Bio1B Evolution 4

Last lecture:

- More history Darwin+Mendel => the neodarwinian synthesis
- Mechanisms of evolution:
 - Evolution in populations population genetics
 - Allele, genotype and phenotype frequencies
 - Predicting genotype freq's: Hardy (Castle) Weinberg Equilibrium
 - Application: Null model for evolution

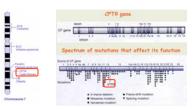
Today

- · Predicting genotype freg's: Hardy (Castle) Weinberg Equilibrium
 - Application: Predicting heterozygote frequencies for recessive traits

Evolutionary processes

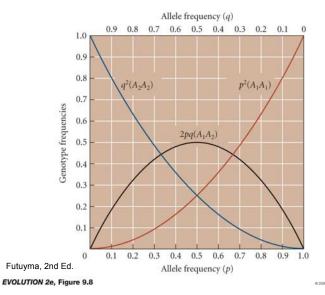
- Sampling effects => "genetic drift"
 - Relevance in evolution loss of variation, bottlenecks
- Mutation as the ultimate source of variation; effects on fitness
- Selection
 - fitness
 - Forms and consequences

Applications of HWE


- A null model for evolution
 - Deviations from expected proportions indicate something interesting - but what?
- Predicting frequency of heterozygotes for recessive alleles, e.g. cystic fibrosis

<u>Cystic fibrosis</u>: Mapped to chloride transport gene on chromosome 7

Common mutation, Δ F508 is recessive and at p = 0.02 in caucasian population


F(het) = 2pq = 0.04 (carriers)

F(hom) = p2 = 0.0004 (affected)


2

Hardy-Weinberg genotype frequencies as a function of allele frequencies at a locus with two alleles

Effect of small population size - "genetic drift"

- Sampling gametes => zygotes
- Small population have greater sampling error => larger fluctuations in allele frequency
- => reduced variation within populations

Population bottlenecks

- · Habitat loss or over-harvesting
- Colonization of new areas (eg. islands; humans "Out of Africa"
- ⇒Loss of genetic diversity
- ⇒ Rapid change in allele frequencies => divergence

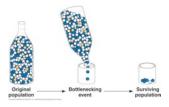


Fig. 23.9

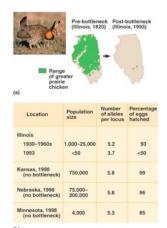
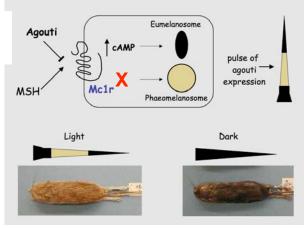


Fig. 23.10

Mutations - forms



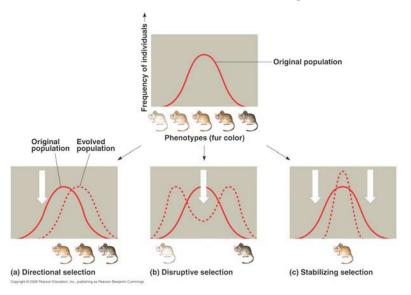
Some key genes in melanin production pathway

Agouti melanistic mutations:

Recessive [regulatory & coding]

Mc1r Melanistic mutations Dominant [structural]

So what? ... Mc1r & melanoma! 7


Genetic fitness

- Selection acts through the phenotype
- <u>Fitness</u> = Survival and reproduction relative to other phenotypes or genotypes in the population
- Relative fitness can be environment dependent

Sorry Arnie....

Forms of selection (Fig. 23.13)

Example of Heterozygote advantage sickle-cell anaemia

Relative fitnesses:

Without malaria:

HbbAA > HbbAS > HbbSS

----- anaemia

With malaria:

HbbAS > HbbAA > HbbSS

Ī

More resistant to malaria

Frequencies of the sickle-cell allele

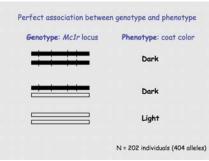
0-2.5%
2.5-5.0%
5.0-7.5%
malaria caused by
Plasmodium falciparum
(a parasitic unicellular eukaryote)

10.0-12.5%
>12.5%

Note - fitness of Hbb^{AS} depends on environment (<u>+</u> malaria)

Adaptive color polymorphism in rock pocket mice

habitat

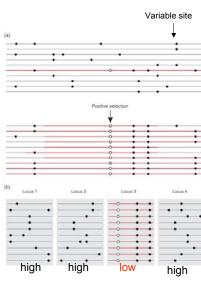


O'Neill Hills
2 miles
Pinacate Lava

Association between melanic phenotype and Mc1r allele in rock pocket mice from Pinacates lava flow

Hopi Hoekstra in the field..

Genomic signatures of recent selection


New mutation arises that increases fitness

Under directional selection increases to p = 1; drags <u>linked</u> sites with it

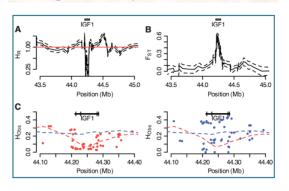
Results in a region of low variation relative to others

Storz 2005

Variation

Genomic signatures of selection; localized reductions in diversity

A Single *IGF1* Allele Is a Major Determinant of Small Size in Dogs



What's with my crazy dog?

Sutter et al. 2007 Science 316:112

The dog has its day

