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Introduction

Many fundamental evolutionary processes, such as adaptation, speciation, and extinction, operate in a
spatial context. When the historical aspect of this spatial context cannot be observed directly, as is
often the case, biogeographic inference may be applied to estimate ancestral species ranges. This works
by leveraging phylogenetic, molecular, and geographical information to model species distributions as
the outcome of biogeographic processes. How to best model these processes requires special consideration,
such as how ranges are inherited following speciation events, how geological events might influence dispersal
rates, and what factors affect rates of dispersal and extirpation. A major technical challenge of modeling
range evolution is how to translate these natural processes into stochastic processes that remain tractable
for inference. This tutorial provides a brief background in some of these models, then describes how to
perform Bayesian inference of historical biogeography using RevBayes.

Contents

The Historical Biogeography guide contains several tutorials

• Section 1: Overview of the Dispersal-Extinction-Cladogenesis (DEC) process

• Section 2: A simple DEC analysis

• Section 3: An improved DEC analysis

• Section 4: Biogeographic dating using DEC

Recommended tutorials

The Historical Biogeography tutorials assume the reader is familiar with the content covered in the following
RevBayes tutorials

• Rev Basics

• Molecular Models of Character Evolution

• Running and Diagnosing an MCMC Analysis

• Divergence Time Estimation and Node Calibrations
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1 Overview of the Dispersal-Extinction-Cladogenesis model

The Dispersal-Extinction-Cladogenesis (DEC) process models range evolution as a discrete-valued process
(Ree et al. 2005; Ree and Smith 2008). There are three key components to understanding the DEC model:
range characters, anagenetic range evolution, and cladogenetic range evolution (Figure 1).

Anagenesis Cladogenesis

c. Narrow sympatry e. Allopatryd. Subset sympatry

f. Full sympatry g. Jump dispersal

a. Dispersal

b. Extirpation

Time

Figure 1: Cartoon of behavior of the DEC model. Two anagenetic events (a,b) and five cladogenetic (c–g)
events are shown for a system with two areas. Areas are shaded when inhabited by a given lineage and left
blank when uninhabited. Time proceeds from left to right. (a) Dispersal: a new area to be added to the
species range. (b) Extirpation (or local extinction): the species range loses a previously inhabited area.
(c) Narrow sympatry: When the ancestral range contains one area, both daughter lineages inherit that
area. (d) Subset sympatry: When the ancestral range is widespread, one daughter inherits the ancestral
range and the other daughter inherits only one area. (e) Allopatry (or vicariance): When the ancestral
range is widespread, one daughter lineage a subset of the ancestral areas while the other daughter inherits
all remaining ancestral areas. (f) Widespread sympatry: When the ancestral range is widespread, both
daughters inherit the ancestral range. (g) Jump dispersal (or founder speciation): One daughter inherits
the ancestral range while the other daughter inherits a new unoccupied area.

1.1 Discrete range characters

DEC interprets taxon ranges as presence-absence data, that is, where a species is observed or not observed
across multiple discrete areas. For example, say there are three areas, A, B, and C. If a species is present in
areas A and C, then its range equals AC, which can also be encoded into the length-3 bit vector, 101. Bit
vectors may also be transformed into (decimal) integers, e.g., the binary number 101 equals the decimal
number 5.

The decimal representation of range states is rarely used in discussion, but it is useful to keep in mind
when considering the total number of possible ranges for a species and when processing output.
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Range Bits Size State
∅ 000 0 0
A 100 1 1
B 010 1 2
C 001 1 3
AB 110 2 4
AC 101 2 5
BC 011 2 6
ABC 111 3 7

Table 1: Example of discrete range representations for an analysis with areas A, B, and C.

1.2 Anagenetic range evolution

In the context of the DEC model, anagenesis refers to range evolution that occurs between speciation events
within lineages. There are two types of anagenetic events, dispersal (Figure 1a) and (local) extinction
or exitrpation (Figure 1b). Because DEC uses discrete-valued ranges, anagenesis is modeled using a
continuous-time Markov chain. This, in turn, allows us to compute transition probability of a character
changing from i to j in time t through matrix exponentiation

Pij(t) = [exp {Qt}]ij ,

where Q is the instantaneous rate matrix defining the rates of change between all pairs of characters, and
P is the transition probability rate matrix. The indices i and j represent different ranges, each of which
is encoded as the set of areas occupied by the species. The probability has integrated over all possible
scenarios of character transitions that could occur during t so long as the chain begins in range i and ends
in range j. We can then encode Q to reflect the allowable classes of range evolution events with biologically
meaningful parameters. For three areas, the rates in the anagenetic rate matrix are

Q =

∅ A B C AB AC BC ABC

∅ − 0 0 0 0 0 0 0
A eA − 0 0 dAB dAC 0 0
B eB 0 − 0 dBA 0 dBC 0
C eC 0 0 − 0 dCA dCB 0
AB 0 eA eB 0 − 0 0 dAC + dBC

AC 0 eC 0 eA 0 − 0 dAB + dCB

BC 0 0 eC eB 0 0 − dBA + dCA

ABC 0 0 0 0 eC eB eA −

where e = (eA, eB, eC) are the (local) extinction rates per area, and d = (dAB, dAC , dBC , dBA, dCA, dCB)
are the dispersal rates between areas. Notice that the sum of rates leaving the null range (∅) is zero,
meaning any lineage that loses all areas in its range remains that way permanently.

To build our intuition, let’s construct a DEC rate matrix in RevBayes. Assume you have three areas

n_areas <- 3

First, create a matrix of dispersal rates between area pairs, with rates dAB = dAC = . . . = dCB = 1.
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for (i in 1:n_areas) {
for (j in 1:n_areas) {

dr[i][j] <- 1.0
}

}

Next, let’s create the extirpation rates with values eA = eB = eC = 1

for (i in 1:n_areas) {
for (j in 1:n_areas) {

er[i][j] <- 0.0
}
er[i][i] <- 1.0

}

When the extirpation rate matrix is a diagonal matrix (i.e. all non-diagonal entries are zero), extirpation
rates are mutually independent as in (Ree et al. 2005). More complex models that penalize widespread
ranges that span disconnected areas are explored in later sections.

To continue, create the DEC rate matrix from the dispersal rates (dr) and extirpation rates (er).

