.

distance Gives higher priority to those edges with biggest length.

Join method After breaking a tree (using SPR or TBR), the following
arguments control the selection of the positions to join the broken clades.

constraint[:INTEGER | (depth:INTEGER, file:STRING)] The constraint
argument for the swap command sets constraints on the join locations
during the search using an input tree using both a tree and an op-
tional maximum distance from the break branch. Only sets defined
either in the input file, or in the strict consensus of the files in memory
will be attempted to produce during swapping. An integer value of
depth specifies the maximum distance from the break branch to at-
tempt joins. A string value of file specifies an input file containing
a singe tree that defines topological constraints. Under default set-
tings, constraint will use a consensus tree from the files in memory
and perform swapping with the value of depth set to 0 (no maximum
distance is specified).

all[:INTEGER] Turn off all preference strategies to make a join, simply
try all possible join positions for each pair of clades generated after a
break.

sectorial[:INTEGER] Do not join in edges at distance greater than the
value of the argument from the broken edge, where the distance is the
number of edges in the path connecting them. If no argument is given,
then no distance limit is set.

2.3. COMMAND REFERENCE 87

Reroot order During TBR, the following options control the order of the
rerooting.

bfs[:INTEGER] Reroots using breath first search [3] from the broken edge,
within the arguments value distance from the root of the clade. If no
value is given, there is no limit distance for the rerooting. By default,
bfs is used with no limit distance for the rerooting.

Trajectory samples During the search, POY4 visits a (large) number of
trees; it is possible to ask the program to collect information about those
trees, to be used later: either to provide backups of the state of a search
(in the improbable case that POY4 crashes), or simply to analyze the char-
acteristics of the alignments. A difference with other groups of arguments
in swap, is that the user can choose any combination of trajectory samples,
and they will all be used during the search. None of the trajectory samples
is used by default.

recover Store the current best tree in memory to recover it in case of
failure (default is off); If it is necessary to recover such trees after
an aborted command, use the command recover (Section 2.3.16). If
the program terminates normally, the stored trees are exactly those
produced at the end of the swap. Using recover will require twice as
much memory as the swap would take without it; however, it will not
affect the application’s performance.

timeout:INTEGER is the number of seconds after which the swap will be
cancelled. Use this argument in association with recover to keep the
best trees found up to n seconds after starting the search.

timedprint:(INTEGER, STRING) timedprint:(n, "trees.txt") will print
the current best tree in memory to the file trees.txt, at least every n
seconds. However, POY4 typically underestimates the amount of time
and, therefore, the samples can be slightly sparcer.

trajectory[:STRING] trajectory:"better.txt" will store every new
tree found with a better score during the local search in the file
better.txt. The string is the filename where the trajectory is to
be stored, which is optional (indicated by brackets); if not added, the
trees are printed in the standard output (flat interface) or the output
window (ncurses interface).

88 CHAPTER 2. POY4 COMMANDS

visited[:STRING] visited:"visited.txt" will store every visited tree
and its cost during the local search in the file visited.txt. The (op-
tional) string is the filename where the trajectory is to be stored. If not
included, the trees are printed in the standard output (flat interface)
or the output window (ncurses interface).

Tree selection As the tree search proceeds, a tree may or may not be
selected to continue the search or to return as a result. The following argu-
ments determine under what conditions can a tree be acceptable during the
search.

threshold:FLOAT Sets the percentage cost for suboptimal trees that are
more exhaustively evaluated during the swap, meaning that trees within
the threshold are subject to an extra round of swapping. For example,
if the current optimal tree has cost 450, and threshold:10 is specified,
trees with cost at most 495 are swapped. threshold is equivalent to
slop of POY3.

trees:INTEGER Maximum number of best trees that are retained in a
search round, per tree in memory.

Defaults

swap(trees:1, alternate, threshold:0, bfs) By default, current trees
are submitted to a round of SPR followed by TBR using breath first search
under default setting, and keeping one best tree per each starting tree.

Examples

• swap()
This command performs swapping under default settings.

• swap(trees:5)
Submits current trees to a round of SPR followed by TBR. It keeps
up to 5 minimum cost trees for each starting tree.

• swap(transform ((all, static approx)))
Submits current trees to a round of SPR followed by TBR, using static
approximations for all sequence characters.

• swap(trees:4, transform ((all, static approx)))
Submits current trees to a round of SPR followed by TBR, using static

2.3. COMMAND REFERENCE 89

approximations for all characters, keeping up to 4 minimum cost trees
for each starting tree.

• swap(constraint:(depth:4))
Calculate a consensus tree of the files in memory and use it as con-
straint file, then join at distance at most 4 from the breaking branch.
This is equivalent to swap (constraint:(4))

• swap(constraint:(file:"bleh"))
Read the tree in file ”bleh” and use it as constraint for the search.
This is equivalent to swap (constraint:(”bleh”)).

• swap(constraint:(file:"bleh", depth:4))
Use the tree in file ”bleh” as constraint tree, and join at distance at
most 4 from the breaking branch during the swap.

See also

• transform (Section 2.3.27)

2.3.27 transform

Syntax

transform([argument list])

Description

Transforms a character or a list of characters from one type into another
type. This includes changing in costs for indels and substitution, modifying
character weights, converting dynamic into static homology characters, and
transforming nucleotide into chromosomal (and vise versa) characters among
other operations.

The essential arguments of the command transform include identifiers
and methods. The methods specify what type of transformation is applied
to the set of characters specified by identifiers as defined in the description of
the command select (Section 2.3.23). Identifiers and methods are included
in parentheses and separated by a comma. It is important to remember
that only identifiers of characters (such as names, codes, among others) can
be used. The parentheses separate these essential arguments from all other
optional arguments that might be included in the list. Thus, if only identi-
fiers and methods are specified, the argument list of transform is included

90 CHAPTER 2. POY4 COMMANDS

in double parentheses. For example, the command transform((all, gap -
opening:1)) contains only an identifier (all) and a method (gap opening).
Minimally, only methods can be specified; in that case, the transformation is
applied to all characters to which the transformation method can be applied
and only a single set of parentheses is used. For instance, transform(gap -
opening:1), where gap opening defines the transformation method.

