
Integrative Biology 200A “PRINCIPLES OF PHYLOGENETICS”    Spring 2008                             
University of California, Berkeley      Kipling Will- 10 Apr 
 
 
Phylogenetic tree IV- Data/Hypothesis Exploration and Support Measures 
 
I. Overview. 
-- The truest tests involve empirical tests that examine all critical evidence. For phylogenetic hypotheses (tree, 
branching pattern, branch lengths, character state distribution), this involves the addition of more characters and 
taxa. This is not always reasonable/feasible and when do we have enough anyway? This is an issue of philosophical 
or statistical confidence. 
-- The simplest form of confidence, which is somewhat subjective, is to show character state changes on the 
cladogram. Groups supported by more, less homoplastic and more complex character state changes are thought to be 
well supported. When more of our initial statements of homology survive and are compatible we have increased 
confidence in the hypothesis. Alas, this may be suitable for morphological data, however, it is very difficult to apply 
given the simplicity of DNA sequence. 
-- A general or specific “fit” to external data (e.g. biogeographic patterns) also builds confidence. However, it is 
generally more narrative and subjective, making it hard to evaluate if you are not actively working within the 
system. 
-- It is necessary to express some sort of confidence or make a statement of reliability in order to give others a sense 
of how well your data fit your hypothesis and to what degree the critical evidence refutes competing hypotheses 
even if we are confident in the result. 
-- Many exploration methods seek some sort of statistical reliability or measure to give a notion of how bold or 
conservative we should be in regard to conclusions based on the phylogenetic pattern. The fact that a nearby sub-
optimal solutions exist is not enough to cause us to move from one hypothesis to another. 
-- Although there is a general notion that we are identifying well supported clades, exploration methods and support 
measures are really just as (more?) important for pointing to poorly supported parts of the tree. Poorly supported 
groups suggest where future efforts need to be applied.  
-- Most statistical methods require some assumption of a universe from which the sample is drawn. Generally this is 
random sample of the universe of possible independent entities, i.e. they are independent and identically distributed 
(i.i.d).  
 
II. Sensitivity and Resampling Analyses: Various heuristic methods explore how robust the hypothesis is likely to 
be if the underlying assumptions are wrong or expressed as some sort of “support”. 
 

A. Assumption sensitivity analyses: 
HOW: Assumptions (= parameters) are varied in multiple analyses and the results compared in some way. 
 
WHY: To look for (in)sensitivity to variation in model assumption (e.g. weights assigned to transitions/transversions 
changes topology). This has been used as an optimality criterion for deciding if a group should be accepted or 
rejected. Groups sensitive to variation are rejected. Also used as a means to select a set of alignment parameters. 
 
WHAT IT TELLS US: Not truly a test of monophyly or support. Monophyly is tested in the corroboration of 
empirical evidence in light of some set of “valid” assumption.  
 
It doesn’t really test the support offered by the data. It does show which groups remain under a set of “reasonable” 
parameters and support is drawn from a variety of synapomorphy classes. Almost any topology can be supported 
under some set of parameters. Can’t distinguish levels or different kinds of support and a group well supported 
under “mutation-parsimony” may be lacking under “in/del-parsimony”………….. So what? 
 
((a,b) [10,10,10] -- ((c,d) [1,1,1] -- (e,f) [30,0,0] )) 

 
 
B. Bremer Support / Decay analyses or “index”[not really a mathematical index] 

HOW: Record the number of extra steps required to loose a clade that is found in the most parsimonious tree. Any 
clade not found in the strict consensus of all MPTs has a Bremer support value of 0. Any clade not found in the strict 



consensus of all trees one step longer than the MTPs has a Bremer support value of  1,2,3... until a shortest tree that 
does not contain any clade is found. 
 
In reality this includes too many trees and a Bremer value is an estimate based on heuristic searches of suboptimal 
tree space. 
 
WHY: To give a measure of decisiveness and indicate ambiguously supported nodes directly from the data.  
 
WHAT IT TELLS US: An estimate of the degree to which the optimal solution is preferred to alternatives. As a 
heuristic it points to poorly supported groups that may have few synapomorphies or may be supported by conflicting 
characters.   However, it does not discriminate between different types of support and does not have a clear 
statistical interpretation.  
 