Q_DEC := fnDECRateMatrix(dispersalRates=dr, extirpationRates=er)
Q_DEC
[ [ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000 ] ,

1.0000, -3.0000, 0.0000, 0.0000, 1.0000, 1.0000, 0.0000, 0.0000 ] ,
1.0000, 0.0000, -3.0000, 0.0000, 1.0000, 0.0000, 1.0000, 0.0000 ] ,
1.0000, 0.0000, 0.0000, -3.0000, 0.0000, 1.0000, 1.0000, 0.0000 ] ,
0.0000, 1.0000, 1.0000, 0.0000, -4.0000, 0.0000, 0.0000, 2.0000 ] ,
0.0000, 1.0000, 0.0000, 1.0000, 0.0000, -4.0000, 0.0000, 2.0000 ] ,
0.0000, 0.0000, 1.0000, 1.0000, 0.0000, 0.0000, -4.0000, 2.0000 ] ,
0.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000, -3.0000 ] ]

Compute the anagenetic transition probabilities for a branch of length 0.2.

tp_DEC <- Q_DEC.getTransitionProbabilities(rate=0.2)
tp_DEC
[ [ 1.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[ 0.000, 0.673, 0.013, 0.013, 0.123, 0.123, 0.005, 0.050],
[ 0.000, 0.013, 0.673, 0.013, 0.123, 0.005, 0.123, 0.050],
[ 0.000, 0.013, 0.013, 0.673, 0.005, 0.123, 0.123, 0.050],
[ 0.000, 0.107, 0.107, 0.004, 0.502, 0.031, 0.031, 0.218],
[ 0.000, 0.107, 0.004, 0.107, 0.031, 0.502, 0.031, 0.218],
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[ 0.000, 0.004, 0.107, 0.107, 0.031, 0.031, 0.502, 0.218],
[ 0.000, 0.021, 0.021, 0.021, 0.107, 0.107, 0.107, 0.616]]

Notice how the structure of the rate matrix is reflected in the transition probability matrix. For ex-
ample, ranges that are separated by multiple dispersal and extirpation events are the most improbable:
transitioning from going from A to BC takes a minimum of three events and has probability 0.005.

Also note that the probability of entering or leaving the null range is zero. By default, the RevBayes
conditions the anagenetic range evolution process on never entering the null range when computing the
transition probabilities (nullRange=“CondSurv”). This allows the model to both simulate and infer using
the same transition probabilities. Massana et al. (2015) first noted that the null range—an unobserved
absorbing state—results in abnormal extirpation rate and range size estimates. Their proposed solution
to eliminate the null range from the state space is enabled with the nullRange=“Exclude” setting. The
nullRange=“Include” setting provides no special handling of the null range, and produces the raw prob-
abilities of Ree et al. (2005).

1.3 Cladogenetic range evolution

The cladogenetic component of the DEC model describes evolutionary change accompanying speciation
events (Figure 1c–g). In the context of range evolution, daughter species do not necessarily inherit their
ancestral range in an identical manner. For each internal node in the reconstructed tree, one of several
cladogenetic events can occur, some of which are described below.

Beginning with the simplest case first, suppose the range of a species is A the moment before speciation
occurs at an internal phylogenetic node. Since the species range is size one, both daughter lineages
necessarily inherit the ancestral species range (A). In DEC parlance, this is called a narrow sympatry event
(Figure 1c). Now, suppose the ancestral range is ABC. Under subset sympatry, one lineage identically
inherits the ancestral species range, ABC, while the other lineage inherits only a single area, i.e. only A
or B or C (Figure 1d). Under allopatric cladogenesis, the ancestral range is split evenly among daughter
lineages, e.g. one lineage may inherit AB and the other inherits C (Figure 1e). For widespread sympatric
cladogenesis, both lineages inherit the ancestral range, ABC (Figure 1f). Finally, supposing the ancestral
range is A, jump dispersal cladogenesis results in one daughter lineage inheriting the ancestral range A,
and the other daughter lineage inheriting a previously uninhabited area, B or C (Figure 1g). See Matzke
(2012) for an excellent overview of the cladogenetic state transitions described in the literature.

Make the cladogenetic probability event matrix

clado_event_types = [ "s", "a" ]
clado_event_probs <- simplex( 1, 1 )
P_DEC := fnDECCladoProbs(eventProbs=clado_event_probs,

eventTypes=clado_event_types,
numCharacters=n_areas)

clado_event_types defines what cladogenetic event types are used. "a" and "s" indicate allopatry and
subset sympatry, as described in (Ree et al. 2005). Other cladogenetic events include jump dispersal ("j";
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?) and full sympatry ("f"; Landis et al. 2013). The cladogenetic event probability matrix will assume that
eventProbs and eventTypes share the same order.

Print the cladogenetic transition probabilities

P_DEC
[
( 1 -> 1, 1 ) = 1.0000,
( 2 -> 2, 2 ) = 1.0000,
( 3 -> 3, 3 ) = 1.0000,
...
( 7 -> 7, 1 ) = 0.0833,
( 7 -> 7, 2 ) = 0.0833,
( 7 -> 7, 3 ) = 0.0833

]

The cladogenetic probability matrix becomes very sparse for large numbers of areas, so only non-zero values
are shown. Each row reports a triplet of states—the ancestral state and the two daughter states—with the
probability associated with that event. Since these are proper probabilities, the sum of probabilities for a
given ancestral state over all possible cladogenetic outcomes equals one.

1.4 Things to consider

The probabilities of anagenetic change along lineages must account for all combinations of starting states
and ending states. For 3 areas, there are 8 states, and thus 8× 8 = 64 probability terms for pairs of states.
For cladogenetic change, we need transition probabilities for all combinations of states before cladogenesis,
after cladogenesis for the left lineage, and after cladogenesis for the right lineage. Like above, for three
areas, there are 8 states, and 8× 8× 8 = 512 cladogenetic probability terms.

Of course, this model can be specified for more than three areas. Let’s consider what happens to the size
of Q when the number of areas, N , becomes large. For three areas, Q is size 8 × 8. For ten areas, Q
is size 210 × 210 = 1024 × 1024, which approaches the largest size matrices that can be exponentiated in
a practical amount of time. For twenty areas, Q is size 220 × 220 ≈ 106 × 106 and exponentiation is not
viable. Thus, selecting the discrete areas for a DEC analysis should be done with regard to what one hopes
to learn through the analysis itself.

1.5 Some questions

? For the three-area DEC rate matrix above, what is the rate of leaving state AC in terms
of dispersal and extinction parameters?

? What series of transition events might explain a lineage evolving from range ABC to range
A? From range AB to range C? (Hint: more than one event is needed!)

? Imagine a DEC rate matrix with four areas, ABCD. What would be the dispersal rate
for QBC,BCD? How many states does a DEC rate matrix with four areas have? What is the
relationship between the number of areas and the number of states under the DEC model?
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? Given the state is AB before cladogenesis, and allowing subset sympatry, widespread
sympatry, and allopatry, what are the 7 possible states in the daughter lineages after clado-
genesis?

? For three areas, there are three narrow, four widespread, 18 subset sympatric events, and
12 allopatric cladogenesis events. What proportion of terms in the cladogenesis matrix are
zero?
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2 Simple DEC analysis

The following series of tutorials will estimate the ancestral ranges of the silversword alliance (Tribe Madi-
inae), a young and diverse clade of about 50 species and subspecies. Although silverswords are endemic to
Hawaii, they are nested within a larger clade alongside tarweeds, which are native to western continental
North America (Baldwin et al. 1991). The size and age of the silversword clade, combined with our knowl-
edge of Hawaiian island formation, makes it an ideal system to explore concepts in historical biogeography
and phylogeny. For further reading, consult: Carlquist (1959); Baldwin and Sanderson (1998).