There are no default values for transform, that is if no methods are
specified (transform()), the command does nothing.

Arguments

Identifiers Identifiers specify which characters are transformed. Only
identifiers of characters (not terminals) can be used. If identifiers are omit-
ted, the transformation to is applied to all applicable characters. For exam-
ple, transform((all,tcm:(1,1))) is equivalent to transform((tcm:(1,1))).
See the command select (Section 2.3.23) for detailed description of identi-
fiers.

Methods This set of arguments specifies different transformations that
can be applied to selected characters. If multiple transformation methods are
applied sequentially in the same list of arguments, the effect of the methods
listed earlier might be altered or canceled by methods listed after that.
Thus, caution must be used in designing complex strategies with multiple
character transformations. See the note on command order (Section 2.2).

auto static approx Evaluates each loaded fragment and, if the number of
indels appear to be low and stable between topologies, then the charac-
ter is transformed to the equivalent character using static homologies
with the implied alignment [18]. If no characters are specified (using
identifiers), all sequence fragments are evaluated. This method greatly
accelerates searching.

auto sequence partition Evaluates each fragment and if a long region ap-
pears to have no indels, then the fragment is broken inside that region.
Any number of partitions can occur along a fragment. Fragmenting
long sequences greatly accelerate searching.

fixedstates Transforms the characters specified in fixed state characters [17]
with distances equal to the edition distance between their observed
values. By default, the application of fixedstates transforms all

2.3. COMMAND REFERENCE 91

molecular characters. To specify a subset of characters, an identi-
fier must be used in conjunction with fixedstates. For example,
((names:("s [0-5]"), fixedstates)).

gap opening:INTEGER Sets the cost of opening a block of gaps to the spec-
ified value. Note that this cost is in addition to the standard cost of
the insertion as specified by a given transformation cost matrix. The
default in POY4 is not to have extension gap cost (gap opening:0). If
the gap opening cost is a, and indel(x) is the cost cost of inserting
(or deleting) a base x according to the tcm assigned to the charac-
ter, the total cost of inserting (or deleting) the sequence s[0...n] is
a + tcm(s[0]) + tcm(s[1]) + ... + tcm(s[n− 1]) + tcm(s[n]).

multi static approx Calculate the implied alignment for each tree in mem-
ory and convert them to static homology characters using the align-
ment’s cost regime. The new character set will be the union of all those
characters generated for all the trees [19]. This option is intended only
for heuristic search purposes.

prealigned Assume that the sequences are prealigned and should use the
cost regime specified in their assigned transformation cost matrix. All
other cost parameters are ignored, including affine gap costs.

static approx[:LIDENT] Transforms the sequences to the static homo-
logy characters corresponding to their implied alignments and their
transformation cost matrix [18]. The resulting characters and their
number will vary depending on the characteristic of transformation
cost matrix assigned to each sequence. For example, if the cost of
both substitutions and indels is 1, then one non-additive character is
created per each homologous position in the implied alignment. If the
cost of substitutions is 1 and the cost of indels is 2, then one character
is created for each homologous position, and one extra character for
each homologous position with gaps. In more complex cases, a Sankoff
character is created.

The lident value remove excludes all uninformative characters infor-
mation (except autapomorphies), whereas the value keep retains these
characters. The default is remove.

92 CHAPTER 2. POY4 COMMANDS

NOTE

The transformation of dynamic into static homology charac-
ters cannot be reverted. Therefore, caution must be taken
when the transformation is applied. For example, if sequence
characters have been transformed into static characters to cal-
culate jackknife or bootstrap support values based on sampling
of individual nucleotides, all commands executed subsequently
will be applied to the transform data.

NOTE

It is important to remember that the local optimum for the dy-
namic homology characters can differ from that for the static
homology characters based on the same sequence data. There-
fore, performing additional searches on the transformed data
(for example, in calculating support values based on individual
nucleotides rather than on sequence fragments) can produce a
discrepancy in tree costs.

trailing insertion:STRING/(INTEGER list) The tail and prepend costs
specify the cost of having an insertion of each element in the alphabet
at the beginning or end of a sequence. The string is the name of a file
containing the cost of a trailing insertion corresponding to each of the
elements in the alphabet separated by spaces. The last element in the
list is the cost of the indel of a gap (should be 0). Instead of a file, the
list can be the input of the argument, in the same order, separated by
commas. Synonym of the argument ti.

trailing deletion:STRING/(INTEGER list) The tail and prepend costs
specify the cost of having a deletion of each element in the alphabet
at the beginning or end of a sequence. The string is the name of a file
containing the cost of a trailing deletion corresponding to each of the
elements in the alphabet separated by spaces. The last element in the
list is the cost of the indel of a gap (should be 0). Instead of a file, the
list can be the input of the argument, in the same order, separated by
commas. Synonym of the argument td.

tcm:(INTEGER, INTEGER) Defines transformation cost matrix. The first in-
teger value specifies substitution cost, the second integer value defines

2.3. COMMAND REFERENCE 93

indel cost. By default, the cost of substitution is 1, and the cost of an
indel is 2 (tcm:(1,2)).

tcm:STRING Defines transformation cost matrix by importing a file (spec-
ified by the string value) that contains a user defined nucleotide trans-
formation cost matrix. The transformation cost matrix file contains
five rows and columns with values listed in the following order (left to
right and top to bottom): adenine, cytosine, guanine, thymine/uracil,
and indel. The costs must be symmetrical (that is, the cost of the
A to T substitution is equal to the cost of T to A substitution). For
example:

0 2 1 2 4
2 0 2 1 4
1 2 0 2 4
2 1 2 0 4
4 4 4 4 0

weight:FLOAT Changes the cost of specified characters by a constant value
(weight) specified by the float value.

weightfactor:FLOAT Changes the cost of specified characters by a multi-
plicative factor (weight factor) specified by the float value.

Chromosomal transformation methods For chromosome and genome
character types, POY4 optimizes nucleotide-, locus-, and chromosome-level
variation simultaneously. The arguments in this group transform nucleotide
characters into chromosomal character to allow for translocations, inver-
sions, and indel events at the locus-level in a chromosome and chromosome
level in a genome.

