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Lean on me: Finding Support for your Trees using  
Bootstrap, Jackknife, and Bremer Support  

 
So ran a heuristic search and you got a tree. Now what? How do you tell how well (or poorly) 
supported the tree you’ve come up with is? Well, of course the truth is that for most cases in 
phylogenetics, it is impossible to know how closely your tree matches evolutionary history. 
Nonetheless, there are various different ways to get a sense of how robust your data is – that is, is 
that final tree just a fluke? Or, given the data that you have, are very few other trees possible? 
The goals for this lab are for you to use a test tree to perform each kind of support analysis, 
understand how they work, and be able whichever ones you choose in your own final project. 
Today, we’ll go ahead and use parsimony for all our searches, but you can also use the support 
measures with distance (which will be very quick, and is sometimes used only in bootstraps for this 
reason) or likelihood (which may take a long time). 
 
Build a test tree 
If you’d like to use your own data, please do. Otherwise, you can use the primate data that we used 
last time for MrBayes. It’s in the MrBayes file in program files and also available on the syllabus page 
of the class website. 

1. Place the file you’d like to work with in a new folder on the desktop. 
2. Execute the file in PAUP. 
3. set criterion=parsimony; 

4. hs; 

If you got the same results as me, the search found two trees. You can view a consensus tree using  
5. contree 1-2; 

or  
contree all; 

If you want to save the consensus tree to a file, use 
6. contree all /treefile=filename.tre; 

 
Estimating support by bootstrapping 
Ok, now let’s figure out how well supported these groupings are. One measure of support is called 
the Bootstrap.  Here’s how it works: It choose columns randomly from the matrix – until it has 
chosen the same number of columns as were in the originally matrix. Because it returns to the 
original matrix each time it chooses a new column, some characters may be represented several 
times in the bootstrap matrix, while others are omitted. This is known as resampling the data with 
replacement. In practice, although it is possible to randomize taxa, bootstrapping almost always 
randomizes characters Bootstrapping calculates a support value for each node based on the fraction 
of samples that support that node.  The highest support value is 100, while values below 70 are 
usually considered weak.  Values below 50 aren’t shown; in fact, branches below 50 are collapsed 
and shown as a polytomy.  Bootstrap support is somewhat sensitive to the number of replicates 
used, but not terribly so. To run a bootstrap analysis with a hundred replicates, using a heuristic 
search for each replicate, and randomizing the order of taxa while building trees, on your data, type 



7. bootstrap nreps=100 search=heuristic /addseq=random; 

See the PAUP manual for discussion of other options, including the ability to save all your bootstrap 
trees. It will take a moment to run, longer than the heuristic search because it is, in effect, running 
100 heuristic searches. Still for this data set it doesn’t take too long at all. When it’s done, PAUP will 
display a 50% majority rule consensus tree from all 100 bootstrap runs. Does the bootstrap support 
all the nodes that appeared in the Maximum Parsimony tree?  At which nodes does it differ? It will 
also display a list showing the frequency of different taxon bipartitions (that is, how often out of the 
100 replicates the taxa were grouped together.) If you look at the tree, you’ll see that Pan has a (4) 
after it and Gorilla has a (5). Look down the chart until you see a line where there is a * under 4 and 
5, but not under any of the other numbers. The frequency on this line is 54.92, which means these 
two taxa were grouped together in about 54 out of the 100 runs. (It’s fractional because some runs 
produced more than one most parsimonious tree.)  
Ok, now you may want to export the fancy new bootstrap values you just came up with. Well, 
luckily there is a way to do that: 

8. savetrees from=1 to=1 savebootp=nodelabels file=filename.tre; 
Not that you must supply the tree numbers that you want to save (here, from 1 to 1, since there is 
only one bootstrap tree) and the file name you want to save to. You can view these node labels in 
Mesquite or Treeview. It is also supposed to work in TreeviewX, but I couldn’t get it to. You may 
want to download Treeview to the desktop (http://taxonomy.zoology.gla.ac.uk/rod/treeview.html) 
 
Estimating support by jackknifing 
Jackknifing is very similar to bootstrapping, but rather than resample the data, it uses subsets of the 
data. (This is also described as resampling a without replacement to create a smaller dataset.) The 
purpose of this is to see if excluding certain characters has a big effect on the shape of the tree. (You 
can imagine that some “outlier” character might have a disproportionate influence on the 
relationships that are reconstructed; jackknifing is an attempt to get around this.) For whatever 
reason, it is much less common in the literature than bootstrap support. Still, people do use it from 
time to time so it is good to know what it is. 