Figure 2: A beautiful figure of the discrete areas for the tutorial. Six areas are shown: Kauai and Niihau
(K); Oahu (O); Maui-Nui, Lanai, and Molokai (M); Hawaii (H); the remaining Hawaiian islands (R); and
the North American mainland (Z).

For this tutorial we’ll focus entirely on the silversword alliance and the modern Hawaiian archipelago. To
begin, we’ll use just four areas, K, O, M, and H, and include areas R and Z in later analyses (Figure 2).
The species ranges used in this exercise follow Gillespie and Baldwin (2009).

Analysis

First, create file management variables for input and output

range_fn = "data/n4/silversword.n4.range.nex"
tree_fn = "data/n4/silversword.tre"
out_fn = "output/simple"

then read in our character data as binary presence-absence characters
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Range Areas Size State
∅ 0000 0 0
K 1000 1 1
O 0100 1 2
M 0010 1 3
H 0001 1 4
KO 1100 2 5
KM 1010 2 6
OM 0110 2 7
KH 1001 2 8
OH 0101 2 9
MH 0011 2 10
KOM 1110 3 11
KOH 1101 3 12
KMH 1011 3 13
OMH 0111 3 14
KOMH 1111 4 15

Table 2: Area coding used for four areas: K is Kauai and Nihoa; O is Oahu; M is Maui Nui, Lanai, and
Molokai; H is Hawaii island.

dat_range_01 = readDiscreteCharacterData(range_fn)

then encode the species ranges into natural numbers

dat_range_n = formatDiscreteCharacterData(dat_range_01, "DEC")

Record the number of areas (characters) from the discrete character data object

n_areas = dat_range_01.nchar()

You can view the taxon data to see how characters are coded both as human-readable presence-absence
data and as computer-readable natural numbers

dat_range_01[1]
Argyroxiphium_grayanum_East_Maui:
0010

dat_range_n[1]
Argyroxiphium_grayanum_East_Maui:
3

We’ll want to record the relationship between range states and range labels when producing an ancestral
range estimate figure. First, store the vector of range state descriptions
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state_desc = dat_range_n.getStateDescriptions()

then write it to file

state_desc_str = "state,range\n"
for (i in 1:state_desc.size())
{

state_desc_str += (i-1) + "," + state_desc[i] + "\n"
}
write(state_desc_str, file=out_fn+".state_labels.txt")

For this tutorial we’ll assume we know the dated species phylogeny without error.

tree <- readTrees(tree_fn)[1]

Next, we’ll build the anagenetic rate matrix for the DEC model. In its simplest form, the rate matrix
requires a dispersal rate and an extirpation rate. For this analysis, we’ll assume that all pairs of areas
share the same dispersal rate and all areas share the same extirpation rate. To gain greater control to
observe and manage prior sensitivity, we’ll reparameterize the DEC rate matrix to report the relative rates
of dispersal versus extirpation events. In order for anagenetic event rates to be measured on an absolute
time scale (e.g. in millions of years), we will also introduce a a biogeographic rate parameter, similar to
the molecular clock parameter used in dating analyses.

First, create a parameter for the arrival rate of anagenetic range evolution events. We’ll apply an uninfor-
mative prior to the rate’s magnitude by first assigning a uniform distribution to the log10 rate.

log10_rate_bg ~ dnUniform(-4,2)
log10_rate_bg.setValue(-2)
moves[1] = mvSlide(log10_rate_bg, weight=4)

then convert the rate from log-scale to linear-scale with a deterministic node

rate_bg := 10^log10_rate_bg

This yields a uniform prior over orders of magnitude, ranging from 10−4 to 102 events per million years.

Because the rate matrix will describe the relative anagenetic event rates, we can safely assume that dispersal
occurs at the relative (fixed) rate of one.
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dispersal_rate <- 1.0

then create the dispersal rate matrix

for (i in 1:n_areas) {
for (j in 1:n_areas) {
dr[i][j] <- dispersal_rate

}
}

Next, assign a prior distribution to the relative extirpation rate and assign it a move. The prior distribution
of extirpation rates is given log_sd and log_mean values that give the prior expected value of one – i.e.
the mean rate of area gain and area loss are equal under the prior.

log_sd <- 0.5
log_mean <- ln(1) - 0.5*log_sd^2
extirpation_rate ~ dnLognormal(mean=log_mean, sd=log_sd)
moves[2] = mvScale(extirpation_rate, weight=2)

then create a matrix of extirpation rates

for (i in 1:n_areas) {
for (j in 1:n_areas) {
er[i][j] <- 0.0

}
er[i][i] := extirpation_rate

}

Note that er is a diagonal matrix whose diagonal values are determined (:=) by the stochastic variable,
extirpation_rate. We can now create our relative rate matrix, Q_DEC, with the fnDECRateMatrix func-
tion.

Q_DEC := fnDECRateMatrix(dispersalRates=dr, extirpationRates=er)

Note, fnDECRateMatrix does not rescale its elements in any way, so transition rates share the same time
scale as the underlying tree. This scaling is in contrast to the standard molecular substitution processes
that are available in RevBayes, such as fnGTR, whose rates are rescaled such that the process is expected
to produce one event per site per unit time.
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Next, we need to create the cladogenetic probability matrix. Cladogenetic event probabilities are given
by a transition probability matrix, not a rate matrix. First, we will provide the vector [ “s”, “a” ] to
indicate that we wish to consider only subset sympatry and allopatry events. Next, we will create a vector
of prior weights on cladogenesis events that fixes all cladogenetic events to be equiprobable.

clado_event_types <- [ "s", "a" ]
clado_event_probs <- simplex(1, 1)
P_DEC := fnDECCladoProbs(eventProbs=clado_event_probs,

eventTypes=clado_event_types,
numCharacters=n_areas)

Finally, all our DEC model components are encapsulated in the dnPhyloCTMCClado distribution, which is
similar to dnPhyloCTMC except specialized to integrate over cladogenetic events. Although this dataset has
four areas, it is recognized single character with states valued from 1 to 24, hence nSites=1.

m_bg ~ dnPhyloCTMCClado(tree=tree,
Q=Q_DEC,
cladoProbs=P_DEC,
branchRates=rate_bg,
nSites=1,
type="NaturalNumbers")

Finally, attach the observed ranges to the model. Be sure to use the natural number valued range characters,
dat_range_n, and not the presence-absence range characters, dat_range_01.

m_bg.clamp(dat_range_n)

Add the monitors.

monitors[1] = mnScreen(rate_bg, extirpation_rate, printgen=100)
monitors[2] = mnModel(file=out_fn+".params.log", printgen=10)
monitors[3] = mnFile(tree, file=out_fn+".tre", printgen=10)
monitors[4] = mnJointConditionalAncestralState(tree=tree,

ctmc=m_bg,
filename=out_fn+".states.log",
type="NaturalNumbers",
printgen=10,
withTips=true,
withStartStates=true)

The mnJointConditionalAncestralState monitor samples ancestral states from the phylogeny, tree,
according to the model of evolution, m_bg, and stores it to the file named "simple.states.log". Each
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row in the states file lists the joint sample of ancestral states conditioned on the tip values for the entire
tree (i.e. a joint ancestral state sample conditional on the tip states). Each column corresponds to the
phylogenetic node index for that particular MCMC sample. The index is used used to match the state
samples with the tree samples, which is especially important when the topology is a random variable
(Section 4).