Functions to calculate breakpoint and inversion distances between two
sequences of gene orders are taken from GRAPPA, Genome Rearrangements
Analysis under Parsimony and other Phylogenetic Algorithms, available at
http://www.cs.unm.edu/~moret/GRAPPA/.

breakinv to seq Transforms breakinv character type into custom alphabet
character type. This transformation prevents the use of rearrangement
operations.

seq to breakinv:([argument list]) Transforms custom alphabet char-
acter type into breakinv character type to allow for rearrangement op-
erations (translocations and inversions; duplications are not currently

94 CHAPTER 2. POY4 COMMANDS

supported.) This argument is useful, for example, when custom al-
phabet characters are used to define a sequence of individual genes
and once is interested in detecting potential change in their order on
a chromosome. See the command read (Section 2.3.14) for the de-
scription on how to load a custom alphabet and breakinv character
types. The optional list of arguments includes the arguments of the
dynamic pam that can also be specified subsequently, as a separate
step, using the argument dynamic pam.

seq to chrom:([argument list]) Transforms nucleotide type data into
chromosome type data to allow rearrangements, inversions, and locus-
level indel operations. The chromosome-specific options (e.g. break-
point, locus–insertion, and locus-deletion costs) can be specified by the
argument dynamic pam. If no dynamic pam values are specified, its de-
fault values are applied. The optional list of arguments includes the
arguments of the dynamic pam that can also be specified subsequently,
as a separate step, using the argument dynamic pam.

dynamic pam:([argument list]) Specifies parameters for creating chromosome-
and genome-level HTUs (medians). The argument values of dynamic -
pam specify the method if calculating distance between pairs of chro-
mosomes (inversion and breakpoint), costs of locus-level events
(inversion, breakpoint, locus indel), take into account whether
the chromosome is linear or circular (circular), and implement a
number of heuristic procedures to accelerate computations when work-
ing with chromosome data type (seed length, median, swap med,
rearranged len, approx). Under default settings, the distance be-
tween two chromosomes is calculated using breakpoint and the rest
of the arguments are executed under their default settings.

NOTE

Note that the arguments breakpoint and inversion are al-
ternative methods of calculating distance between two chro-
mosomes. Therefore, they cannot be used simultaneously. If
both arguments are specified, the latter will be executed. The
order of other arguments of dynamic pam is arbitrary.

approx:BOOL Approximates chromosome medians using a fixed-states
approach. This is most useful to accelerating tree building and

2.3. COMMAND REFERENCE 95

searching operations for large chromosomal data sets. The boolean
value true applies the fixed-states optimization. The default
value is false.

locus breakpoint:INTEGER Calculates the breakpoint distance [1]
between two pairs of chromosomes given the cost for rearrange-
ment specified by an integer value. The breakpoint distance takes
into account rearrangements but not inversions. Note, that this
argument cannot be used in conjunction with inversion. The
default value of breakpoint is 50.

circular:BOOL Specifies if chromosome is circular (boolean value
true) or linear (boolean value false). The default value of
circular is false (linear chromosome).

chrom breakpoint:INTEGER Calculates the breakpoint distance [1]
between two sequences of multiple chromosomes given the cost
for rearrangement specified by an integer value. The breakpoint
distance takes into account locus rearrangements between non-
homologous chromosomes (translocations) but not inversions. The
default value of chrom breakpoint is 10.

chrom hom:FLOAT Specifies the lower limit of distance between two
chromosomes beyond which the chromosomes are not considered
to be homologous. The default value of chrom hom is 0.75.

chrom indel:(INTEGER, FLOAT) Specifies the cost for insertion/deletion
of a chromosome in analysis of multiple chromosomes. The inte-
ger value sets gap opening cost (o), whereas the float value sets
gap extension cost (e). The indel cost for a fragment of length l
is specified by the following formula: o + (l− 1)× e. The default
values are o = 10, e = 1.0.

inversion:INTEGER Calculates the inversion distance [9] between
two chromosomes given the cost for inversion specified by the
integer value. The inversion distance takes in consideration rear-
rangements and inversions. Note, that this argument cannot be
used in conjunction with breakpoint.

locus indel:(INTEGER, FLOAT) Specifies the cost for insertion/deletion
of a chromosome segment. The integer value sets gap opening
cost (o), whereas the float value sets gap extension cost (e). The
indel cost for a fragment of length l is specified by the following
formula: o + (l− 1)× e. The default values are o = 10, e = 1.0.

96 CHAPTER 2. POY4 COMMANDS

median:INTEGER Specifies the number alternative locus- and chromosome-
level rearrangements of the best cost selected (randomly) for each
HTU (median). Limiting the number of rearrangements stored in
memory (smaller value of median) is heuristic strategy to acceler-
ate calculations at the expense of thoroughness of the search. By
default, only 1 rearrangement is retained (the first one found). If
more than one rearrangement is specified, the selected number of
rearrangements is selected in random order from the pool of all
generated rearrangements.

seed length:INTEGER Specifies the minimum length of identical (in-
variant, completely conserved) contiguous sequence fragments dur-
ing comparison between two chromosomes. The integer value
of seed length is the number of nucleotides. Correct identifi-
cation of such fragments facilitates detecting chromosome rear-
rangement events and accelerates other operations (such as tree
building and swapping). However, if seed length value is set
too low (allowing for detection of short, multiple fragments that
are likely to occur frequently in a genome) or if it is set too high
(that might result in no identical fragments detected), the speed
of subsequent procedures can potentially decrease. The optimal
parameters depend on specifics of a given dataset. The default
value of seed length is 9.

sig block len:INTEGER Creates a pairwise alignment between two
chromosomes and detecting conserved areas (“blocks”). However,
only blocks of lengths (in number of nucleotides) greater or equal
to the integer value of sig block len are considered as hypo-
thetically homologous blocks and used as anchors to divide chro-
mosomes into fragments. Increasing the value of sig block len
decreases the chance of inferring small-size rearrangements. The
default value is 100.

rearranged len:INTEGER Two seeds are said to be non-rearranged,
if their distance is not greater than a predefined threshold rearranged len.
In other words, it is unlikely that rearrangement operations can
occur between seeds if they are connected. The default value is
1000

swap med:INTEGER Specifies the maximum number of swapping iter-
ations per each HTU (median) to search for best pairwise align-
ment of two genomes taking into account locus-level rearrange-
ment events. Limiting the number of swapping iterations acceler-

2.3. COMMAND REFERENCE 97

ates the search at the expense of thoroughness. The default value
is 1.

