I will post my lectures on the course website in pdf format (no point in wasting paper ⁽²⁾).

Atomic Structure

atom

- 1. Smallest particles that retain properties of an element.
- Contains a nucleus made of protons (+) and neutrons (uncharged), surrounded by clouds of electrons (-)
- 3. If the number of protons equals the number of electrons there is no net charge.

Proton
Neutror

Electron

Electron orbits

- The electrons of atoms are contained in orbits with ever increasing energy levels.
- 2. Each orbit has a maximum number of electrons that it can maintain.
- Once an inner orbit reaches its maximum number of electrons additional electrons must be housed in the next orbit.
- The number of electrons in a particular orbit influence an atoms interactions with other atoms.

Electron orbits – example (Na)

- in a nuetral state, the sodium atom (Na) has 11 protons and 11 electrons.
- 2. The first two orbits are filled by the first 10 electrons so the 11th electron must occupy the 3^{rd} orbit all by itself. This results in an unstable state for Na.
- This unstable state often resits in the loss of the electron in the 3rd orbit. This loss results in an atom with 11 protons and 10 electrons and thus a net positive charge (Na* - an "ion").
- When a positively charged atom comes into contact with a negatively charged atom (an atom with an extra electron) they can share that extra electron and form a bond with one another.

Electron orbits – example (Cl)

- 1. in a nuetral state, the chloride atom (CI) has 17 protons and 17 electrons.
- The first two orbits are filled by the first 10 electrons. The remaining 7 electrons occupy the 3rd orbit. This results in an unstable state for Cl.
- This unstable state results in the CI atom grabbing an extra electron and thus resulting in a net negative charge (Cl⁻ - an "ion").
- 4. When a positively charged atom comes into contact with a negatively charged atom (an atom with an extra electron) they can share that extra electron and form a bond with one another.

When the positively charged Na ion atom (missing an electron) comes into contact with a negatively charged Cl ion atom (extra electron) they join and thus match the number of protons for each atom (11 & 17) and form an "tomic bond".

Isotope

- **isotope** a variant of an atom with a different number of neutrons
- Example: carbon ¹²C vs. ¹⁴C
- Isotopes interacts with other atoms in the same way.
- Uniqueness lets us follow isotopes in the environment, in plants, people, etc.

Radiocarbon dating

- Archeologist use the proportions of ¹²C and ¹⁴C in dead organic matter to estimate how long it has been dead.
- Plants incorporate ¹²C and ¹⁴C in the production of molecules from the atmosphere. Therefore the proportion of ¹²C and ¹⁴C in plants is similar to that found in the atmosphere. When consumers eat plants they too incorporate the same ¹²C and ¹⁴C proportions into their molecules.
- ¹⁴C slowly decays into ¹⁴N. When an organism dies it no longer adds ¹⁴C to its tissue – Therefore, as ¹⁴C decays over time the ratio of ¹⁴C to ¹²C decreases. The rate of decay for ¹⁴C 5,730 years for half of the atoms present to be converted to ¹⁴N (halflife of 5,730 years) that is, if you had one million ¹⁴C atoms there would be ½ million 5,730 years later.

Molecules

molecule – 2 or more atoms bound together.

- example: NaCl, H₂O, O₂
- ions atoms or molecules that are charged (i.e., + or –) due to the loss or gain of an electron or electrons
- example: Na⁺ and Cl⁻

Molecular Bonds

- ionic bond two ions that are held together by opposite charges
- + and attract
- example: $Na^+ + Cl^- \rightarrow NaCl$
- **covalent bond** electrons are shared between atoms. These bonds are the result of atoms that each contribute an electron to the other. Very strong bonds.
- example: Single covalent bond involves 2 shared electrons (1 from each atom) H_2 = (H-H)
- example: Double covalent bonds each atom donates 2 electrons for a total of 4 shared electrons O₂= (O=O)

Molecular Bonds

- onpolar covalent bond two identical atoms share electrons equally, and the molecule shows no difference in charge between its two ends. They are symmetrical. Eg. H−H, O=O and N=N
- **bolar covalent bond** bonds formed between atoms of different elements. One of the atoms pulls the shared electron a little more than the other. This results in a slightly negative charge on that end of the bond.

•Example: H₂O – has two polar covalent bonds; the oxygen is negatively charged and the hydrogen's are positive.

Molecular Bonds

hydrogen bond – weak attraction between an electronegative atom and a hydrogen atom

Molecular Bonds

Hydrogen bonds are weak but can stabilize a

structure.

Molecular Bonds

Below 0°C, each water molecule hydrogen bonds to four others in a three dimensional lattice and forms ice.

Molecular Bonds

Hydrogen bonds can link chains.

Molecular Bonds

Hydrogen bonds can cause a molecule to twist back on itself.