The remaining tasks should be familiar from previous tutorials, so we can proceed briskly. Prepare the
model graph for analysis by creating a Model object.

mymodel = model(m_bg)

Create the MCMC object from the model, moves, and monitors variables, and run the MCMC analysis.

mymcmc = mcmc(mymodel, moves, monitors)
mymcmc.run(3000)

Results

Example results are located at output_example/simple.*

The script located at scripts/make_anc_states.Rev contains code to construct an ancestral state tree.
Like all RevBayes scripts, this script may be executed from the command line. Because this is the first
time using the script, we’ll enter the code manually. To use it for future analyses, just modify the out_str
variable to match the prefix of the target analysis, save the file, then execute the script by typing "rb
scripts/make_anc_states.Rev" into the command line.

After opening a new RevBayes session, create helper variables for files we’ll work with.

out_str = "output/simple"
out_state_fn = out_str + ".states.log"
out_tree_fn = out_str + ".tre"
out_mcc_fn = out_str + ".mcc.tre"

Build a maximum clade credibility tree from the posterior tree distribution, discarding the first 25% of
samples. (Note, this step is gratuitous when we assume a fixed phylogeny, but essential when we estimate
the phylogeny in Section 4).

tree_trace = readTreeTrace(file=out_tree_fn, treetype="clock")
tree_trace.setBurnin(0.25)
n_burn = tree_trace.getBurnin()
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Figure 3: Annotated tree with ancestral state estimates in FigTree. This tree was generated by
ancestralStateTree in RevBayes. The most probable end state of each branch (before cladogenesis)
is shown at each node. Branches are labeled with the posterior probability for the ancestral state on the
tipwards end of the branch.

Compute and save the maximum clade credibility tree

mcc_tree = mccTree(tree_trace, file=out_mcc_fn)

Get the ancestral state trace from simple.states.log

state_trace = readAncestralStateTrace(file=out_state_fn)

Get the ancestral state tree trace from simple.tre. It is important to use readAncestralTreeTrace and
not readTreeTrace to properly annotate the tree with ancestral states.
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tree_trace = readAncestralStateTreeTrace(file=out_tree_fn, treetype="clock")

Finally, compute and save the ancestral state tree as simple.ase.tre.

anc_tree = ancestralStateTree(tree=mcc_tree,
ancestral_state_trace_vector=state_trace,
tree_trace=tree_trace,
include_start_states=true,
file=out_str+".ase.tre",
burnin=n_burn,
site=0)

We can review the output from ancestralStateTree in FigTree (Figure 3).

Ancestral state trees are annotated with the first three most probable ancestral states along with their
posterior probabilities. When the tree is a random variable, as it is in later exercises, additional information
about phylogenetic uncertainty is reported.

Finally, we can also generate a figure with ancestral states that is suitable for publication using the R
package RevGadgets (Figure 4). The script is easily modified for use with different datasets. To create
build a figure, open an R session and load the plotting script with the source function

source("plot_anc_state.simple.R")

Notice that the model infers a widespread ancestral range for the clade (KOMH) approximately four million
years ago when only Kauai existed. Similar geologically unrealistic widespread ranges are estimated for the
Agyroxiphium clade (KMH) and the D. sheriffiana and D. arborea clade (OMH). The remaining tutorials
will focus on improvements to the simple DEC model presented here.
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Figure 4: Tree with ancestral state estimates for the “simple” analysis. Nodes are annotated with ancestral
states before and after cladogenetic events. The ancestral range with the highest posterior probability is
shown. Colors of markers indicate the range state.

3 An improved DEC analysis
In this section, we’ll introduce a suite of model features that lend towards more realistic biogeographic
analyses. Topics include applying range size constraints, stratified (or epoch) models of paleoconnectivity,
function-valued dispersal rates, and incorporating uncertainty in paleogeographic event time estimates.
These modifications should produce more realistic ancestral range estimates, e.g. that a volcanic island
may only be colonized once it has formed, and that distance should have some bearing on dispersal rate.

To accomplish this, we’ll incorporate (paleo-)geographical data for the Hawaiian archipelago, summarized
in Table 3. Even though we will continue to use four areas (K, O, M, H) in this section, we will use all six
areas (R, K, O, M, H, Z) in Section 4, hence the full table is given for future reference.

3.1 Analysis

Start by creating variables for the tree file, the range data, and the output prefix

range_fn = "data/n4/silversword.n4.range.nex"
tree_fn = "data/n4/silversword.tre"
out_fn = "output/epoch"
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area code amax amin g•R g•K g•O g•M g•H g•Z
Older islands R - - - 261 406 500 680 3900
Kauai K 5.15 5.05 - - 145 239 419 3900
Oahu O 3.7 2.2 - - - 059 239 3900
Maui Nui M 1.8 1.3 - - - - 082 3900
Hawaii H 0.7 0.3 - - - - - 3900
Mainland Z - - - - - - - -

Table 3: Hawaiian paleogeographic data. The six areas are given in Figure 2. Ages amax and amin report
the maximum and minimum origination times for the given island (adapted from Neall and Trewick 2008).
Distances gij report the shortest geographical distance from the coast of the row’s area to the column’s
area (measured at present).

The paleogeographical information from Table 3 is encoded in three files named hawaii.n4.times.txt,
hawaii.n4.distances.txt, and hawaii.n4.connectivity.*.txt.

geo_fn = "data/n4/hawaii.n4"
times_fn = geo_fn + ".times.txt"
dist_fn = geo_fn + ".distances.txt"

Create move index (mvi) and monitor index (mni) variables to populate the elements of our moves and
monitors vectors, respectively.

mvi = 1
mni = 1

Read in the presence-absence range characters and record the number of areas in the dataset

dat_range_01 = readDiscreteCharacterData(range_fn)
n_areas <- dat_range_01.nchar()

Often, biogeographers wish to limit to the maximum allowable range size. This prohibits widespread
species ranges and reduces the total number of range states in the analysis, thus improving computational
efficiency. We will restrict ranges from including more than two areas. The total number of ranges equals∑m

k=0
(n

k

)
where n is the total number of areas, m is the maximum number of permissible areas, and

(n
k

)
is

the number of ways to sample k unordered areas from a pool of n areas. For n = 4 and m = 2, this equals(4
0
)

+
(4

1
)

+
(4

2
)

= 1 + 4 + 6 = 11 states.

First, compute the number of states

max_areas <- 2
n_states <- 0
for (k in 0:max_areas) n_states += choose(n_areas, k)
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then use n_states to format the dataset for the reduced state space

dat_range_n = formatDiscreteCharacterData(dat_range_01, "DEC", n_states)

Our state space now includes only 11 states (∅, K, O, M, H, KO, KM, OM, KH, OH, MH).

