
Integrative Biology 200A University of California, Berkeley
Principals of Phylogenetics Spring 2006

The What the Hell Do I Do with All These Trees Lab

We’ve generated a lot of trees in the last few weeks. Today we’re going to explore different
ways to view, compare, and manipulate those trees. First we’re going to use TreeView to look
at a consensus tree generated in MrBayes. Then we’re going to compare a bunch of trees
with the same taxa but different topology using PAUP* and generate several types of
consensus trees. Finally we’re going to generate a consensus tree from trees that have
overlapping but not identical taxa using Matrix Representation with Parsimony.

We’re going to be using many different files for this lab. Find them online at the 200A
Syllabus and Handouts page.

TreeViewX

By now you will have noticed that most of the programs that generate trees either
don’t print trees at all or make really crappy ones. Luckily there are a lot of different ways to
view trees. Today we’ll be using TreeViewX (which you have already used a few times.) It
seems to be a little quirky. There are some files I have exported with branch lengths from
PAUP that nonetheless do not appear to have branch lengths in TreeViewX. You may also
want to try plain TreeView if you are a PC or MacClassic user. If something isn’t working, it is
always worth opening it in Mesquite, exporting it in a few different ways, and seeing if any of
them work. Mesquite can also export trees as a PDF, they sometimes come out a bit odd but
try adjusting all the parameters. But back to today’s lab and TreeViewX:

1. Download MrBayesCephalopodConsensus.nex from the web page. This is a
consensus tree generated by MrBayes for the Cephalopod COI dataset we’ve been
using. It has two trees in it with identical topology. The first has branch lengths and
node support values. The second has only branch lengths.

2. Open TreeViewX and open MrBayesCephalopodConsensus.nex in it.

3. Pull down the style menu and change the font size, so that you can easily read the
names.

4. Push (the radial tree button) at the top of the page. You will see your tree as an
unrooted tree.

5. Push the phylogram button and the internal labels button. The tree should
now appear as a square phylogram with branch lengths that can be seen in the
lengths of the branches and node support values as numbers.

6. Use the arrow buttons to view the other tree in the file, which in this case is just the
same tree without internal node labels.

7. Go to the Tree menu and select Define outgroup… Double click Alluroteuthis
(this is an arbitrary choice). Now hit OK.

8. Pull down the Tree menu again and select Root with outgroup. This should reroot
the tree in the display with Alluroteuthis in the outgroup. It will look very different
but will still have the same topology.

9. To generate a picture for use in your paper pull down the File menu and select Print
Preview. Then click Picture to save that tree as a metafile for use with other
programs, or Copy to paste it into another program.

Tree Distances

Now we’re going to use PAUP* to generate a number of different tree distance measures on
a bunch of trees with the same taxa, like we talked about in class.

10. Download CephalopodTreesTprobs.nex from the web site. It contains the first
13 trees from the tprobs file for the cephalopod dataset. These are the most probable
50% of trees that I found during stationarity. It also has the estimated posterior
probabilities of those trees.

11. Open PAUP*.

12. Execute CephalopodTreesTprobs.nex in PAUP.

13. Now, we will calculate the differences between the trees in the sample using tree-to-
tree differences. For the first run we’ll do symmetric differences. This is just a
measure of the partitions that the two trees do not share. A branch can be viewed as
a partition, because it separates the taxa into two groups. So if branches in both
trees separate the taxa into the same two groups, then that partition is shared. Thus
more similar trees will disagree on fewer partitions and so have smaller symmetric
differences. Type:
treedist;

This should output a matrix of pairwise differences between the trees, and a
frequency distribution of those differences. Are the trees with higher posterior
probabilities more like the tree with the highest posterior probability? (Remember
these trees are listed in the order of their posterior probabilities, from 1 to 13.) Is
the tree with the highest posterior probability more similar to the other trees than
they are in general to each other? Why would this be? What trees have the biggest
differences?

14. Repeat this analysis, only this time use “Agreement metric d”. This is a measure of
how many taxa you have to remove to make two trees the same with a correction
added on so that if the taxa removed are further apart you get a bigger number, thus
more similar trees should have smaller differences. Type:
treedist metric = agreement;

How do the trees compare under this measure of difference? Do the two metrics
produce similar histograms? Which metric is more informative?

Consensus Trees

Now we’re going to generate several different consensus trees from that same tree file using
PAUP*. I want to emphasize that this is not the appropriate way to generate a consensus
tree from MrBayes. It is much better to use the sumt command in MrBayes, because that will
consider the trees based on their estimated posterior probabilities and will also calculate
branch lengths. However, there are many other situations when you would want to use this
method, such as if you generate several most parsimonious trees. I’m just using this tree file,
because it is convenient.