Properties of Water

- 1. Water is slightly polar and can hydrogen bond to itself or many other polar molecules.
- 2. Water repels nonpolar molecules such as oils. This property is employed in cell walls to protect inner chemistry.
- Water stabilizes temperatures. Hydrogen bonds buffer changes in temperature.
- 4. Water is cohesive.Water stands on a surface.Water can be pulled up pipelines in plants.
- 5. Water is a great solvent.
- 6. Water is used in many metabolic reactions.

Organic Macromolecules

- "Molecules of Life"
- Carbohydrates made of <u>simple sugars</u>
- Lipids made of <u>fatty acids</u>
- Proteins made of amino acids
- nucleic acids made of <u>nucleotides</u>
- made up primarily from Carbon, Hydrogen, Oxygen, and Nitrogen (C, H, O, N)

Carbohydrates

- 1. Make up structural materials in cells
- 2. Are storage forms of energy
- 3. Most have a chemical formula of (CH₂O)n
- 4. Monosaccharides are single sugar molecules with 5 or 6 carbon atoms
 - Examples: ribose $(C_5H_{10}O_5)$ and glucose $(C_6H_{12}O_6)$
- 5. Disaccharides are made of two sugars Example: sucrose $(C_{12}H_{22}O_{11})$

Polysaccharides

Polysaccharides are complex carbohydrates of straight or branched chains of many sugars Examples: cellulose, starch, glycogen.

Lipids

Lipids – fats, oils, waxes

- 1. Are structural elements (cell membranes and surface coatings)
- 2. Are energy reserves
- 3. Are signaling molecules
- 4. Are nonpolar hydrocarbons with a chemical formula of (CH₂)n
- 5. Don't dissolve in water

Fats

- 1. Most <u>animal fats</u> have <u>saturated fatty acids</u> and are usually solid at room temp.
- 2. Most <u>plant fats</u> (vegetable oils) have <u>unsaturated fatty acids</u> and are usually liquid at room temp.

Triglyceride

- 1. Triglyceride=3 fatty acids attached to a glycerol (at top)
- 2. Triglycerides are the body's richest energy source. Insulate animal bodies.
- 3. Examples: butter, lard, vegetable oils, and natural fats

<text><text><text>

Waxes

Waxes – lipids that are rigid, yet flexible and repel water.

• Example: Covering (cuticle) of plants, skin, hair, beeswax.

	Fats	
Saturated Fat	Unsaturated Fat	"Trans-Fat"
		ниин НИН
Hard at room temperature	Liquid at room temperature	Hard at room temperature
Mostly animal fats	Mostly vegetable oils	Hydrogenated vegetable oils

	Unsaturated Fat	"Trans-Fat"
"Bad Fat"	"Good Fat"	"VERY Bad Fat"
Bad cholesterol	Bad cholesterol, maintains good cholesterol	Bad cholesterol,good cholesterol
Butter, lard, fatty red meat, full-fat dairy	Olive, peanut, & canola oil; avocados, seeds, fish	Processed foods, fast foods, margarine, cookies, cakes, doughnuts, potato chips, French fries

Proteins

- 1. Most diverse of the large biological molecules
- 2. Enzymes are proteins that make reactions go faster
- 3. Found in structural elements such as feathers, bones, cartilage, muscles, hair, spider webs, etc.
- 4. Move molecules across membranes and through fluids
- 5. Are nutritious and found in eggs and seeds
- 6. Hormones are proteins that signal changes in cell activities

Amino Acids

- 1. Only 20 amino acids produce all proteins!
- 2. Amino acids are the building blocks of proteins

A generalized structural formula for amino acids. The "R" group differs for each amino acid.

AA-- AA- AA-2

Peptide Bonds

Proteins

- 1. Proteins can have many different structures chains, coiled, pleated sheets, or folded into a 3-D shape.
- 2. Proteins can attach to each other.

Nucleic Acid

- A nucleotide is a sugar, carbon ring with nitrogen (nitrogenous base), and ≥1 phosphate groups
- 2. Cells have free nucleotides floating around inside. Examples: cytosine, ATP (adenosine triphosphate)

3. ATP drives most energy-requiring metabolic reactions.

Nucleic Acid

- A nucleic acid consists of nucleotides in single or double-stranded chains.
 Example: DNA and RNA.
- 2. DNA (deoxyribonucleic acid) contains genetic information. DNA codes for proteins.
- 3. DNA has two helically-coiled strands of nucleotides with hydrogen bonds between the strands of nucleotides.
- 4. 4 nucleotide building blocks are involved: adenine, cytosine, guanine, thymine

RNA

- 1. RNA (ribonucleic acid) takes DNA code and makes proteins
- There are three classes of single-stranded RNAs: mRNA (messenger) rRNA (ribosomal) tRNA (transfer)
- 3. 4 nucleotide building blocks are involved: adenine, cytosine, guanine, uracil