Record the complete list of range descriptions to file

state_desc = dat_range_n.getStateDescriptions()
state_desc_str = "state,range\n"
for (i in 1:state_desc.size())
{

state_desc_str += (i-1) + "," + state_desc[i] + "\n"
}
write(state_desc_str, file=out_fn+".state_labels.txt")

As with the previous analysis, we’ll brazenly assume we know the dated species phylogeny without error.

tree <- readTrees(tree_fn)[1]

Next, we’ll read and structure our paleogeographic data. Read in the list of minimum and maximum ages
of island formation

time_bounds <- readDataDelimitedFile(file=times_fn, delimiter=" ")
n_epochs <- time_bounds.size()

Read in the vector of matrices that describe the connectivity between areas over time. Note, there is one
connectivity matrix per epoch, ordered from oldest to youngest.

for (i in 1:n_epochs) {
epoch_fn[i] = geo_fn + ".connectivity." + i + ".txt"
connectivity[i] <- readDataDelimitedFile(file=epoch_fn[i], delimiter=" ")

}

The area connectivity file for the third epoch (when K, O, and M exist, but not H) contains

1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 0
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Dispersal events between, say, K and M will be penalized by distance rather than be forbidden by non-
connectivity.

Read in the matrix of distances between all pairs of areas (km). For simplicity, we will assume that
distances remained constant across epochs, even though these distances certainly varied over time.

distances <- readDataDelimitedFile(file=dist_fn, delimiter=" ")

The distances files contains

001 145 239 419
145 001 059 239
239 059 001 082
419 239 082 001

and, if we assume the relative distance between islands remains roughly constant over time, then one set
of distances is suitable for use for all four epochs.

Next, we’ll build an enhanced DEC model. Like before, we’ll define the rate matrix in terms of relative
rates, then rescale the entire matrix with the biogeographic rate scaling parameter rate_bg.

log10_rate_bg ~ dnUniform(-4,2)
log10_rate_bg.setValue(-2)
rate_bg := 10^log10_rate_bg
moves[mvi++] = mvSlide(log10_rate_bg, weight=4)

Fix the base dispersal rate to 1

dispersal_rate <- 1.0

Dispersal rates might make use of some extrinsic information, such as geographical distances between areas
(MacArthur and Wilson 1967; Webb and Ree 2012). We model this as dij = exp(−agij) where gij is the
geographical distance between areas i and j and a is a parameter that scales distance. Note that all
dispersal rates are equal when a = 0.

Add a distance scale parameter

distance_scale ~ dnUnif(0,20)
distance_scale.setValue(0.01)
moves[mvi++] = mvScale(distance_scale, weight=3)
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Now we can assign rates that are functions of distance between all pairs of areas, but also over all epochs.
To accomplish this, notice we now have an outer loop over the number of epochs, n_epochs. This is used to
construct a vector of dispersal matrices, one matrix per epoch. It is crucial to note that all of elements are
assigned the value 0.0 unless the if-statement "if (connectivity[i][j][k] > 0)" evaluates to true.
That is, dispersal rates between areas j and k for epoch i are non-zero if and only if the connectivity
matrix element connectivity[i][j][k] has a positive value! When this condition is met, the dispersal
rate is determined by the exponential function of inverse distance given above.

for (i in 1:n_epochs) {
for (j in 1:n_areas) {
for (k in 1:n_areas) {
dr[i][j][k] <- 0.0
if (connectivity[i][j][k] > 0) {
dr[i][j][k] := dispersal_rate * exp(-distance_scale * distances[j][k])

}
}

}
}

We will assign the same extirpation prior as was done in the simple analysis in the previous section

log_sd <- 0.5
log_mean <- ln(1) - 0.5*log_sd^2
extirpation_rate ~ dnLognormal(mean=log_mean, sd=log_sd)
moves[mvi++] = mvScale(extirpation_rate, weight=2)

and then provide the appropriate extirpation matrix structure

for (i in 1:n_epochs) {
for (j in 1:n_areas) {
for (k in 1:n_areas) {
er[i][j][k] <- 0.0

}
er[i][j][j] := extirpation_rate

}
}

Now we have a vector of dispersal rates, dr, and an vector of extirpation rates, er, in stored in the RevBayes
workspace. We’ll use these to create a vector of four DEC rate matrices, one for each epoch.

for (i in 1:n_epochs) {
Q_DEC[i] := fnDECRateMatrix(dispersalRates=dr[i],
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extirpationRates=er[i],
maxRangeSize=max_areas)

}

Next, we need to define breakpoints for when the underlying paleogeographic state/connectivity changes.
In our case, we’ll define the epoch breakpoints as uniformly distributed random variables that are bounded
by the minimum and maximum age estimates for when each new island complex formed (Table 3). This is
easily done using a for loop over the number of epochs. Note, we define the end of the final epoch as the
present.

for (i in 1:n_epochs) {
time_max[i] <- time_bounds[i][1]
time_min[i] <- time_bounds[i][2]
if (i != n_epochs) {

epoch_times[i] ~ dnUniform(time_min[i], time_max[i])
moves[mvi++] = mvSlide(epoch_times[i], delta=(time_max[i]-time_min[i])/2)

} else {
epoch_times[i] <- 0.0

}
}

Now that we have variables for the timing (epoch_times) and character (Q_DEC via connectivity) of
paleogeographic change throughout the Hawaiian archipelago, we’re ready to unify these objects with the
fnEpoch function. This function requires a vector of rate matrices, a vector of epoch end times, and a
vector of rate multipliers as arguments. Internally, the function computes the appropriate probabilities
for state transitions along branches according under a piecewise constant continuous-time Markov chain.
The important consequence of using an epoch model is that transition probabilities for anagenetic events
depend on the geological age of the branch.

Q_DEC_epoch := fnEpoch(Q=Q_DEC, times=epoch_times, rates=rep(1,n_epochs))

Here, we treat the probability of different types of cladogenetic events as a random variables to be estimated.

clado_event_types <- [ "s", "a" ]
p_sympatry ~ dnUniform(0,1)
p_allopatry := abs(1.0 - p_sympatry)
clado_type_probs := simplex(p_sympatry, p_allopatry)
moves[mvi++] = mvSlide(p_sympatry, weight=2)
P_DEC := fnDECCladoProbs(eventProbs=clado_type_probs,

eventTypes=clado_event_types,
numCharacters=n_areas,
maxRangeSize=max_areas)
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For this dataset, we assume cladogenetic probabilities are constant with respect to geological time. Using
time-dependent cladogenetic probabilities (fnEpochCladoProbs) and mixtures of cladogenetic probabilities
(fnMixtureCladoProbs) will be covered in future tutorials.