9. jackknife nreps=100 search=heuristic /addseq=random; 

Export the jackknife values the same way you exported the bootstrap ones: 
10. savetrees from=1 to=1 savebootp=nodelabels file=filename.tre; 

 
Measuring node retention using Bremer Support/Decay Index 
For those that eschew a statistical view point, (or who like to use a few different frameworks) a good 
alternative is to determine whether a group of interest occurs in other trees that are almost equally 
short. Another way to this about this is to consider that with every tree search, the heuristic must 
make multiple decisions about which characters are true homologies and which must be 
homoplasies. Generally, the grouping that leads to the most homologies is used. Bremer support 
asks whether there are other ways to analyze the homoplasious characters that lead to trees that are 
only a few steps longer. As a rule of thumb, a Bremer score of 3 is good and a score of 5 is “highly 
supported.”  
Paup doesn’t calculate Bremer support directly, so you have to use so tricks to get these numbers. 
Below, I will show you how to generate Bremer support numbers directly at the command line. You 
can also write a script using MacClade, which will generate Bremer numbers based on a set of 
constraint clade analyses (see MacClade manual) or the program TreeRot. 
 



You may remember finding Bremer support from the lab on “Advanced PAUP,” but I’ll go over it 
again anyway. First, you’ll need to switch to a new data file—the primates.nex file isn’t a very good 
example for Bremer support because everything has a really high decay index. 

11. Copy the anolis.nex file to the folder on your desktop (from the website or from the 
MrBayes folder.) Or, you can use your own data again.  

12. Execute the file in PAUP 
13. set criterion=parsimony; 
14. hs; 

Once the heuristic search is done,  PAUP will output a little paragraph that looks like this: 
Heuristic search completed 
   Total number of rearrangements tried = 35292 
   Score of best tree(s) found = 4942 
   Number of trees retained = 1 
   Time used = 0.14 sec 

This shows that the length of the shortest tree is 4942. To find Bremer support values we need to 
retain more trees than just the most parsimonious tree. If the shortest tree in your search was 4942, 
to find which nodes have a decay index of 1, you need to find all the trees with 4943 steps or less. 
To do this we will use the keep option. 

15. hsearch keep=4943; 
The program may ask you to increase the maximum numbers of trees saved. Choose increase 
automatically. When the program is done, you’ll see that there are more trees (2, if you are using 
anolis.nex). Use  

16. showtrees all; 
to see all the trees. Now, construct a strict consensus tree (saving the file is optional) 

17. contree all /treefile=filename.tre 
All the clades that are now unresolved do not appear in one of the trees that was one step longer, so 
they have a decay index of 1. To find higher Bremer support values increase the number of steps in 
the minimum trees: 

18. hsearch keep=4944; 
19. contree all /treefile=filename.tre 

Until the tree is totally unresolved. Rather than doing a new search each time, you can reverse this 
process by doing just one search for trees that are a lot longer (say 5 steps):  

20. hsearch keep=4947; 
which produces 220 trees. Look at the consensus and note which nodes are preserved: 

21. contree all /treefile=filename.tre 
Then use the filter command to look at each set of better trees: 

22. filter maxscore=4946; 
23. contree all /treefile=filename.tre 
24. filter maxscore=4945; 
25. contree all /treefile=filename.tre …etc. 

ILD (incongruence length difference) 
I didn’t have time to prepare an example for this, mostly because it requires a partitioned data set (ie, 
one with more than one source of data, like two different genes, or genes and morphology.) But, I 
wanted to explain how to do it anyway: 



Compare the length of the most parsimonious trees for two or more data matrices or partitions to 
their length in the combined analysis and/or to randomly sampled partitions of equal size. 
ILD = LAB -(LA + LB)/LAB 
Significant incongruence suggests that partitions may have a different evolutionary history. 
Some people would not combine data that showed significant incongruence. However, without 
evidence that there is some process that would cause the incongruence, down-weighting or 
eliminating character data simply because it is incongruent is really not scientific. Others would 
combine the data but consider that the result heuristically points to a need for more study.  
Examining RI and CI (see below) of partitions would be as informative and would allow for 
all data partitions to be examined in light of all critical evidence. 


