
 1

BINARY, ADDITIVE, AND NONADDITIVE CHARACTERS

IB200a exercises*

INTRODUCTION: In this lab we will compare binary, multistate nonadditive, and multistate additive
character coding. We will compare their effects on tree length and on optimization of internal
nodes of the trees. We will begin by learning how to code complex-character-state hierarchies as
additive binary and additive multistate characters.

ADDITIVE BINARY CODING (A.K.A. HIERARCHIC BINARY CODING): Additive binary coding allows
any complex hierarchy to be translated into a series of binary characters. It can be utilized to
transform any additive multistate character, or any tree structure, into variables that represent the
nodes or transformations in the character. Although the easiest way to implement additive binary
coding is by determining a "root," it should be noted that the root is actually arbitrary and will not
change the results of an analysis using the additive character.

To perform additive binary coding, first draw a character hierarchy, or character cladogram, in
which each state is a terminal unit, or an internal node. You can draw this as an unrooted tree, and
then root it directly to one of the character state terminals, or you can draw it in such a rooted
manner from the start. For example:

Take the character hierarchy, and make a matrix with the character states down the left side, as if
they were taxa. Score each "monophyletic" group of character states with a group-membership
character (Farris 1974). As you do this, work away from the root, and score each node and all of its
descendants as a unique group (i.e., the descendents are all assigned a "1" and all others not in the
group are assigned a "0"). Thus, each node defines a group of states above it as ones and all others
as zeros. Also, code a group-membership character for each terminal character state in the tree, for
which that terminal is scored "1" and all others "0" (i.e., an autapomorphic character). In the
example above, this would result in the groups (B, C, D, E) and (C, D, E), as well as 3 variables for
terminals D, E, and F, respectively:

 B
 C C
 D D
 E E D E F
A 0 0 0 0 0
B 1 0 0 0 0
C 1 1 0 0 0
D 1 1 1 0 0
E 1 1 0 1 0
F 0 0 0 0 1

Notice that each character state is represented by a unique combination of "O"s and "1"s as you
look at the rows in the binary matrix. Note that the terminal character states must be scored using
autapomorphic group-membership characters in order to fully describe the character-state
hierarchy.

 2

MULTISTATE HIERARCHIC CODING (A.K.A. LINEAR NONREDUNDANT CODING): In this type of
coding, the hierarchy is coded using linear multistate characters. The path from the root to each
terminal is described with one multistate character.

Select a terminal character state. Follow the path from the root to that terminal, and place a state
change on each branch along that path that does not already have a state change. Then substitute
the ordinal values for the implied state changes. Assign the highest value attained in an "ancestral"
state for any nodes not on the path for that terminal (for variable E: F = 0 and D = 2, since they are
not on the path to E but are attached to nodes with states 0 and 2, respectively). For example, for
terminal E:

Continue this process with each terminal until all terminals are scored. For terminal D, the
branches A-B and B-C were already assigned steps, so only the branch C-D has a step. Thus, the D
variable has only the states 0 and 1:

And, similarly for F:

A 0 0 0
B 1 0 0
C 2 0 0
D 2 1 0
E 3 0 0
F 0 0 1

Note that resolving the terminals in a different order will result in a different coding, but all
codings require the same number of steps (one step for each branch in the character-state
hierarchy).

 3

1. Given the character hierarchies for characters 1-5, create a character-state matrix for each
character hierarchy using additive binary coding as described on page 1. Throughout use
the specified root state.

Character 1

A
B
C
D

Character 2

A
B
C
D
E

Character 3

A
B
C

Character 4

A
B
C
D
E

Character 5

A
B
C
D
E
F

 4

2. Using the following matrix, substitute your additive binary codings for each character
(1-5):
 character 1 2 3 4 5
 TAXON0 A C A A A
 TAXONl A B A E A
 TAXON2 B D B B C
 TAXON3 C A C D B
 TAXON4 C E C C F
 TAXONS C E C C E
 TAXON6 D A A E D

Create a new matrix for TAXON0 to TAXON6 by substituting the recoded additive binary
variables for each of the characters in the matrix above. Enter your recoded matrix below. You
should have 7 taxa and 18 characters.