Matrix w/100 characters and MPTs of 200 steps, each character optimizes for 2 steps. Trees 2 steps longer (202 
steps) could come by increasing one character to 4 steps [99*2 +1*4= 202] OR reducing 49 characters to 1 step and 
increasing 51 to 3 steps [49*1 + 51*3= 202]. 
 
[Technical note: Paup doesn’t calculate Bremer support directly, so use MacClade to make a command file for Paup to read, this 
will generate Bremer numbers based on a set of constraint clade analyses (see MacClade manual). You can also use the program 
TreeRot with Paup. Bremer support can be directly calculated by Nona, however, it is VERY dependent on the search parameters 
and memory limitations. I suggest Paup for this one. As a rule of thumb, a score of 3 is good and 5 highly “supported”. I have not 
done this with TNT. If you do let me know how it goes.] 
  

C. Methodological concordance: 
HOW: Multiple methods of phylogenetic analysis are used and the clades found in common are presumed well 
supported. 
 
WHY: Controversy over methods and assumption can be avoided by a pluralistic approach that leads to reasonable 
results. Accurate methods will converge on the “truth” and a lack of agreement between methods indicates that none 
are recovering the true tree (Kim 1993). 
 
WHAT IT TELLS US: Which clades are not affected by the assumptions and philosophical underpinnings of the 
methods that were used for analysis of the data. Since various methods address the problem from very different 
statistical and philosophical views, the fact that they converge may say something about the data or the methods but 
may have little to do with discovery of correct groups. There is no clear connection between convergence of 
methods and “accuracy.” All accurate methods should converge on the truth; however, convergence of methods does 
not necessarily mean they are accurate. 
 

D. Bootstrap/Jackknife 
HOW: Resample with replacement (bootstrap) or without replacement (Jackknife) from your matrix. Essentially 
Bootstrap differentially weights some characters to build a matrix of equal size. Jackknife reduced some characters 
to weight of zero. For either method, the resulting matrix is used to build a set of trees. This is repeated many times 
to build a cloud of trees. A majority rule consensus tree for groups found in >50% of the trees is used to show well-
supported groups.  
 
WHY: To empirically estimate the variability. In phylogenetics used to assess uncertainty in the proposed 
phylogeny. These methods are usually applied to characters but also have been used to resample taxa. 
The issue of independence of sampled elements is debatable, but generally in statistics these are only used for 
random samples that are independent. For taxa, most people agree that because they are more or less 
phylogenetically related they do not represent i.i.d. samples. However, some (e.g. Felsenstein) maintain that 
characters are less likely to be non-independent than taxa (an assumption made most of the time) or this can be 
corrected for. Some maintain that a sample of characters in a matrix is not drawn from an i.i.d. of all possible 
characters and this invalidates the method for phylogenetic characters. Other say that the sample need only be drawn 
independently from “some” universe of characters. But if the Bootstrap tree is different than the sample universe of 
empirical data, which we have, it must be a poor estimator. Characters that are not parsimony informative are 
potentially problematic. Bootstrap has been shown to be positively correlated to number of informative characters 



(parsimony); negatively correlated to number of taxa in analysis, number of taxa in a clade and tree asymmetry 
(Siddall 2002). Also there is autocorrelation of nested clades (e.g. clade (D,E,) and supporting characters are not 
independent of (C(D,E)).) 
 
WHAT IT TELLS US: Re-sampling biased data would only lead to an assessment of the accuracy of the bias. At 
best, as a heuristic it points to poorly supported groups that may have few synapomorphies or may be supported by 
conflicting characters.  
 
Bayesian posterior probabilities are similar to, but deviate from ML bootstrap frequencies. Usually Bayesian support 
values are higher and may assign exceptionally high (and apparently incorrect) values to very short branches. Poor 
fitting models may contribute to this. There are a number of recent papers on this controversy.  
 
E. PTP, etc. 
 
HOW: Character state data is randomly and independently reshuffled among taxa, optimal trees are found for each 
permutation and compared to establish confidence limits, e.g. 95%. Either tree length (permutation tail probability- 
PTP) may be used or the clades (topological dependent permutation tail probability- T-PTP) may be compared. 
 
WHY: To place confidence limits on the clades relative to Type-1 error (errors resulting from wrongly rejecting the 
null hypothesis = no structure.) 
 