Defaults

transform() If no arguments are given, this command does nothing.

Examples

• transform((all, tcm:(1,1)))
Applies the transformation cost matrix (1,1) to all characters, meaning
that substitutions and gaps receive the same weight.

• transform((all, tcm:"molmatrix"))
Applies the character transformation matrix ”molmatrix” to all char-
acters.

• transform((all, tcm:(1,1)))
is equivalent to transform ((dynamic, tcm:(1,1)))

• transform(tcm:(1,1), gap opening:1)

• transform(tcm:(2,2), ti:(1,1,1,1,0), td:(1,1,1,1,0))
will assign to all characters the symmetric transformation cost matrix
with cost 2 for every indel and substitution, but for those insertions
and deletions at the ends of the sequences, the cost assigned will only
be 1.

• transform((static, weightfactor:2))
This command will reweight all the static homology characters by a
multiplicative factor of 2, while keeping the weighting scheme that has
been specified before.

• transform((static, weight:4))
If all the weights are intended to be the same (4), for all the static
homology characters.

• transform((dynamic, weight:4))
If all the weights are intended to be the same (4) for all the dynamic
homology characters.

98 CHAPTER 2. POY4 COMMANDS

• transform((all, tcm:(1,1)), (names:("gen1", "gen2"),
static approx), (names:("gen3"), tcm:"molmatrix"))
Applies tcm (1,1) to all characters, then applies static approx using
that tcm to characters in files gen1 and gen2, and for file gen3, it
invokes a different transformation cost matrix, contained in the file
molmatrix. Beware that the file name should be exactly as it was
reported with report (data), which differs from the actual file name
(report (data) reports files as fileX:N).

• transform((all, tcm:(1,1)), (names:("gen 1:3", "gen2:10", "gen3:1",
"gen4:5"), static approx), (names:("gen5", "gen6"), tcm: "Molmatrix1"))
Applies tcm (1,1) to all characters, then applies static approx using
that tcm to sequence fragments in files gen1, gen2, gen3, and gen4,
and for files gen5 and gen6, it invokes a different transformation cost
matrix, contained in the file molmatrix.

• transform(fixedstates)

• transform((names:("s [0-5]"), fixedstates))

• transform((all, seq to breakinv:()))
In this example all sequence data is transformed into breakinv data
type under default settings of dynamic pam.

• transform(seq to chrom:(circular:true, locus indel:(50, 1.0)))
All applicable (i.e. sequence) data is transformed into chromosome
data, which is treated as a circular chromosome, and settings locus-
level gap opening cost at 50 and gap extension cost at 1.0.

• read (chromosome:("mito"))
transform((all, dynamic pam:(breakpoint:10, rearranged len:60,
median:1, circular:false)))
This example shows a file read (“mito”) containing mitochondrial chro-
mosome sequences that is transformed to set the breakpoint cost at 10,
60 or more nucleotides are necessary to allow rearrangement between
2 identified seeds, the number of median swap passes at 1, and the
chromosomes are linear.

2.3. COMMAND REFERENCE 99

2.3.28 use

Syntax

use(STRING)

Description

Loads a saved POY4 state from memory. It replaces the current one. See the
usage in store.

See also

• store (Section 2.3.25)

2.3.29 version

Syntax

version()

Description

Reports the POY4 version number in the output window of the ncurses in-
terface, or to the standard error in the flat interface.

Examples

• version ()

2.3.30 wipe

Syntax

wipe()

Description

Elminates the data stored in memory (all character data, trees, etc.).

100 CHAPTER 2. POY4 COMMANDS

Examples

• wipe ()

Chapter 3

POY4 Tutorials

These tutorials are intended for new POY4 users as well as for users who have
previously used POY3 and are now upgrading to POY4. The command struc-
ture has been overhauled in POY4 to allow greater user control. Although
POY3 users will find the changes challenging initially (as did we), the new
structure is more intuitive, flexible, and powerful. For details, see the POY4
Commands Reference; for a quick overview see the POY4 Quick Guide. The
following tutorials are intended to facilitate the transition to the new com-
mand structure by providing examples of analyses that are loosely based on
the commands covered in the tutorials found in Chapter 14 in Wheeler et
al. (2006). For a fuller discussion of analytical strategies, refer to:

http://homepage.mac.com/wmleosmith/homepage/datafiles/joy/joy.html

and Chapter 9 in Wheeler et al. (2006). In addition to the POY4 exe-
cutable, the only other application software you need for these tutorials
is a text editor, such as Textpad, BBEDIT, EMACS, Word, WordPad, or
NotePad. Additionally, a postscript (.ps) viewer/converter (e.g., online at
http://pdf.sesse.net/ , Adobe Acrobat Distiller, Apple Preview) will be re-
quired to view publication-quality postscript cladograms.

The commands in the following tutorials can all be written and executed
separately from the command line, saved and run as a script file, or written
into a text file and copied and pasted into POY4’s interactive console or flat
interface. Initially, we recommend writing and executing them separately,
as presented below, as this will allow you to see how POY4 reports progress
as you start to use POY4. We also recommend running these tutorials using
the graphical interface (ncurses version) of POY4, although they can also be
run using the flat interface.

Preliminary tasks:

101

102 CHAPTER 3. POY4 TUTORIALS

1. Make sure you have downloaded all of the POY4 tutorial datafiles.

2. Create a folder named tutorial. Although you can place this folder
anywhere, we suggest you make it a subfolder to the POY4 folder you
created during installation. In addition, nothing depends operationally
on this new folder being named tutorial.

3. Review the POY4 Quick Guide for instructions to install and run POY4
using Windows, Mac OSX, and Linux operating systems.

4. Either copy the POY4 executable from the POY4 folder to the new
tutorial folder or make sure the executable is in /usr/local/bin/ or
another directory included in your path (Linux and Mac OSX only).

5. Copy all of the files from the POY4 tutorial folder to the new tutorial
folder.

3.1 Basic Search

This tutorial illustrates the basics of running POY4 using single input datafile.