Last week, when we practiced bootstrap, jackknife, and decay index, we got a bit of
experience generating consensus trees. Now we will explore this command in a bit more
detail:

15. First let’s generate a strict consensus of all the trees in memory. Type:
contree all /strict=yes;

This will output a tree that only contains nodes present in all your input trees.

16. When generating consensus trees, PAUP* will not hold the consensus trees in
memory. If you want to keep the consensus trees, you have to save them to a file.
Let’s practice this now:
contree all /strict=yes treefile=mytree.tre;

This will save a consensus tree file to your working directory.

17. Now let’s generate a Majority Rule tree with a cut off at 50%. This will output a tree
with all the nodes that appear in more than 50% of the tree. It will also tell you in
what percentage of those trees the nodes occurred.
contree all /strict=no majrule=yes percent=50;

Does this have the same topology as the strict consensus? Are they compatible?

18. Generate another Majority Rule tree, only this time up the cut off, so that you
eliminate some clades. The cut off point is always kind of arbitrary, but can not be
less than 50%. If it were less than 50%, then you couldn’t be sure that all the clades
are compatible. How high would the cut off have to be to guarantee that you are
going to get the same tree as strict consensus?

Matrix Representation with Parsimony (MRP)

So it’s easy to generate consensus trees if they all have exactly the same taxa, but what do
you do if all the trees have different taxa? For example how would you put together a bunch
of trees from different studies with overlapping but not identical taxa? Well, it is a matter of
big debate. Maybe you shouldn’t even do it at all. Maybe it is best to take the data matrices
from all those studies and combine them into one supermatrix for analysis. If you do decide
to combine trees it is not at all clear what the best method is. The mostly commonly used
method is Matrix Representation with Parsimony (MRP). Here we’re going to do a made up
easy example of it.

We are going to do MRP on the three trees of rays that you will find on the next page. I just
took a single data set of rays, randomly deleted two taxa from it three times, and used those

reduced data sets to make trees by parsimony. This is a totally unrealistic situation for
several reasons. The taxa have a lot of overlap. If theses were three trees picked from the
literature they would have very little overlap. This would mean that the MRP matrix would
have a lot of question marks. Also the trees are all generated from the same data set, so that
you know that you won’t have a contradictory signal from two different data sets, which you
are likely to have in reality. However, I didn’t have a time to find a more realistic set of
trees, and these will make filling out the matrix easier.

19. Download the Ray matrix from the web site. Open it in Mesquite. This is just an
empty matrix with the taxa names on it (and apparently lots of spelling mistakes), so
that you don’t have to bother filling them all in. You are just going to fill in the data.

20. Now code the three trees into the matrix. You do this by treating each interior
branch from each tree as a separate character. Remember that every branch
separates the taxa into two groups, one on each side of the branch. You can assign
each of these partitions a separate character state, so that all the taxa on one side of a
branch get a 0 and the other side a 1 for that character. All the taxa that don’t appear
in that tree should get a ?. Every tree should have 6 internal branches.

21. For example the branch that I marked as A in the first tree should be coded:
Raja polystigma 1
Raja montagui 1
Raja brachyura 1
Raja microocellata 1
Raja asterias 0
Raja undulate 0
Raja radula ?
Raja clavata ?
Leucoraja meitensis 0
Leucoraja naevus 0
Leucoraja fullonica 0

22. When you’re done with the matrix save it and close Mesquite.

23. Open PAUP* and open the MRP matrix in it.

24. Run an exhaustive search for the most parsimonious tree. Type:
alltrees;

25. Did you get one tree? Was it fully resolved? Is there any homoplasy (which in this
case would indicate a disagreement between the trees)?

Well that looks very pretty. It wouldn’t be so pretty if I hadn’t cheated.

26. You should save a copy of this tree, print it out, and turn it into me, now or
next week.

Leucoraja fullonica

Raja undulata

Raja asterias

Raja polystigma

Raja montagui

Raja brachyura

Raja microocellata

Leucoraja melitensis

Leucoraja naevus

Leucoraja melitensis

Leucoraja naevus

Raja undulata

Raja radula

Raja asterias

Raja clavata

Raja polystigma

Raja brachyura

Raja microocellata

Leucoraja fullonica

Raja undulata

Raja polystigma

Raja brachyura

Raja microocellata

Raja radula

Raja clavata

Leucoraja melitensis

Leucoraja naevus

A

	13_Trees_Lab.pdf
	ThreeTrees.pdf