WHAT IT TELLS US: If the optimal score for the original data is far out in the distribution tail then significant, 
non-random structure is present in the data. However, PTP can show significant support for a group that has none in 
the original data. A single resolved node (either an internal polytomy or a pair of very close species) may give a 
significant result for an otherwise unstructured data set. Similarly the T-PTP has a null hypothesis that there is no 
structure in the matrix anywhere, so it is likely to reject the null too easily. 
 
III. Comparison/description 
 
A. Skewness 
 
HOW: Look at the number of changes on all possible topologies (actually a random sample). If there are a few trees 
of much lower score they will negatively skew the distribution. 
 
WHY: Strongly skewed distribution suggest “strength” of the phylogenetic signal or decisiveness in the matrix. 
 
WHAT IT TELLS US: Hard to tell. A number of published examples show it may fail to reflect phylogenetic 
structure and it is influenced by the central mass of the distribution more than the tail, influenced by character state 
distribution and requires arbitrarily resolved polytomies. Nevertheless, it is still being used in publications. Perhaps, 
because for no other reason than it is available in the Paup menu.  
 
B. ILD (incongruence length difference), etc. 
HOW: Compare the length of the most parsimonious trees for two or more data matrices or partitions to their length 
in the combined analysis and/or to randomly sampled partitions of equal size. 
 
ILD = LAB  -(LA + LB)/LAB 
 
WHY: Should some data be excluded or reweighted rather than direct and equal combination? Are two data 
“partitions” combinable? Which alignments parameters should be used? What model should be preferred (an 
interesting paper on this is Aagesen et al. 2005)? 
 
WHAT IT TELLS US: Significant incongruence suggests that partitions may have a different evolutionary history. 
Some people would not combine data that showed significant incongruence. However, without evidence that there is 
some process that would cause the incongruence, down-weighting or eliminating character data simply because it is 
incongruent is really not scientific. Others would combine the data but consider that the result heuristically points to 
a need for more study. Examining RI and CI (see below) of partitions would be as informative and would allow for 



all data partitions to be examined in light of all critical evidence. 
 
 
 
C. Basic Descriptive Indices: 
 
Consistency Index (CI & ci)  
    Measure of how data fits the tree topology. Give the amount of homoplasy in a character or matrix for a give tree. 
 
 ci = m/s   
 
where m = minimum number of steps in a character (number of states -1) 
           s = steps actually realized on a given tree 
 
e.g. binary character m=1 actually has 1step on the tree then ci=1.0 if it has 2steps on the tree then ci=0.5 
 
This index falls between 0 and 1.0 but is usually reported as scaled between 0-100 
 
Ensemble CI (for the whole matrix) is the sum of all m/ total length of the tree (CI=M/S). In general, a high CI 
indicates that the data matrix “fits” the tree well (i.e., contains little homoplasy for the particular tree topology), 
whereas a low CI does not. 
 
Characters with the same ci may not be contributing to the tree topology equally (e.g., autapomorphies ci=1.0), so 
CI may be an overestimate if these are included. CI is NOT comparable between different sets of taxa as more taxa 
decreases CI. 
  
Retention Index (RI & ri)     
    Measure grouping in formation in the data.  
 
ri = (g – s)/(g – m) 
 
where g= minimum steps on the worst tree (=bush) 
 
Ensemble RI (for the whole matrix) like CI is based on sums RI=(G-S)/(G-M) 
 
These problems for CI noted above may be overcome by excluding autapomorphies OR calculating a Rescaled 
Consistency Index.   
 
RC = RI*CI   
 
This removes the impact of any characters that do not contribute to the “fit” of the data to the tree (e.g., 
autapomorphies ci=1.0 and ri=0.0) 
 
WHAT THESE  TELLS US: These describe aspects of the tree and matrix or partitions of  the matrix (e.g. 3rd 
position might have a lower CI and/or RI than 1st) or a particular sequence may contribute more to the resolution 
that another. 
 
**** 
Tests of topologies: 
 
Kishino-Hasegawa (KH) Test: Nonparametric statistical test for comparing two topologies.  
(Kishino, H. Hasegawa, M. (1989) J. Mol. Evol. 29:170-179. but see Goldman, N. Anderson, J. and Rodrigo, A. 
(2000) Sys. Bio. 49(4):652-670.) 
 
