Bio1B Evolution 8

Last lecture:

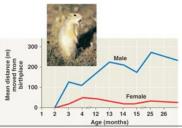
Sexual selection

- Mating systems (pp 1136-7)
- · Intra vs intersexual selection (481-482)
- Female preference: Direct benefits (resources) vs indirect (good genes)

Today

Evolution of sacrifice (altruism)

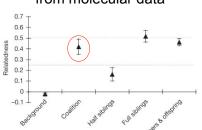
Species & speciation


- What is a species anyway? (Pp. 487-492)
 - Concepts typological, biological, phylogenetic
 - Reproductive isolation mechanisms
 - Easy one? Humans & living relatives
 - Interesting one Ensatina salamanders
- Speciation processes introduction & geography; adaptive radiations

When to sacrifice? - if it helps a relative lots... [pp 1138-1140]

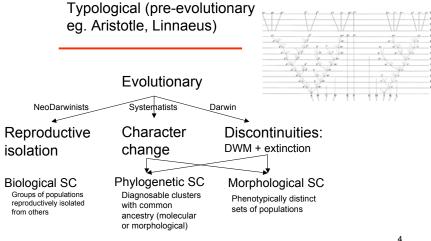
- "Kin selection theory" (W. Hamilton)
- Help if: rB > C: r = %shared genes, B = benefit, C = cost
- · Haldane: "I would not lay down my life for a brother, but would do so for 2 brothers or 8 cousins)"
- · Social insects: inheritance system => higher "r" => increased cooperation

Tuco tuco - coparenting by females in social groups (Eileen Lacev, IB)


Belding's ground squirrels: females more 2 related and give more alarm calls (Fig. 51.29)

Kin selection and cooperative courtship in wild turkeys

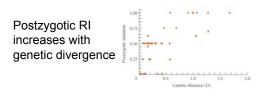
Alan H. Krakauer (2005) Nature 434:69

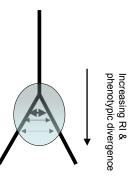


Estimates of relatedness from molecular data

Table 1 Calculation of Hamilton's rule, rB - C < 0			
Variable	Description	Calculation	Value*
r	Coefficient of relatedness	Mean pairwise relatedness of subordinates to their dominant display partner	0.42
B†	Benefit to dominant	(No. of offspring per dominant male) – (no. of offspring per solo male)	6.1 (9.0)
C†	Cost to subordinate	(No. of offspring per solo male)- (no. of offspring per subordinate male)	0.9 (2.3)
	Net benefit†	rB - C	+1.7 (1.5

What is a species?

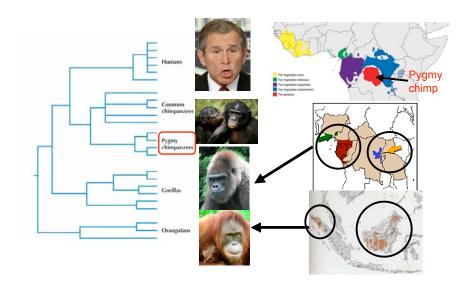


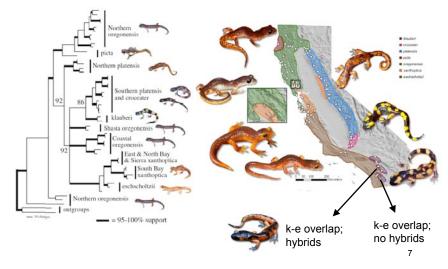

Reconciling different perspectives

Forms of Reproductive Isolation

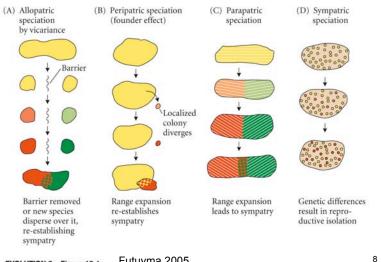
(see Fig. 24.4 - but no set sequence)

- Prezygotic
 - Separation of mating
 - · Habitat, Timing, Behavior, Mechanical
- · Gamete recognition
- Postzygotic
 - Viability (F1 or later), Fertility

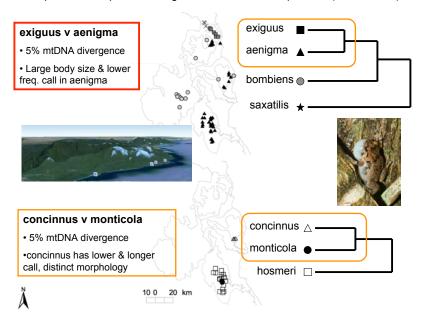



General lineage concept: focuses on the process - not how to recognize species

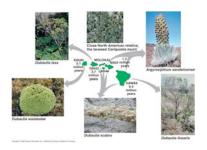
5


Species of Hominidae

Ensatina eschscholtzii - One ring species? Or 2 biological species? Or >11 Phylogenetic species



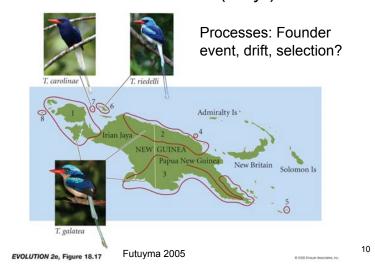
Geographic modes of speciation


Futuyma 2005 EVOLUTION 2e, Figure 18.1

Allopatric sister species among northern, montane Cophixalus (Hoskin 2004)

Adaptive radiations (pp. 524-5)

- Rapid speciation with ecologically-driven divergent selection
- Common on remote islands or other novel environments following colonization
- Promoted by isolation & ecological opportunity



e.g. Hawaiian silverswords (Fig. 25.18)

Other examples: African cichlids, Hawaiian arthropods, Andean Iupines, Carribean anole lizards etc etc

11

Peripatric speciation: paradise-kingfishers in New Guinea (Mayr)