Among the four areas, only Kauai existed at the provided origination time of the clade, so will set it as
the only valid starting state through the root frequency distribution.

rf_DEC <- rep(0, n_states)
rf_DEC[2] <- 1
rf_DEC <- simplex(rf_DEC)

We have created all the necessary model variables. Now we can create the phylogenetic model of ana-
genetic and cladogenetic character evolution. dnPhyloCTMCClado will internally make use of the time-
heterogeneous probabilities embedded in the epoch rate generator, Q_DEC_epoch.

m_bg ~ dnPhyloCTMCClado(tree=tree,
Q=Q_DEC_epoch,
cladoProbs=P_DEC,
branchRates=rate_bg,
rootFrequencies=rf_DEC,
type="NaturalNumbers",
nSites=1)

Attach the observed range data to the distribution

m_bg.clamp(dat_range_n)

And the rest we’ve done before...

monitors[mni++] = mnScreen(printgen=100, rate_bg, extirpation_rate, distance_scale)
monitors[mni++] = mnModel(file=out_fn+".model.log", printgen=10)
monitors[mni++] = mnFile(tree, filename=out_fn+".tre", printgen=10)
monitors[mni++] = mnJointConditionalAncestralState(tree=tree,

ctmc=m_bg,
type="NaturalNumbers",
withTips=true,
withStartStates=true,
filename=out_fn+".states.log",
printgen=10)

Wrap the model graph into a model object
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mymodel = model(m_bg)

then build and run MCMC

mymcmc = mcmc(mymodel, moves, monitors)
mymcmc.run(5000)

3.2 Results

Example results are located at output_example/epoch.*

When compared to the ancestral state estimates from the “simple” analysis (Figure 4), these results are
far more consonant with what we understand about the origination times of the islands (Table 3). First,
this reconstruction asserts that the clade originated in the modern Hawaiian islands at a time when only
Kauai was above sea level. Similarly, the D. sheriffiana and D. arborea clade no longer estimates OMH
as its ancestral range, since Maui and Hawaii had not yet formed 2.4 Ma. The ancestral range for the
Agyroxiphium clade is Maui (M) with probability 0.41 and Maui+Hawaii (MH) with probability 0.33,
whereas previously it gave high support to the range KMH.

It may be that these are relatively accurate historical biogeographic estimates, or they may contain artifacts
as a result of assuming a fixed and errorless phylogeny. The next tutorials discuss how to jointly estimate
phylogeny and biogeography, which potentially improves the estimation of divergence times, tree topology,
and ancestral ranges.
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Figure 5: Tree with ancestral state estimates. Nodes are annotated with ancestral states before and after
cladogenetic events. Most probable states are shown. Colors of markers indicate the range state. Sizes of
markers indicate the posterior probability of that state.

4 Biogeographic dating using DEC
This analysis will jointly estimate phylogeny and biogeography. One benefit is that the biogeographic
analysis will intrinsically accommodate phylogenetic uncertainty, both in terms of topology and branch
lengths. Another is that paleogeographic evidence has the potential provide information about the geolog-
ical timing of speciation events in the phylogeny (Ho et al. 2015). Finally, biogeographic data may lend
support to certain phylogenetic relationships that have poor resolution otherwise.

As mentioned in Section 2, Hawaiian silverswords are nested within the subtribe Madiinae, alongside the
tarweeds, a clade of plants inhabiting in western North America. Fossil pollen evidence indicates that
Madiinae diversified during a period of aridification from 15–5 Ma in the western regions of North America
(Baldwin et al. 1991). It’s clear that silverswords colonized Hawaii from western North America, but the
timing of the event is difficult to estimate. Even though the oldest Hawaiian island they inhabit is Kauai,
it is possible that silverswords first colonized older islands in the Emperor Island chain that predate the
formation of Kauai (ca 5.1 Ma).

This makes the application of standard node-based biogeographic calibrations challenging, because it would
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require a strong assumption about when and how many times the oldest silversword lineages colonized
Kauai. Did silverswords colonize Kauai once directly from the California coast? Or did the colonize the
younger islands multiple times from older islands in the chain? And did the event occur immediately after
Kauai surfaced or much later? Because we cannot observe the timing and nature of this event directly,
we will integrate over all possible evolutionary histories using process-based biogeographic dating method
described in Landis (2016).

Figure 6: Cartoon of biogeographic transition probabilities as functions of geological time, and how that
relates to speciation times. (a) Areas split, dispersal before split, positive probability; (b) Areas split,
dispersal after split, zero probability; (c) Areas merge, dispersal after merge, positive probability; (d) Areas
merge, dispersal before merge, zero probabilty. Original figure and details regarding cartoon assumptions
are found in Landis (2016).

The basic idea is that an empirically informed epoch model is capable of creating conditions that favor
key evolutionary transitions to occur during one time interval over another. Unlike the time-homogeneous
probabilities that arise from, say, a molecular substitution process, these age-dependent transition prob-
abilities may identify rate from time, and thus generate information about branch lengths in units of
absolute time (Figure 6). A biogeographic process that is constrained by paleogeographic connectivity is
well-suited to this purpose.

Note: like all dating methods, including node calibration methods, tip dating methods, and fossilized
birth death dating methods, process-based biogeographic dating estimates are prior sensitive and dataset
dependent. Applying this model to alternative data sets should be done with care!

Much of this tutorial will be similar to the previous sections, except we are adding a birth-death process
and a molecular substitution process to the model graph.

4.1 Analysis

To use date the silversword radiation using biogeography, it is necessary that we transition from our
simpler 4-area model to a richer 6-area model (see Figure 2). The mainland area (Z) is necessary to force
the silversword and tarweed clade to originate apart from the islands. The area corresponding to the older
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island chain (R) is necessary because we do not know a priori whether silverswords colonized the modern
islands directly from the mainland (Z → K), or first colonized R and only later dispersed into the younger
islands any number of times (Z → R → K). Thus, adding these two areas allows the silversword origin
time to precede the formation of Kauai when the dispersal rate is large.

Additionally, we will add three tarweed taxa to our dataset, increasing the total number of taxa to 38.
We’ll use a molecular alignment for the internal transcribed spacer (ITS) to estimate the phylogeny, which
is a 657bp non-coding locus that is historically important for plant systematics. Because the locus is
relatively short, it will also leave us with a fair amount of phylogenetic uncertainty in branch length and
topology estimates. However, because we’re estimating phylogeny and biogeography, it will be correctly
incorporated into our ancestral range estimates.

As usual, we’ll begin by creating variables to manage our input and output files

range_fn = "data/n6/silversword.n6.range.nex"
mol_fn = "data/n6/silversword.mol.nex"
tree_fn = "data/n6/silversword.tre"
out_fn = "output/test_epoch_phy"
geo_fn = "data/n6/hawaii.n6"
times_fn = geo_fn + ".times.txt"
dist_fn = geo_fn + ".distances.txt"

Add the analysis helper variables

mvi = 1
mni = 1
n_gen = 1e5 # more parameters, longer run!