1. Navigate to the tutorial folder.

2. Launch POY4 (review POY4 Quick Guide for instructions for your plat-
form).

3. Type:

read ("mol1.txt") [enter]
build (100) [enter]
select (unique) [enter]
swap (threshold:10) [enter]
select () [enter]
report (asciitrees) [enter]
report ("tutorial1_trees.txt", trees) [enter]
report ("tutorial1_stats.txt", treestats) [enter]

The above commands will perform the following tasks using default
parameters:

• Import the DNA sequence datafile mol1.txt.

3.2. ADVANCED SEARCH 103

• Generate 100 random addition sequence Wagner trees.

• Discard duplicate trees.

• Alternate SPR and TBR branch swapping of all current trees as
well as all new trees found that are up to 10% longer than the
current tree being swapped. Note: Threshold during swapping
is equivalent to slop in POY3. Given the faster algorithms and
better heuristics of POY4 it is likely to be less important than it
was in POY3.

• Discard suboptimal and duplicate trees (i.e., retain only optimal
trees).

• Draw optimal trees in POY4 Output window (ncurses version only)
or output file (non-ncurses version), reporting the cost of each
tree.

• Output all current trees to file tutorial1 trees.txt.

• Output basic tree statistics to file tutorial1 stats.txt.

4. View cladogram(s) in parenthetical format by opening tutorial1 trees.txt
in your chosen text editor.

5. View basic tree statistics by opening tutorial1 stats.txt in your chosen
text editor.

3.2 Advanced Search I: Multiple Datasets and Data
Types, Equal Weighting, Rooting, and Publi-
cation Quality Trees

This tutorial builds on Tutorial ?? to include multiple input datafiles and
multiple data types (i.e., genotypic and phenotypic) using equal weighting,
designate the root, and automatically generate publication quality trees.

1. Type:

read ("mol2.txt", "morph.txt") [enter]
set (root: "Hagfish") [enter]
transform ((all, tcm:(1,1))) [enter]
build (100) [enter]
select (unique) [enter]
swap (threshold:10) [enter]

104 CHAPTER 3. POY4 TUTORIALS

select () [enter]
report ("tutorial2", graphtrees) [enter]
report ("tutorial2_trees.txt", trees) [enter]
report ("tutorial2_stats.txt", treestats) [enter]

The above commands will perform the following tasks using default
parameters:

• Import the DNA sequence datafile mol2.txt and the phenotypic
datafile morph.ss.

• Designate the Hagfish as the root.

• Set indel and substitution costs to 1 (equal weighting). The addi-
tivity (ordering) of the phenotypic characters is determined in the
ccode of the NONA file morph.ss. By default, the transformation
cost for phenotypic characters is 1.

• Generate 100 random addition sequence Wagner trees.

• Discard duplicate trees.

• For each tree in memory, alternate SPR and TBR branch swap-
ping of the tree and all trees found within 10% of the cost of the
tree.

• Discard suboptimal and duplicate trees (i.e., retain only optimal
trees).

• Output publication-quality cladogram(s) of optimal tree(s) to a
postscript file tutorial2.ps. (Note: POY4 automatically adds the
.ps extension.)

• Output all current trees to file tutorial2 trees.txt.

• Output basic tree statistics to file tutorial2 stats.txt.

2. View publication-quality cladogram(s) by opening tutorial2.ps in your
chosen postscript viewer.

3. View cladogram(s) in parenthetical format by opening tutorial2 trees.txt
in your chosen text editor.

4. View basic tree statistics by opening tutorial2 stats.txt in your chosen
text editor.

3.3. FUSING AND RATCHETING 105

3.3 Advanced Search II: Tree Fusing and Frag-
ment Ratcheting

This tutorial builds on Tutorial 3.2 to use tree fusing and fragment ratcheting
that help to escape suboptimal islands. This tutorial also introduces matrix
and tree output in NONA format.

1. Type:

build (100) [enter]
select (unique) [enter]
fuse () [enter]
select () [enter]
perturb (iterations:10, ratchet:(0.2,5)) [enter]
select () [enter]
swap (threshold:10) [enter]
select () [enter]
report ("tutorial3", graphtrees) [enter]
report ("alignment3.ss", phastwinclad) [enter]

The above commands will perform the following tasks using default
parameters:

• Generate 100 random addition sequence Wagner trees.

• Discard duplicate trees.

• Perform cladogram searching by fusing one pair of trees in mem-
ory. Note: Tree fusing requires at least two trees; if there was
only one tree in memory, an error message will be generated.

• Discard suboptimal and duplicate trees (i.e., retain only optimal
trees).

• Perform 10 successive repetitions of a fragment-based ratchet by
randomly selecting 20% of the fragments and upweighting them
by a factor of five.

• Discard suboptimal and duplicate trees (i.e., retain only optimal
trees).

• For each tree in memory, alternate SPR and TBR branch swap-
ping of the tree and all trees found within 10% of the cost of the
tree.

106 CHAPTER 3. POY4 TUTORIALS

• Discard suboptimal and duplicate trees (i.e., retain only optimal
trees).

• Output publication-quality cladogram(s) of optimal tree(s) to a
postscript file tutorial3.ps. (Note: POY4 automatically adds the
.ps extension.)

• Output NONA file with the implied alignment for one (if multi-
ple) optimal trees and all optimal trees in the file alignment3.ss.

2. View publication-quality cladogram(s) by opening tutorial3.ps in your
chosen postscript viewer.

3. View implied alignment, optimal tree(s), and manipulate data by
opening the file alignment3.ss in WinClada or MacClade.

3.4 Advanced Search III: Input Trees and Step
Matrices

This tutorial builds on Tutorials 3.2 and 3.3, and introduces the use of input
trees and complex differential cost step matrices.

1. Type:

read ("trees.txt") [enter]
transform ((all, tcm:"g4ts1tv2.txt"),
(static, weightfactor:4)) [enter]
swap (threshold:10) [enter]
select () [enter]
report ("tutorial5", graphtrees) [enter]

The above commands will perform the following tasks using default
parameters:

• Read cladograms from the input file trees.txt.