Shimodaira-Hasegawa (SH) Test: Nonparametric statistical test for comparing two or more topologies. 
Shimodaira, H. & Hasegawa, M. (1999) Mol. Biol. Evol. 16:1114-1116. 



 
Swofford, Olsen, Waddell and Hillis (SOWH) Test: Parametric bootstrapping test, appropriate for testing the ML 
tree against others. (Swofford et al. (1996) Phylogenetic Inference. eds….). 
 
>>>>>>>> 
Aagesen, L., Petersen, G. and Seberg, O. 2005. Sequence length variation, indel costs, and congruence in sensitivity 
analysis. Cladistics. 21(1):15-30 . 
   
Grant, T. and Kluge, A. 2003. Data exploration in phylogenetic inference: scientific, heuristic, or neither. 
Cladistics 19:379–418. 
 
Kim, J., 1993. Improving the accuracy of phylogenetic estimation by combining different methods. Syst. Biol. 42, 
331–340. 
 
Siddall, M.E., 2002. Measures of support. In: DeSalle, R., Giribet, G. and Wheeler, W.C. (Eds.), Techniques in 
Molecular Systematics and Evolution. Birkhaauser Verlag, Basel, Switzerland, pp. 80–101. 
 
 



ratios with regard to taxonomic congruence (see also

Ballard et al., 1998; Barker and Lanyon, 2000; Flores-

Villela et al., 2000; McGuire and Bong Heang, 2001).

An equivalent implementation of sensitivity analysis is
methodological concordance, which assesses robustness

to choice of method of phylogenetic analysis by com-

paring the optimal hypotheses obtained from different

phylogenetic discovery operations, such as parsimony,

maximum likelihood, and neighbor-joining (e.g., Kim,

1993; Flores-Villela et al., 2000; McGuire and Bong

Heang, 2001). Donoghue and Ackerly (1996, p. 1241)

proposed ‘‘a variety of sensitivity tests to explore the
robustness of comparative conclusions to changes in

underlying assumptions.’’

Sensitivity to data has been considered a measure of

how decisively a hypothesis is corroborated. By focusing

on data, not assumptions, these methods aim to assess

the objective support of data for a hypothesis. The most

commonly employed sensitivity analyses performing this

function are the bootstrap (Felsenstein, 1985b) and

jackknife (e.g., Mueller and Ayala, 1982; Lanyon, 1985;
Penny and Hendy, 1986; Siddall, 1995; Farris et al.,

1996; Farris, 2002b), Monte Carlo routines that assess

sensitivity by resampling the data (characters or taxa) at

random, thereby creating multiple pseudoreplicates

from the same underlying distribution. Another com-

mon indicator of the decisiveness of evidence is Bremer

support (Bremer, 1988, 1994), which evaluates sensitiv-

ity by exploring suboptimal solutions and determining
how much worse a solution must be for a hypothesized

clade not to be recovered.

Examples of quality analysis include simple explora-

tion of codon position and base composition to inform a

priori character weighting (e.g., Chippindale and Wiens,

Table 1

List of data exploration methods assessed in this paper. Approaches that involve especially diverse methods are divided accordingly. See text for

details.

Kind of method Data exploration method(s) Page(s)

Sensitivity analysis Wheeler�s sensitivity analysis 384, 388

Decisiveness/ambiguity 388

Bremer support

Double decay

Total support

Clade stability index 389

Transformation series additivity 390

Methodological concordance 391

Sensitivity to prior probabilities (Bayesian phylogenetic inference) 393

Skewness test 394

Computer-intensive sampling 395

Bootstrap

Jackknife

PTP

T-PTP

RT-PTP

HER

Long-branch attraction 398

Likelihood ratio test for model selection 398

Amount of evidence (missing data) 400

Safe taxonomic reduction

Phylogenetic trunk

RILD test

Multiple regression analysis

Polymorphism 402

Clade concordance index 403

Quality analysis Relative rate comparison (saturation analysis) 386, 388

Character compatibility 403

Spectral analysis 404

Relative apparent synapomorphy analysis (RASA) 405

Data partition methods (taxonomic congruence) 406

Topological incongruence test

Global congruence

v2 test

Mickevich–Farris incongruence index

Miyamoto incongruence index

ILD test

Partitioned Bremer support

Congruence with an empirically ‘‘known’’ phylogeny 410

T. Grant, A.G. Kluge / Cladistics 19 (2003) 379–418 381