Read in the molecular alignment

dat_mol = readDiscreteCharacterData(mol_fn)

Read in the species ranges for six areas

dat_range_01 = readDiscreteCharacterData(range_fn)

Compute the number of ranges when ranges may only be one or two areas in size

n_areas <- dat_range_01.nchar()
max_areas <- 2
n_states <- 0
for (k in 0:max_areas) n_states += choose(n_areas, k)
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Then format the dataset for the reduced state space

dat_range_n = formatDiscreteCharacterData(dat_range_01, "DEC", n_states)

Record the complete list of range descriptions to file

state_desc = dat_range_n.getStateDescriptions()
state_desc_str = "state,range\n"
for (i in 1:state_desc.size())
{

state_desc_str += (i-1) + "," + state_desc[i] + "\n"
}
write(state_desc_str, file=out_fn+".state_labels.txt")

Read the minimum and maximum ages of the island complexes

time_bounds <- readDataDelimitedFile(file=times_fn, delimiter=" ")
n_epochs <- time_bounds.size()

Read in the connectivity matrices between the six areas

for (i in 1:n_epochs) {
epoch_fn[i] = geo_fn + ".connectivity." + i + ".txt"
connectivity[i] <- readDataDelimitedFile(file=epoch_fn[i], delimiter=" ")

}

Read the geographical distances between areas

distances <- readDataDelimitedFile(file=dist_fn, delimiter=" ")

Remember that we are estimating the phylogeny as part of this analysis. In general, it is possible that
certain combinations of phylogeny, biogeography, and paleogeography have zero-valued likelihoods should
the epoch model introduce reducible rate matrix structures (see the supplemental of Buerki et al. 2011).
The initial MCMC state, however, must have a non-zero probability for it to work properly. Although it
may not be needed, we will provide tree_init as a starting tree for the tree variable that we will create
to be safe.
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tree_init = readTrees(tree_fn)[1]

We will record some basic information about the taxon set, the number of taxa, and the number of branches
in the tree

taxa = tree_init.taxa()
n_taxa = taxa.size()
n_branches = 2 * n_taxa - 2

4.1.1 The tree model

Because we will estimate the topology and branch lengths parameters, the tree variable must be declared
as a stochastic node with a prior distribution. For this, we’ll use a constant rate birth-death process.

Assign root age with a maximum age of 15Ma to reflect the fossil pollen record for Californian tarweeds
(Baldwin and Sanderson 1998). No assumption is made about the minimum root age.

root_age ~ dnUniform(0, 15)
moves[mvi++] = mvScale(root_age, weight=2)

Assign the proportion of sampled taxa (we have a non-uniform sampling scheme, but this should suffice).

rho <- 35/50

Assign the birth and death priors. It is important to note that the birth and death priors induce a root
age distribution through the birth-death process. These priors generate a relatively uniform root age
distribution between 2.5–15 Ma in the absence of data (i.e. running MCMC with the underPrior=true
option).

birth ~ dnExp(1)
moves[mvi++] = mvScale(birth)
death ~ dnExp(1)
moves[mvi++] = mvScale(death)

Instantiate a tree variable generated by a birth-death process

tree ~ dnBDP(lambda=birth, mu=death, rho=rho, rootAge=root_age, taxa=taxa)
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Add topology and branch length moves

moves[mvi++] = mvNNI(tree, weight=n_branches/2)
moves[mvi++] = mvFNPR(tree, weight=n_branches/8)
moves[mvi++] = mvNodeTimeSlideUniform(tree, weight=n_branches/2)

Provide a starting tree to ensure the biogeographic model has non-zero likelihood

tree.setValue(tree_init)
root_age.setValue(tree_init.rootAge())

4.1.2 The molecular model

To inform our branch lengths (in relative time units) and our topology, we will specify a simple HKY+Γ4+UCLN
model of molecular substitution (Hasegawa et al. 1985; Yang and Nielsen 1998; Drummond et al. 2006).

First specify a base rate for the molecular clock. This prior is uniform over orders of magnitude, between
10−6 and 103, and was chosen to minimize its influence on the tree height.

log10_rate_mol ~ dnUniform(-6, 3)
log10_rate_mol.setValue(-1)
moves[mvi++] = mvSlide(log10_rate_mol, weight=5, delta=0.2)
rate_mol := 10^log10_rate_mol

Assign log-normal relaxed clock rate multipliers to each branch in the tree. These priors have a mean of 1
so each branch prefers a strict clock model in the absence of data.

branch_sd <- 1.0
branch_mean <- 0.0 - 0.5 * branch_sd^2
for (i in 1:n_branches) {

branch_rate_multiplier[i] ~ dnLognormal(mean=branch_mean, sd=branch_sd)
moves[mvi++] = mvScale(branch_rate_multiplier[i])
branch_rates[i] := rate_mol * branch_rate_multiplier[i]

}

Now we’ll create an HKY rate matrix. First, we create a Gamma-distributed transition-transversion
(Ts/Tv) rate ratio with prior with mean equal to one

kappa ~ dnGamma(2,2)
moves[mvi++] = mvScale(kappa)
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then create a flat Dirichlet prior on the base frequencies over A, C, G, and T

bf ~ dnDirichlet([1,1,1,1])
moves[mvi++] = mvSimplexElementScale(bf, alpha=10, weight=2)

and, finally, combine the base frequencies and Ts/Tv rate ratio to build the rate matrix

Q_mol := fnHKY(kappa, bf)

Next, we’ll create a +Γ4 across-site rate variation model. First, we need a parameter to control the amount
of site rate variation

alpha ~ dnUniform(0,50)
moves[mvi++] = mvScale(alpha)

and a discretized Gamma distribution with four categories

site_rates := fnDiscretizeGamma(alpha, alpha, 4)

The distribution of site rates categories has mean equal to one and variance equal to 1/α. When alpha
grows small, the amount of site rate heterogeneity increases. When alpha is large, the variance shrinks to
zero, and the site rate multipliers of site_rates converge to the value 1.

Finally, we’ll create our molecular model of substitution

m_mol ~ dnPhyloCTMC(Q=Q_mol, tree=tree, branchRates=branch_rates, siteRates=site_rates,
type="DNA", nSites=dat_mol.nchar())

and attach the ITS alignment

m_mol.clamp(dat_mol)

4.1.3 The biogeographic model

The biogeographic model is identical to that described in Section 3, so redundant details are omitted here.

First, create the biogeographic rate parameter.
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log10_rate_bg ~ dnUniform(-4,2)
log10_rate_bg.setValue(-2)
rate_bg := 10^log10_rate_bg
moves[mvi++] = mvSlide(log10_rate_bg, weight=4)

The relative dispersal rate is fixed to 1

dispersal_rate <- 1.0

the distance scale parameter

distance_scale ~ dnUnif(0,20)
distance_scale.setValue(0.001)
moves[mvi++] = mvScale(distance_scale, weight=3)

Next, create dispersal rates that are functions of distance between all pairs of areas, but between areas
that exist during epoch i!

for (i in 1:n_epochs) {
for (j in 1:n_areas) {
for (k in 1:n_areas) {
dr[i][j][k] <- 0.0
if (connectivity[i][j][k] > 0) {
dr[i][j][k] := dispersal_rate * exp(-distance_scale * distances[j][k])

}
}

}
}

Create the extirpation rates

log_sd <- 0.5
log_mean <- ln(1) - 0.5*log_sd^2
extirpation_rate ~ dnLognormal(mean=log_mean, sd=log_sd)
moves[mvi++] = mvScale(extirpation_rate, weight=2)

for (i in 1:n_epochs) {
for (j in 1:n_areas) {
for (k in 1:n_areas) {
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er[i][j][k] <- 0.0
}
er[i][j][j] := extirpation_rate

}
}

Build a rate matrix for each time interval

for (i in 1:n_epochs) {
Q_DEC[i] := fnDECRateMatrix(dispersalRates=dr[i],

extirpationRates=er[i],
maxRangeSize=max_areas)

}

Treat epoch times as random variables, except the present is always the present (or is it?).

for (i in 1:n_epochs) {
time_max[i] <- time_bounds[i][1]
time_min[i] <- time_bounds[i][2]
if (i != n_epochs) {
epoch_times[i] ~ dnUniform(time_min[i], time_max[i])
moves[mvi++] = mvSlide(epoch_times[i], delta=(time_bounds[i][1]-time_bounds[i][2])

/2)
} else {
epoch_times[i] <- 0.0

}
}

Wrap the vector of rate matrices with the fnEpoch rate generator function

Q_DEC_epoch := fnEpoch(Q=Q_DEC, times=epoch_times, rates=rep(1, n_epochs))

Here, we treat the probability of different types of cladogenetic events as a random variable to be estimate.

clado_event_types <- [ "s", "a" ]
p_sympatry ~ dnUniform(0,1)
p_allopatry := abs(1.0 - p_sympatry)
moves[mvi++] = mvSlide(p_sympatry, delta=0.1, weight=2)
clado_event_probs := simplex(p_sympatry, p_allopatry)
P_DEC := fnDECCladoProbs(eventProbs=clado_event_probs,
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eventTypes=clado_event_types,
numCharacters=n_areas,
maxRangeSize=max_areas)

Based on fossil pollen evidence, force range state and the root of the tree to be the mainland area (Z)

rf_DEC <- rep(0, n_states)
rf_DEC[n_areas+1] <- 1 # Mainland (Z) is the only possible starting state
rf_DEC <- simplex(rf_DEC)

Create the phylogenetic model of range evolution

m_bg ~ dnPhyloCTMCClado(tree=tree,
Q=Q_DEC_epoch,
cladoProbs=P_DEC,
branchRates=rate_bg,
rootFrequencies=rf_DEC,
type="NaturalNumbers",
nSites=1)

Attach the species range dataset to the model

m_bg.clamp(dat_range_n)

To easily identify interactions between the posterior estimates of island ages and divergence times, we’ll
create a deterministic node to monitor the age of the silversword radiation. First, create a deterministic
node to monitor the crown age of the silversword radiation

ingroup_clade <- clade("Wilkesia_hobdyi",
"Dubautia_reticulata",
"Dubautia_microcephala",
"Argyroxiphium_caliginis")

ingroup_age := tmrca(tree, ingroup_clade)

Next, create a vector of variables to report the posterior probability that the clade originates before a
given island. When the first argument in of the ifelse function returns true, the node has value 1 and 0
otherwise. Thus, the mean of this variable gives the posterior probability that the inequality is satisfied.
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for (i in 1:n_epochs) {
ingroup_older_island[i] := ifelse(ingroup_age > epoch_times[i], 1, 0)

}

Create the standard monitors. One difference is that the mnFile monitor will now record the posterior
distribution for the tree variable, whereas the previous two tutorials assumed tree was fixed.

monitors[mni++] = mnScreen(printgen=100, ingroup_age)
monitors[mni++] = mnModel(file=out_fn+".model.log", printgen=100)
monitors[mni++] = mnFile(tree, filename=out_fn+".tre", printgen=100)
monitors[mni++] = mnJointConditionalAncestralState(tree=tree,

ctmc=m_bg,
type="NaturalNumbers",
withTips=true,
withStartStates=true,
filename=out_fn+".states.log",
printgen=100)

Because ingroup_older_island does not contribute to the model likelihood, it must be manually intro-
duced to the model object. Compose the model object.

mymodel = model(m_bg, ingroup_older_island)

Create the MCMC object and run the analysis.

mymcmc = mcmc(mymodel, moves, monitors)
mymcmc.run(n_gen)

4.2 Results

Example results are located at output_example/epoch_phy.* and output_example/simple_phy.*

To understand the influence of the epoch model on ancestral range and divergence time estimation, it is
important to run addition analyses with alternative settings. Scripts to jointly estimate molecular evolution,
historical biogeographic, and phylogenetic parameters are available as scripts/run_simple_phy.Rev and
scripts/run_epoch_phy.Rev. The “epoch” analysis is identical to the analysis just described. The
“simple” analysis is similar to the “epoch” analysis, except it substitutes the paleogeography-aware model
of range evolution (see Section 3) for a paleogeography-naive model (see Section 2).

We see that simple analysis (Figure 7) estimates the ancestral range at the root of the clade as Maui+Mainland
(MZ). This is unrealistic, both because of the extreme distance between those areas, but also the simple
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Figure 7: Joint estimate of phylogeny and biogeography, ignoring paleogeography.

analysis estimates the root age to be 10.3 (HPD95% 4.6, 15.0) Ma, well before Maui originated. (Date
estimates are reported in the simple_phy.mcc.tre and simple_phy.model.log files.) The simple model
also infers Kauai+Maui (KM) as the ancestral range of living silverswords and a crown age of 7.2 (HPD95%
2.5, 13.5) Ma, which is impossibly ancient given the islands’ ages.

The epoch analysis (Figure 8) produces more sensible ancestral range estimates, with Kauai being colonized
first, and younger islands only being colonized as they become available. The crown age of silverswords is
estimated as 2.5 (HPD95% 0.7, 4.3) Ma. When comparing the results to the earlier fixed-phylogeny epoch
results in Figure 5, we recover a greater role for cladogenesis for the younger speciation events. These
two analyses only differ in terms of whether the phylogeny is fixed or estimated, so it is likely a result of
phylogenetic error in the fixed tree.

In Tracer, one can look at the sampled posterior of island ages in comparison the origination time of crown
silverswords (Figure 9). The left panel shows the simple analysis, where crown silverswords often originate
before the formation of Kauai. The right panel shows that crown silverswords probably originated before
the formation of Maui, but after the formation of Kauai.

By tabulating the results of the deterministic variable ingroup_older_island, we measure the posterior
probability that crown silverswords originated before or after each particular epoch in the model (Table 4).
Treating P = 0.95 as significant support for an evolutionary outcome, the epoch model produces strong
support that crown silverswords originated after the formation of Kauai, P (as > aK) = 0.02 < 1 − 0.95
and weak support that they originated after the formation of Oahu, P (as > aO) = 0.26 > 1− 0.95.
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Figure 8: Joint estimate of phylogeny and biogeography, conditioning on paleogeography through the epoch
model.
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Figure 9: Plot of posterior samples for island ages and the origin time of living silverswords. The colors
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Model P (as > aK) P (as > aO) P (as > aM ) P (as > aH)
simple 0.72 0.94 0.99 1.00
epoch 0.02 0.26 0.84 0.99

Table 4: Posterior probability that the age of crown silverswords (as) is older than the origination times of
K, O, M, and H (aK , aO, aM , aH , respectively). The “simple” model (Left) ignores paleogeography while
the “epoch” model (Right) conditions on it.
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