• Apply specified transformation costs to data. The transformation
cost matrix in the file g4ts1tv2.txt is applied to the dynamic
homology characters (i.e., unaligned DNA sequences) to assign
indel events a cost of 4, transitions 1, and transversions 2. All
static homology characters (i.e., the phenotypic characters in the
file morph.txt) are upweighted by a factor of 4, with additivities

3.5. BREMER SUPPORT 107

and previous relative weights unchanged (e.g., a character with
transformations costs of 2 would be now have a transformation
cost of 8).

• For each tree in memory, alternate SPR and TBR branch swap-
ping of the tree and all trees found within 10% of the cost of the
tree.

• Discard suboptimal and duplicate trees (i.e., retain all most op-
timal trees).

• Output publication-quality cladogram(s) of optimal tree(s) to a
postscript file tutorial5.ps. (Note: POY4 automatically adds the
.ps extension.)

2. View publication-quality cladogram(s) by opening tutorial4.ps in your
chosen postscript viewer.

3. View cladogram(s) in parenthetical format by opening tutorial4 trees.txt
in your chosen text editor.

4. View basic tree statistics by opening tutorial4 stats.txt in your chosen
text editor.

3.5 Support I: Bremer Support

This tutorial builds on the previous tutorials to illustrate Bremer support
calculation.

1. Type:

transform ((all, tcm:(1,1)), (static, weightfactor:1)) [enter]
swap () [enter]
calculate_support (bremer, build (trees:5), swap (trees:2)) [enter]
report (supports) [enter]

The above commands will perform the following tasks using default
parameters:

2. Apply a weight of one to all transformations.

3. For each tree in memory, alternate SPR and TBR branch swapping of
the optimal tree(s).

108 CHAPTER 3. POY4 TUTORIALS

4. Estimate Bremer support by using inverse constraints, doing five in-
dependent searches for every group, holding a maximum of two trees.

5. Output support values for each group in parenthetical notation to POY4
output window.

3.6 Support II: Bootstrap Support Using Dynamic
Homology

This tutorial builds on the previous tutorials to illustrate the calculation
of bootstrap frequencies. As discussed in the POY4 Commands Reference,
the characters sampled during pseudoreplicates are entire fragments of DNA
sequences, not individual nucleotide characters. Tutorial 7 shows how to es-
timate bootstrap frequencies using static homology, which allows nucleotide-
level characters to be sampled.

1. Type:

calculate_support (bootstrap: 100, build(trees:2),
swap(trees:1)) [enter]
report (supports) [enter]

The above commands will perform the following tasks using default
parameters:

• Perform 100 pseudoreplicates by sampling characters with re-
placement, doing two independent searches for each pseudorepli-
cate and holding a maximum of one tree.

• Output bootstrap frequencies for each group in parenthetical no-
tation to POY4 output window.

3.7 Support III: Bootstrap Support Using Static
Homology

This tutorial builds on the previous tutorials to illustrate the calculation of
bootstrap frequencies. Here, bootstrap frequencies are obtained from analy-
sis of the implied alignment of static homologies, which permits individual
nucleotide- level characters to be sampled instead of whole fragments, as is
done using dynamic homology.

3.8. CHROMOSOME ANALYSIS 109

1. Type:

transform ((all, static_approx)) [enter]
calculate_support (bootstrap: 100, build(trees:2),
swap(trees:1)) [enter]
report (supports) [enter]

The above commands will perform the following tasks using default
parameters:

• Generate the alignment implied by the optimal tree and given
the assumed transformation costs.

• Perform 100 pseudoreplicates by sampling characters with re-
placement, doing two independent searches for each pseudorepli-
cate and holding a maximum of one tree.

• Output bootstrap frequencies for each group in parenthetical no-
tation to POY4 output window.

3.8 Chromosome Analysis I: Unannotated Sequences

This tutorial illustrates the analysis of chromosome-level transformations
using unannotated sequences, i.e., contiguous strings of sequences without
prior identification of independent regions.

1. Type

wipe () [enter]
read (chromosome:("mit5.txt")) [enter]
transform ((all, dynamic_pam:(inversion:15, locus_indel:(10, 1.5),
median: 3, swap_med:5, circular:true, approx:true))) [enter]
build (5) [enter]
swap ()[enter]
select () [enter]
report (asciitrees, diagnosis) [enter]
transform ((all, dynamic_pam:(inversion:15, locus_indel:(10, 1.5),
median:3, swap_med:5, circular:true, approx:false))) [enter]
swap ()[enter]
select ()[enter]
report (asciitrees, diagnosis) [enter]

110 CHAPTER 3. POY4 TUTORIALS

The above commands will perform the following tasks using default
parameters:

• Clear all data and trees from memory.

• Import datafile mit5.txt.

• Treat all data as pertaining to unannotated chromosome data,
setting the following parameters: inversion distance and cost 15,
locus indel 10 + 1.5 times the length (number of nucleotides)
of the locus, keep three candidate medians, swap on medians
for 5 rounds, treat as circular chromosome, and use fixed-states
optimization to approximate chromosome medians.

• Generate 5 random addition sequence Wagner trees.

• Alternate SPR and TBR branch swapping of each tree in memory.

• Discard suboptimal and duplicate trees (i.e., retain only optimal
trees).

• Draw optimal trees in POY4 Output window (ncurses version only)
or output file (non-ncurses version), reporting the cost of each
tree.

• Output the optimal median states and edge costs.

• Treat all data as pertaining to unannotated chromosome data
with parameters as above but using optimization alignment (not
fixed-states) to approximate chromosome medians.

• Alternate SPR and TBR branch swapping of each tree in memory.

• Draw optimal trees in POY4 Output window (ncurses version only)
or output file (non-ncurses version), reporting the cost of each
tree.

• Output optimal median states and edge costs.

Bibliography

[1] M. Blanchette, G. Bourque, and D. Sankoff. Genome Informatics, chap-
ter Breakpoint phylogenies, pages 25–34. Universal Academy Press,
Tokyo, 1997. S. Miyano and T. Takagi–eds.

[2] K. Bremer. The limits of amino acid sequence data in angiosperm
phylogenetic reconstruction. Evolution, 42:795–803, 1988.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. The MIT Press, 2nd edition, 2001.

