March 6, 2020. Classification IV: DNA barcoding and DNA taxonomy


“Your work, Sir, is both new and good, but what’s new is not good and what’s good is not new.”
-- Samuel Johnson

1. DNA Taxonomy - the new but not good

Maintains that DNA—not morphology- be the main or exclusive data used for taxonomic decisions. Intends to function as the universal reference system for biology using sequences as the handles and in some sense as the names. Previous discussion in class on the use of multiple lines of evidence, the need to connect our phylogenies and taxonomies to fossil and rare taxa and the many issues regarding the evolution and analysis of DNA sequence data, should be enough to make you critical of hardcore DNA taxonomy.

By some, it has been proposed as a realistic, but flawed, heuristic:

“To be clear that what is being estimated for a specimen is not necessarily its membership to a ‘species’, however defined, we call the taxa yielded by grouping of specimens through a set of markers OTU. We have coined the term MOTU (Floyd et al. 2002); MOTU have also been called ‘phylotypes’ and ‘genospecies’. MOTU can be simply defined by sequence identity: if two specimens yield sequences that are identical within some defined cut-off, they are assigned to the same MOTU.” (Blaxter 2004)

But in practice it tends to be multi-gene, phylogenetic analyses focusing on the species-level or faunal genetic sampling and analyses. The former is pretty typical and may even be most appropriate in some cases. Most sample the “obvious” morphological diversity and presumed populations and, not surprisingly, result largely with distinct clades consistent with the morphology and population structure. The latter tends to be studies that lack sufficient sampling as they don’t focus on possible clades, but rather on a fauna.

2. DNA barcoding - the good but not new

"We are convinced that the sole prospect for a sustainable identification capability lies in the construction of systems that employ DNA sequences as taxon ‘barcodes’.” (Hebert et al. 2003)

DNA barcodes are to taxonomy as Twitter is to news reporting. How it is proposed to work: A short sequence, ~650bp (about 4% of a typical mt genome) from the Folmer region of COI is use. Potentially this contains enough information to resolve 10-100million species. (“micro barcodes” of 100bp have also been proposed for more degraded materials). This depends on having any randomized arrangement of the four nucleotides over the 650bp.
A good DNA barcode sequence is conserved enough to be amplified with “universal” primers while divergent enough to resolve closely related species. COI is asserted to have these properties.

The method (see figure above):
1. Gather this short sequence from all samples.
2. Build "profile" trees. Generally NJ is used. (overall similarity, diagnostic similarity are used, but see second figure and Meier & Zhang’s paper)
3. Match taxonomic names to terms.
4. For unknowns their identity can be read from the resultant topology, typically, but not always by grouping with a cluster that is 98% or more similar, or are “near by” in the NJ tree, or are more similar than the mean divergence between pairs.

Purported good properties and possible applications (The top 10 list on the Barcode Website):
1. Works with fragments.
2. Works for all stages of life.
4. Reduces ambiguity.
5. Makes expertise go further.
6. Democratizes access.
7. Opens the way for an electronic handheld field guide, the Life Barcoder.
8. Sprouts new leaves on the tree of life.
10. Speeds writing the encyclopedia of life.

Problems:
-Resolving recently diverged species, and hybrids may be impossible for COI. There is no way to know when the answer is wrong except in well known and well sampled groups. However, often the “wrong” is shifted to non-barcode evidence without justification.

-No single gene is conserved across all life. So it will take a few, at least.
Must be able to distinguish between interspecific and intraspecific variation and many papers refute the notion of a “barcode gap”. However, reliance on a gap is necessary… “BOLD ID engine (www.barcodinglife.org)...uses a 2% cutoff for assigning specimens to species” (recent blog entry). Or … a 1% cutoff, that will is then reported as identification with a confidence of 100% (Ratnasingham & Hebert 2007).

Reference sequences must be from “taxonomically confirmed” specimens or one must accept unique COI haplotype clusters as the “important” units. These are Hebert’s gene-species and Blaxter’s MOTUs (see section on DNA taxonomy above).

Solution: Integrative Taxonomy (Will, Mishler, & Wheeler, 2005). The use of multiple independent lines of evidence and appropriate tests to establish taxonomic entities.

Where does DNA identification succeed? When “almost” is close enough (e.g. like horseshoes and hand grenades) and possible error can be ignored or greatly reduced.

In well studied groups. To reduce error, just do the science first. In a group that is well studied and sampled, especially if it is of economic and/or human health concern (like ticks and mosquitoes) having a broad sample and well done taxonomy is important for many reasons. Using DNA identification tools then makes good sense.

In limited systems. An ecologists could make a first pass, sorting of samples from a restricted fauna, e.g. insects in a stream system, to make a contained database that subsequent samples would be compared against. Of course if the taxonomy of the groups sampled is not done they would only be able to do approximate identifications.

For more discussion, and references, see:


