Syllabus

INTEGBIO 201/120 COMPBIO 210 – Spring 2021

Introduction to Quantitative Methods In Biology (4 units)

Lectures: 1:00-2:00 MWF Zoom link on bCourses

Co-instructor: Prof. Peter Sudmant
Email: psudmant@berkeley.edu

Co-instructor: Prof. Denis Titov
Email: titov@berkeley.edu

Co-instructor: Prof. John Huelsenbeck
Email: johnh@berkeley.edu

Co-instructor: Prof. Rasmus Nielsen
Email: rasmus_nielsen@berkeley.edu

Course description: This course provides a fast-paced introduction to a variety of quantitative methods used in biology and their mathematical underpinnings. While no topic will be covered in depth, the course will provide an overview of several different topics commonly encountered in modern biological research including differential equations and systems of differential equations, a review of basic concepts in linear algebra, an introduction to probability theory, Markov chains, maximum likelihood and Bayesian estimation, measures of statistical confidence, hypothesis testing and model choice, permutation and simulation, and several topics in statistics and machine learning including regression analyses, clustering, and principal component analyses. The course includes a lab section focusing on building student skills in modern computational methods for biological data analysis using python and R.

Prerequisites: Graduate standing or Biology 1A, Biology 1B, a course in statistics such as Data 8, Stat 2 or Stat 20, and two semesters of college level math including calculus such as Math 10A and Math 10B. Undergraduate students engaged in honors research, or other supervised research, are preferred. Graduate students who have not previously taken any statistics courses may benefit from taking Data 8, Stat 2 or Stat 20, or similar courses, before enrolling. Previous knowledge of R is not necessary.

Course Format: The course consists of 3 hours of lectures (MWF 1:00 – 2:00 pm) and three hours of computer exercises.

Course readings: There is no required text. The course will be based on lecture notes developed by the instructors. Lecture notes for each week will be posted on bCourses.
Requirements and Grading: Submission of weekly lab report to GSI. Attendance at lectures and participation in classroom discussions and computer exercises are required of all students. There will be four in-class exams on 2/10, 3/8, 4/7, and 4/30. The computer labs will account for 50% of the final grade and the exams will each account for 12.5%.

Lecture Schedule

<table>
<thead>
<tr>
<th>Dates</th>
<th>Topic</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/20</td>
<td>Introduction</td>
<td>RN</td>
</tr>
</tbody>
</table>
| 1/22, 1/25, 1/27, 1/29, 2/1, 2/3, 2/5, 2/8 | Lecture 1. Python Intro
Lecture 2. Differential Equations Intro
Lecture 3. Numerical solutions of ODEs using SciPy
Lecture 4. Graphical methods of analyzing ODEs
Lecture 5. Analytical solutions of ODEs using SymPy
Lecture 6. Predator-Prey ODE model
Lecture 7. COVID19 ODE model
Lecture 8. Cell Cycle Regulation ODE model
Lab 1: R & Python Basics
Lab 2: Discrete Time Modeling
Lab 3: Analytical Solutions to ODEs and Systems of Equations | DT |
| 2/10 | Exam I | DT |
| 2/12, 2/17, 2/19, 2/22, 2/24, 2/26, 3/1, 3/3, 3/5 | Introductory probability theory I (axioms of probability, conditional probability, Bayes' formula, discrete random variables, Binomial, Poisson). Introductory probability theory II (expectation, variance, continuous random variables, exponential distribution, normal distribution and its properties). Markov chains (discrete time Markov chains, transition probabilities, classification of states, stationary distribution, examples from evolutionary biology).
Lab 4: Random number generation, drawing random variables from probability distributions, expected values, variance, cumulative probabilities, quantiles.
Lab 5: Graphing in R
Lab 6: Understanding Markov chains | JH |
<table>
<thead>
<tr>
<th>Date</th>
<th>Exam</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/7</td>
<td>Exam 3</td>
<td>Measures of distance and similarity, hierarchical & k-means clustering, gaussian mixture modelling & expectation maximization, introduction to linear algebra, dimensionality reduction and PCA, hidden markov models.</td>
</tr>
<tr>
<td>4/30</td>
<td>Exam 4</td>
<td>PS</td>
</tr>
<tr>
<td>4/30</td>
<td>Exam 4</td>
<td>PS</td>
</tr>
</tbody>
</table>