[4] J. S. Farris, V. A. Albert, M. Källersjö, Lipscomb, and A. G. Kluge. Par-
simony jackknifing outperforms neighbor-joining. Cladistics, 12(2):99–
124, 1996.

[5] James S. Farris. The retention index and the rescaled consistency index.
Cladistics, 5:417–419, 1989.

[6] Steve Farris. A method for computing Wagner trees. Systematic Zool-
ogy, 19:83–92, 1970.

[7] Joseph Felsenstein. Confidence limits on phylogenies: An approach
using the bootstrap. Evolution, 39(4):783–791, 1985.

[8] Pablo Goloboff. Analyzing large data sets in reasonable times: solutions
for composite optima. Cladistics, 15(4):415–428, 1999.

[9] S. Hanenhalli and P. A. Pevzner. Transforming a cabbage into a turnip
(polynomial algorithm for sorting signed permutations by reversals). In
Proceedings of the 27th Annual ACM-SIAM Symposium on the Theory
of Computing, pages 178–189, 1995.

[10] Mari Källersjö, James S. Farris, A. G. Kluge, and C. Bult. Skewness
and permutation. Cladistics, 8:275–287, 1992.

111

112 BIBLIOGRAPHY

[11] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simu-
lated annealing. 220(4598):671–680, May 1983.

[12] A. G. Kluge and J. S. Farris. Quantitative phyletics and the evolution
of anurans. Systematic Zoology, 30:1–32, 1969.

[13] T. Margush and F. R. McMorris. Consensus n-trees. Bulletin of Math-
ematical Biology, 43:239–244, 1981.

[14] Kevin C. Nixon. The parsimony ratchet, a new method for rapid par-
simony analysis. Cladistics, 15(4):407–414, 1999.

[15] F. J. Rohlf. Consensus indices for comparing classifications. Mathe-
matical Biosciences, 59:131–144, 1982.

[16] D. L. Swofford and G. J. Olsen. Phylogeny reconstruction. In D. Hillis
and C. Moritz, editors, Molecular Systematics, chapter 11, pages 411–
501. Sinauer Ass. Inc., Sunderland, Massachusetts, USA, 1990.

[17] W. C. Wheeler. Fixed character states and the optimization of mole-
cular sequence data. Cladistics, 15(4):379–385, 1999.

[18] W. C. Wheeler. Implied alignment. Cladistics, 19:261–268, 2003.

[19] W. C. Wheeler, John Gatesy, and Rob DeSalle. Elision: A
method for accommodating multiple molecular sequence alignments
with alignment-ambiguous sites. Molecular Phylogenetics and Evolu-
tion, 4(1):1–9, 1995.

GENERAL INDEX 113

General Index

cost, 68

all, 41, 78, 86
all roots, 67
alternate, 85
aminoacids, 59
annealing, 85
annotated, 59
approx, 94
around, 85
as is, 40
asciitrees, 67
auto sequence partition, 90
auto static approx, 90

best, 80
bfs, 87
binaries, 8
bootstrap, 43
breakinv, 59
breakinv to seq, 93
bremer, 43
build, 39, 44, 76

all, 41
as is, 40
INTEGER, 40
of file, 41
randomized, 40
STRING, 41
trees, 40

calculate support, 41
bootstrap, 43
bremer, 43
build, 44
jackknife, 43
remove, 44
resample, 44

swap, 44
cd, 46

STRING, 47
characters, 78
chrom breakpoint, 95
chrom hom, 95
chrom indel, 95
chromosome, 59
ci, 70
circular, 95
clades, 67
clear memory, 46

m, 46
s, 46

codes, 78
collapse, 69
compare, 65
consensus, 67
constraint, 86
cross references, 66
custom alphabet, 60

data, 66
diagnosis, 70
distance, 86
drifting, 85
dynamic, 79
dynamic pam, 94

echo, 47
error, 47
info, 47
output, 47

error, 47
exhaustive do, 82
exit, 48
export

hennig, 73

114 BIBLIOGRAPHY

nona, 73
tnt, 73

files, 79
fixedstates, 90
fuse, 49

iterations, 49
keep, 49
replace, 49
swap, 49

gap opening, 91
genome, 61
graphconsensus, 67
graphsupports, 67
graphtrees, 68

help, 50
LIDENT, 51
STRING, 51

hennig, 68
history, 82

ia, 69
implied alignments, 69
info, 47
inspect, 51
INTEGER, 40
inversion, 95
iterations, 49, 54

jack2hen, see clades
jackknife, 43

keep, 49

LIDENT, 51
load, 52
locus breakpoint, 95
locus indel, 95
log, 82

m, 46
margin, 68
median, 95
memory, 70
missing, 79
multi static approx, 91

names, 78
nearest-neighbor interchanges, see

swap
newick, 68
NNI, see swap
nolog, 82
nomargin, 69
normal do, 82
not codes, 79
not missing, 79
not names, 79
nucleotides, 61

of file, 41
once, 86
optimal, 80
output, 47

perturb, 53
iterations, 54
ratchet, 54
resample, 54
swap, 54
transform, 54

phastwinclad, 69
prealigned, 61, 91
pwd, 56

quit, 56

random, 80
randomized, 40, 86
ratchet, 54
read, 57

GENERAL INDEX 115

aminoacids, 59
annotated, 59
breakinv, 59
chromosome, 59
custom alphabet, 60
genome, 61
nucleotides, 61
prealigned, 61
STRING, 59

rearranged len, 96
recover, 63, 87
rediagnose, 63
redraw, 64
remove, 44
rename, 64
replace, 49
report, 65

cost, 68
all roots, 67
asciitrees, 67
ci, 70
clades, 67
collapse, 69
compare, 65
consensus, 67
cross references, 66
data, 66
diagnosis, 70
graphconsensus, 67
graphsupports, 67
graphtrees, 68
hennig, 68
ia, 69
implied alignments, 69
margin, 68
memory, 70
newick, 68
nomargin, 69
phastwinclad, 69
ri, 70

script analysis, 70
seq stats, 66
STRING, 65
supports, 68
terminals, 66
timer, 71
total, 68
trees, 68
treestats, 66

resample, 44, 54
ri, 70
root, 82
run, 74

s, 46
save, 74
script analysis, 70
search, 75

build, 76
transform, 76

sectorial, 86
seed, 83
seed length, 96
select, 77

all, 78
best, 80
characters, 78
codes, 78
dynamic, 79
files, 79
missing, 79
names, 78
not codes, 79
not missing, 79
not names, 79
optimal, 80
random, 80
static, 79
STRING, 78
terminals, 78