Taxon 1 1 1 2 2 2 2 3 3 4 4 4 4 5 5 5 5 5
Taxon0
Taxon1
Taxon2
Taxon3
Taxon4
Taxon5
Taxon6

Input your new data matrix into a new WinClada matrix file ("New matrix (create)" from the
"Matrix" menu: type in "7" when asked for number of taxa, and "18" for number of characters).
After you have entered the matrix, move taxon6 to the first row of the matrix (double-click on
"taxon6"; select "Move selected terms: to Beginning" from the "Terms" menu). NONA will now
treat taxon6 as the outgroup. Save the matrix (select "Save As (Nona format)" from the "Matrix"
menu; name the file "binary.ss").

Submit your matrix to Nona by using “Heuristics” in the “Analyze” menu. Set (hold)=1000;
(Mult*N)=10; (hold/)=10; name = binary (this will name the output and tree files). Run and then
view the trees for the following:

Number of trees= ____; tree length=___

Topologies:

 5

MULTI STATE HIERARCHIC CODING (A.K.A. LINEAR NONREDUNDANT CODING): Throughout this
exercise, please code the characters using the specified root.

Character 1

A
B
C
D

Character 2

A
B
C
D
E

Character 3

A
B
C

Character 4

A
B
C
D
E

Character 5

A
B
C
D
E
F

 6

4. Given the character hierarchies for characters 1-5 (the same as those on page 3), create a
character-state matrix for each character hierarchy using multistate hierarchic coding, as outlined
on page 2. Repeat the process of entering data and finding trees as above (page 4). Your new
matrix should have 7 taxa and 12 characters. Enter the matrix below and then create a new matrix
in WinClada. Make sure that your characters are all additive. Again, move Taxon6 to the first row.
Save the matrix as "mulhier.ss" and analyze as above set name = “mulhier”. View the trees and
compare to trees obtained above.

Taxon 1 1 2 2 2 3 4 4 4 5 5 5
Taxon0
Taxon1
Taxon2
Taxon3
Taxon4
Taxon5
Taxon6

Record the number of trees and their length: Draw the rooted trees by hand.

number of trees=___; tree length=___;

topologies:

QUESTIONS
*Do you think these are equivalent methods? What evidence do you have of this?

*Why do the characters have to be coded as additive for multistate hierarchic coding?

COMPARING ADDITIVE AND NONADDITIVE CODING:

 7

5. Convert all characters in mulhier.ss to nonadditive (choose "Select all chars" from the "Chars"
menu; choose "Make sel chars NONADDITIVE (fitch)" from the "Chars" menu). Save this matrix
(NONA format) as "nonadd.ss".

6. Open the tree file "mulhier.tre" ("Open Tree file" from the "File" menu). Record the length of
each of the most parsimonious trees from mulhier.ss when the characters are coded as nonadditive
(use "Next tree" from the "Trees" menu to move through the trees). Compare to the lengths
recorded from part 4.

Tree 1 length=____ ;Tree 2 length=____;Tree 3 length=____

7. To understand what happens when multistate characters are switched from additive to
nonadditive, look at the tree from the mulhier.tre file with the topology below (page 8) and fill out
the table for data matrix "nonadd.ss" optimized on this tree using "unambiguous" optimization
(select "Diagnoser TOGGLE" and "Show All states at node" from the "Diagnoser" menu).Then
optimize the data matrix "mulhier.ss" on this tree and fill out the second table.

QUESTIONS
*Why is the tree in part 7 shorter when the characters are nonadditive than when the characters are
additive?

*What difference do you observe when you treat a binary character as additive relative to treating
it as a nonadditive?

*What is the relationship between character additivity and the number of equally optimal states
optimized at an internal node? Why?

*Can you make any generalizations about the length of the same character coded as additive or
nonadditive?

LITERATURE CITED
Farris, J. S. 1974. Formal definitions of paraphyly and polyphyly. Systematic Zoology 23:
548-554.

*Handout based on original lab handout provided to K.Will by K. Nixon

taxon4

taxonS
taxon3

taxon2
taxonO
taxon1

D dd . . d on th'

D lh' . . d on th'

-

Char #states length all possible states at node, i.e.
"unambi uous"optimization

A B C D E
0
1
2
3
4
5
6
7
8
9
10
11

- ___ ______u. _____________ _ _________ ___ _____ __ __.

Char #states length all possible states at node, i.e.
"unambi uous"optimization

A B C D E
0
1
2
3
4
5
6
7
8
9
10
11