116 BIBLIOGRAPHY

unique, 80
within, 80

seq stats, 66
seq to breakinv, 93
seq to chrom, 94
set, 81

exhaustive do, 82
history, 82
log, 82
nolog, 82
normal do, 82
root, 82
seed, 83

sig block len, 96
spr, 85
static, 79
static approx, 91
store, 83

STRING, 84
STRING, 41, 47, 51, 59, 65, 78, 84
supports, 68
swap, 44, 49, 54, 84

all, 86
alternate, 85
annealing, 85
around, 85
bfs, 87
constraint, 86
distance, 86
drifting, 85
once, 86
randomized, 86
recover, 87
sectorial, 86
spr, 85
tbr, 85
threshold, 88
timedprint, 87
timeout, 87
trajectory, 87

trees, 88
visited, 87

swap med, 96

tbr, 85
tcm, 92, 93
terminals, 66, 78
threshold, 88
timedprint, 87
timeout, 87
timer, 71
total, 68
trailing deletion, 92
trailing insertion, 92
trajectory, 87
transform, 54, 76, 89

approx, 94
auto sequence partition, 90
auto static approx, 90
breakinv to seq, 93
chrom breakpoint, 95
chrom hom, 95
chrom indel, 95
circular, 95
dynamic pam, 94
fixedstates, 90
gap opening, 91
inversion, 95
locus breakpoint, 95
locus indel, 95
median, 95
multi static approx, 91
prealigned, 91
rearranged len, 96
seed length, 96
seq to breakinv, 93
seq to chrom, 94
sig block len, 96
static approx, 91
swap med, 96

GENERAL INDEX 117

tcm, 92, 93
trailing deletion, 92
trailing insertion, 92
weight, 93
weightfactor, 93

trees, 40, 68, 88
treestats, 66

unique, 80
use, 99

version, 99
visited, 87

weight, 93
weightfactor, 93
wipe, 99
within, 80

118 BIBLIOGRAPHY

POY 3.0 Command Line Index

agree, see constraint

bremer, see calculatesupports
bremerspr, see calculatesupports,

swap
build, see build
buildmaxtrees, see trees
buildslop, see threshold
buildspr, see spr
buildtbr, see tbr

cat commandbrowsing, see help
cat helptopics, see help
characterweights, see report
commandfile, see run
commandfiledir, see cd

datadir, see cd
defaultweight, see weight
diagnose, see report
disagree, see constraint
driftequallaccept, see drifting
driftlengthbase, see drifting
driftspr, see drifting
drifttbr, see drifting
drifttrees, see drifting
dropconstraints, see constraint

extensiongap, see gapopening, see
tcm

finalrefinement, see swap

gap, see gapopening, see tcm
gc, see memory

holdmaxtrees, see trees
hypancfile, see diagnosis
hypancname, see diagnosis

iafiles, see implied alignment
impliedalignment, see implied align-

ment
indices, see treestats
intermediate, see trajectory

jackboot, see jackknife
jackfrequencies, see jackknife
jackoutgroup, see outgroup
jackstart, see jackknife

leading, see trailing insertion

maxtrees, see trees
molecularmatrix, see tcm

newstates, see fixedstates
noiafiles, see report
numdriftchanges, see repeat
numdriftspr, see repeat
numdrifttbr, see repeat

phastwincladfile, see phastwinclad
plotechocommandline, see echo
plotfile, see graphtrees
plotfrequencies, see graphtrees
plotmajority, see graphconsensus
plotoutgroup, see outgroup
plotstrict, see graphconsensus
plottrees, see graphtrees
poybintreefile, see trees
poystrictconsensustreefile, see con-

sensus
poytreefile, see trees
printtree, see asciitrees

random, see trees
ratchetinseq, see perturb
ratchetoverpercent, see ratchet

POY 3.0 COMMAND LINE INDEX 119

ratchetpercent, see ratchet
ratchetseverity, see ratchet
ratchetslop, see perturb
ratchetspr, see perturb
ratchettbr, see perturb
ratchettrees, see perturb
replicatebuild, see trees
replicaterefinement, see trees
replicates, see trees

slop, see threshold
sprmaxtrees, see trees
staticapprox, see static approx
staticapproxbuild, see build

tbrmaxtrees, see trees
topodiagnoseonly, see read
topofile, see read
topolist, see trees
topology, see read
topooutgroup, see outgroup
trailinggap, see trailingdeletion, see

trailinginsertion
treefuse, see fuse
treefusespr, see fuse
treefusetbr, see fuse

	POY4 Quick Start
	What is POY4
	The structure of POY4 documentation
	Requirements: software and hardware
	Software
	Hardware

	Obtaining and installing POY4
	Starting a POY4 session
	POY4 interface
	Navigating the interface
	Entering commands
	Browsing the output
	Switching between the windows
	Interrupting a process

	Errors
	Obtaining help
	Exiting
	WWW resources
	Using POY4
	Importing data
	Inspecting data
	Building initial trees
	Performing a local search
	Selecting trees
	Visualizing the results
	Running scripts
	Known issues

	POY4 Commands
	POY4 Command Structure
	Brief Description
	Grammar Specification

	Notation
	Command Reference
	build
	calculate_support
	clear_memory
	cd
	echo
	exit
	fuse
	help
	inspect
	load
	perturb
	pwd
	quit
	read
	rediagnose
	recover
	redraw
	rename
	report
	run
	save
	search
	select
	set
	store
	swap
	transform
	use
	version
	wipe

	POY4 Tutorials
	Basic Search
	Advanced Search
	Fusing and Ratcheting
	Trees and Step Matrices
	Bremer Support
	Bootstrap Support
	Bootstrap Support with Static Homologies
	Chromosome Analysis
	General Index
	POY 3.0 Command Line Index

